Эпизоотическая активность природных очагов чумы российской федерации
3.1.3. Эпидемиология. Профилактика инфекционных болезней. Кровяные инфекции
Методические указания МУ 3.1.3.3394-16
"Методические указания по прогнозированию эпизоотической активности природных очагов чумы Российской Федерации"
(утв. Главным государственным санитарным врачом РФ 19 августа 2016 г.)
1. Область применения
1. Настоящие методические указания определяют методологические основы и порядок проведения эпизоотологического мониторинга в природных очагах чумы на территории Российской Федерации для подготовки прогнозов их эпизоотической активности.
2. Методические указания предназначены для специалистов противочумных учреждений Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, осуществляющих эпидемиологический надзор и прогнозирование эпизоотической активности природных очагов чумы на территории Российской Федерации.
2. Общие положения
Прогноз эпизоотической активности природных очагов чумы является основой планирования профилактических мероприятий. Внедрение в практику эпидемиологического надзора эколого-эпизоотологических и эпидемиологических прогнозов различной длительности позволяет значительно усовершенствовать стратегию и тактику мониторинга энзоотичных по чуме территорий Российской Федерации, минимизировать негативные эпидемиологические последствия роста эпизоотической активности природных очагов, обосновать приоритетность финансирования конкретных противоэпидемических мероприятий. Современная экономическая, социальная и экологическая обстановка диктует необходимость создания нового методического документа, направленного на разработку долгосрочных и краткосрочных эпизоотологических и эпидемиологических прогнозов.
Внедрение в практику эпидемиологического надзора за чумой эпизоотологических прогнозов различной длительности (на сезон, год и более) даст возможность более точно определять время, место и масштабность обострения эпизоотической обстановки, планировать и оперативно проводить упреждающие профилактические мероприятия, направленные на снижение риска заражения.
Настоящий документ основан на многолетнем опыте работы противочумных учреждений в области прогнозирования эпизоотической активности природных очагов чумы различной биоценотической структуры и разработан взамен "Методических рекомендаций по долгосрочному прогнозированию эпизоотической активности природных очагов чумы" (1991). Приведены конкретные примеры применения различных математических методов при составлении прогнозов эпизоотической активности равнинных и высокогорных природных очагов чумы на территории Российской Федерации.
3. Основные принципы прогнозирования эпизоотической активности природных очагов чумы
Основой прогнозов эпизоотологического профиля служат представления о наличии зависимости эпизоотической активности природных очагов чумы от уровня численности носителей и переносчиков этой инфекции и/или факторов внешней среды. Изменения эпизоотической активности природных очагов чумы во многом связаны с ритмикой атмосферных циркуляционных процессов, формирующих тот или иной гидрометеорологический фон. Важную роль в динамике эпизоотологического процесса играют сезонные и многолетние колебания численности фоновых видов носителей и их эктопаразитов, а также трофический фактор. Для построения эпизоотологических прогнозов различной длительности используют результаты многолетнего эпизоотологического обследования очаговых территорий, эколого-эпизоотологические данные, собранные на пунктах долговременных наблюдений. На основании анализа этих материалов определяют сезонные и многолетние особенности динамики паразитарных систем природных очагов различной биоценотической структуры, равно как и их эпизоотическую активность. В связи с тем, что количественные характеристики паразитарных систем природных очагов чумы получают, как правило, на основании ограниченных выборок, необходимо проводить тщательный подбор анализируемых показателей и статистическую оценку достоверности влияния исследуемых факторов.
Результаты анализа данных эпизоотологического обследования служат основанием для определения не только текущего состояние природного очага чумы, но и выявления основных тенденций дальнейшей динамики его эпизоотической активности. В качестве общего показателя интенсивности эпизоотии также используют долю проб полевого материала с положительным на чуму результатом от числа всех исследованных, а также проводят балльную оценку экстенсивных и интенсивных характеристик выявленной эпизоотии (табл. 1).
Оценку параметров эпизоотического состояния природного очага чумы проводят по формуле:
Х = (A + B + С + D + E) / 5, где
Х - показатель эпизоотического состояния природного очага;
А - показатель результатов бактериологических, иммунологических и генодиагностических исследований;
В - численность основных носителей;
С - численность переносчиков;
D - показатель состояния климатических факторов;
Е - численные показатели состояния астрофизических факторов (показатели приливообразующих сил, в отличие от чисел Вольфа, вычисляют заранее, что имеет большое прогностическое значение).
В зависимости от текущей ситуации по каждой из градаций (А-Е) выставляют соответствующие баллы, а затем вычисляют их среднюю арифметическую.
Соответственно, при среднем балле 1 следует ожидать (табл. 1) единичные проявления чумы или их отсутствие; 2 - отдельные проявления на незначительной территории; 3 - локальные эпизоотии и 4 - обширные разлитые эпизоотии чумы.
Основные предикторы изменения эпизоотической активности природных очагов чумы
Характеристика эпизоотического состояния природных очагов чумы
Уровень значений основных предикторов изменения эпизоотической активности очагов
Количественная оценка используемых предикторов, баллы
положительные результаты бактериологических, иммунологических, геннодиагностических исследований
численность доминирующих носителей
общая численность переносчиков
климатические характеристики (увлажненность, температурный режим и др.)
астрофизические характеристики (числа Вольфа, приливообразующая сила)
Низкий или его резкое падение
Повышение или понижение* аридности климата
Единичные находки зараженных животных
Ниже среднемноголетних показателей
Соответствуют среднемноголетним показателям
Соответствует среднемноголетним показателям
Снижение или повышение* аридности климата
Значительно выше нормы
Выше среднемноголетних показателей и (или) его быстрый рост
Аномальные отклонения от среднемноголетних показателей
Аномальные отклонения от нормы
* Для горных очагов Сибири
4. Методологические основы краткосрочных и долгосрочных прогнозов эпизоотической активности природных очагов чумы
Методические основы построения краткосрочного прогноза разделяют на два типа: экспертная оценка и количественный прогноз с использованием математической модели. При первом подходе оценивают современное состояние популяций основных и второстепенных носителей и переносчиков чумы, устанавливают тенденции динамики их численности, разрабатывают прогноз эпизоотической ситуации на следующий год (сезон). При этом обычно используется словосочетание "ожидаемая активность выше (ниже или равна) среднемноголетней". В заключение оценивают реальную возможность эпидемических осложнений и дают рекомендации по организации и объему профилактических мероприятий.
Экспертный краткосрочный прогноз состояния природных очагов чумы строится на анализе текущей эпизоотической обстановки на территории конкретного очага с учетом тенденций развития ведущих его биоценотических компонентов. Основой эпизоотологического прогноза являются данные, характеризующие сезонную и многолетнюю динамику эпизоотического состояния очага (сведения о находках переболевших и инфицированных животных, площадь и ландшафтная приуроченность эпизоотических участков, зараженность зверьков по видам в процентах к исследованным, зараженность блох, доля положительных посевов от числа сделанных в процентах, показатели численности носителей и переносчиков и т.д.).
Экспертный краткосрочный прогноз проводится в виде качественной оценки эпизоотического состояния очага, выраженной в четырех уровнях (градациях), соответствующих четырем фазам эпизоотического цикла: рост активности, пик, спад и депрессия. Такой прогноз дает важную информацию о тенденции изменения эпизоотической активности конкретного природного очага чумы. При этом прогностическая активность природного очага оценивается по следующим качественным показателям: единичные находки зараженных чумой животных или их отсутствие, локальные эпизоотии на участках их стойкого проявления, обширные эпизоотии. Поскольку каждый эпизоотический цикл конкретного природного очага чумы характеризуется определенными средними значениями основных показателей состояния его паразитарной системы (показатели численности и зараженности носителей и переносчиков), то с помощью качественного и количественного анализа состояния ведущих его биоценотических компонентов определяется текущий прогностический уровень эпизоотической активности рассматриваемой территории. Для фазы депрессивного состояния природного очага характерна низкая, для фаз роста и спада - средняя, для фазы пика - высокая эпизоотическая активность.
В природных очагах чумы с постоянной эпизоотической активностью качественная оценка текущей фазы эпизоотического цикла осуществляется, как правило, на основании проявляющейся связи между уровнями численности, носителей и переносчиков и показателями их эпизоотической активности. При этом рост эпизоотической активности обычно совпадает с периодом роста численности основных носителей и переносчика. Соответственно, пик эпизоотической активности природных очагов наблюдается в годы пика или начала спада численности основных носителей и переносчиков возбудителя чумы. Минимальная эпизоотическая активность природных очагов, вплоть до установления длительных межэпизоотических периодов, отмечается в периоды, характеризующиеся депрессивным состоянием численности фоновых видов грызунов и их эктопаразитов.
В связи с этим основой качественного прогноза изменения эпизоотической активности природных очагов чумы является соответствующий по длительности прогноз сезонной (многолетней) динамики численности основных носителей и переносчиков возбудителя чумы.
Соответственно, прогнозы численности грызунов - основных носителей возбудителя чумы, строятся на основании результатов оценки плотности их населения, распределения и общего состояния их популяций, а также разностороннего анализа ретроспективной и текущей обстановки на рассматриваемой территории (погодные условия, антропогенные воздействия и др.). Особое внимание следует уделять прогнозированию массовых размножений фоновых видов (обычно основных носителей возбудителя), способствующих активизации очагов и осложнению эпидемиологической обстановки.
Для построения краткосрочного прогноза численности фоновых видов грызунов и их эктопаразитов, а также эпизоотической активности природного очага используют также данные, полученные на пунктах долговременного наблюдения, а именно:
- метеоданные за теплый и холодный периоды года, аномальные погодные явления, состояние кормовых условий существования основных и второстепенных носителей чумы;
- характер переживания основными и второстепенными носителями чумной инфекции холодного периода года;
- показатели фоновой численности перезимовавшего поголовья зверьков;
- для популяций малого, длиннохвостого и даурского сусликов - даты пробуждения, расселения, залегания в спячку и т.д.;
- ход размножения основного носителя, а также видов грызунов и зайцеобразных, играющих заметную эпизоотологическую роль (начало, конец размножения, для полиэстральных видов - сроки и интенсивность вступления в размножение молодняка текущего года рождения, наличие повторного размножения перезимовавших самок);
- показатели численности основного носителя, равно как и других видов мелких млекопитающих, в первую очередь домовой мыши, в открытых и закрытых стациях;
- прогностические параметры численности основных и дополнительных переносчиков чумы в открытых стациях;
- данные по видовому составу и численности эктопаразитов в населенных пунктах;
- сведения о ходе размножения переносчиков чумы (особенности размножения в текущем году, сроки и интенсивность откладки яиц и выплода молодых, изменения возрастного состава популяций и т.д.);
- показатели численности и активность основных переносчиков чумы (характер изменения численности, периоды смены генераций, обилие мигрирующих блох, обилие блох на основных и второстепенных носителях чумы и т.д.).
На основании этих данных оценивают возможные причины происшедших изменений и вероятность дальнейших перестроек в биоценотических комплексах и эпизоотическом состоянии природных очагов чумы. В связи с этим только комплексный анализ факторов, оказывающих влияние на паразитарную систему природных очагов чумы, а также выделение среди них ведущих, является непременным условием при прогнозировании ожидаемых изменений их эпизоотической активности. В то же время следует учитывать, что все прогнозы природных явлений, находящихся под влиянием большого числа разнородных факторов, часто недостаточно точны, по своей сути сугубо относительны и характеризуются определенными пространственно-временными параметрами. В практике эпизоотологического мониторинга используют, как правило, краткосрочные прогнозы, составленные для конкретных территорий на ближайшие полгода или год.
При составлении эпизоотологического прогноза для конкретного природного очага чумы также оценивают реальную возможность эпидемических осложнений и дают рекомендации по организации комплекса профилактических мероприятий (содержание, сроки, дислокация и объемы дератизационных и дезинсекционных обработок, необходимость санпросветработы среди местного и приезжего населения, их вакцинации, специальной подготовки организаций общей медицинской сети к возможным обострениям эпидемиологической обстановки. С этой целью составляют прогнозы буферных зон (площади) эпизоотий, на которых необходимо проводить профилактические (противоэпидемические) мероприятия.
Теоретической предпосылкой долгосрочного прогнозирования служат представления о том, что крупные колебания эпизоотической активности очагов представляют собой результат совместного влияния составляющих их периодических флюктуаций меньшей длительности. При наложении пиков нескольких мелких периодов проявляется максимальное значение более крупного цикла. При этом ряд лет, вошедших в краткосрочные прогнозы, может стать основой для долгосрочного прогнозирования, так как он дает возможность выделить значимые факторы и оценить их статистически. При этом выбор критериев (предикторов) прогнозирования эпизоотической активности природных очагов чумы ведется с помощью статистических методов при программном обеспечении ПК пакетом Statistica или его аналогов.
Прогноз эпизоотической активности природных очагов чумы на территории Российской Федерации на первое полугодие представляется к 15 декабря; на второе полугодие - к 15 июля. Долгосрочный прогноз эпизоотической активности природных очагов чумы разрабатывается на 5 лет.
4.1. Методы выявления факторов, связанных с изменением эпизоотической активности природных очагов чумы
В настоящее время в биологических исследованиях широко применяют компьютерные программы Statistica и Excel и другие пакеты для статистической обработки данных.
Анализ данных следует начинать с ввода исходных количественных значений в электронную таблицу этих программ. Обычно по горизонтали (верхняя строка) вводятся наименования анализируемых показателей, по вертикали (столбцы или графы) - их количественные значения. В программе Statistica для этого используют модуль "Описательная статистика". Для сжатого описания временных рядов использованы статистические параметры: средняя арифметическая (характеризует центральную тенденцию) и период (интервал времени между двумя уровнями временного ряда с одинаковой фазой). Амплитуду колебаний значений временного ряда не анализировали, но при необходимости она может быть охарактеризована величиной показателя дисперсии, среднего квадратического отклонения или коэффициентом вариации. В программе Excel для такого анализа данных используют модуль "Анализ данных" => "Описательная статистика".
Существует два основных подхода к экстраполяции (прогнозу) значений временных рядов: путем выявления экологических предикторов (факторное прогнозирование) или моделирование тенденций развития исходной последовательности. Каждая статистическая компьютерная программа содержит определенный набор методов для решения этих задач. Выделить один метод в качестве наиболее "правильного" невозможно. Обусловлено это тем, что каждый из них лучше аппроксимирует временные ряды определенного типа, в разной степени отвечает решаемым на данный момент исследователем задачам, техническим возможностям, уровню подготовки исполнителя и т.д. Для целей выявления факторов, связанных с исходным временным рядом, используют корреляционный, регрессионный и дискриминантный анализы.
Корреляция - мера связи между переменными. Различают линейную и нелинейную зависимости. Линейная связь описывается коэффициентом корреляции Пирсона (r) и характеризует степень пропорциональности изменения переменных (тесноту связи). Коэффициент корреляции является безразмерной величиной. Значение коэффициента корреляции не зависит от масштаба измерения и изменяется в пределах от -1,0 до +1,0. Значение, равное 1,0, (по абсолютной величине) показывает, что переменные связаны функционально. Если - связь считается слабой; при - умеренной; - указывает на тесную зависимость между исследуемыми переменными.
Если связь между переменными нельзя описать прямой (или близкой к ней) линией, то либо связи нет, либо корреляция между переменными носит нелинейный характер. Для выявления связи нелинейного характера используется непараметрический коэффициент корреляции Спирмена. Его значения также изменяются в пределах от -1,0 до +1,0. Используя модуль "Анализ данных" => "Гистограмма", нужно проверить форму распределения данных. Если распределение значительно отличается от нормального, необходимо использовать непараметрические методы статистики (Спирмена или Кендала).
Главным источником информации о надежности корреляции служит уровень значимости (р), который зависит от объема проведенных наблюдений. Уровень значимости более 0,05 свидетельствует, что связь между значениями переменных не доказана.
Применение корреляционного анализа следует, по возможности, сопровождать биологической интерпретацией полученных результатов, так как само наличие связи не является доказательством причинно-следственной обусловленности явлений.
Перед проведением корреляционного анализа определяют тип связи: линейный или нелинейный.
Например, в программе Statistica для этого применяется вложение "Графики", которое выводит результаты на экран. Если зависимость носит нелинейный характер (точки не укладываются на изображенную линию регрессии), дальнейшую обработку материалов проводят с применением коэффициент корреляции Спирмена, который выводится на экран в виде таблицы (табл. 2).
Аномальные отклонения от нормы
* Для горных очагов Сибири
4. Методологические основы краткосрочных и долгосрочных прогнозов эпизоотической активности природных очагов чумы
Методические основы построения краткосрочного прогноза разделяют на два типа: экспертная оценка и количественный прогноз с использованием математической модели. При первом подходе оценивают современное состояние популяций основных и второстепенных носителей и переносчиков чумы, устанавливают тенденции динамики их численности, разрабатывают прогноз эпизоотической ситуации на следующий год (сезон). При этом обычно используется словосочетание "ожидаемая активность выше (ниже или равна) среднемноголетней". В заключение оценивают реальную возможность эпидемических осложнений и дают рекомендации по организации и объему профилактических мероприятий.
Экспертный краткосрочный прогноз состояния природных очагов чумы строится на анализе текущей эпизоотической обстановки на территории конкретного очага с учетом тенденций развития ведущих его биоценотических компонентов. Основой эпизоотологического прогноза являются данные, характеризующие сезонную и многолетнюю динамику эпизоотического состояния очага (сведения о находках переболевших и инфицированных животных, площадь и ландшафтная приуроченность эпизоотических участков, зараженность зверьков по видам в процентах к исследованным, зараженность блох, доля положительных посевов от числа сделанных в процентах, показатели численности носителей и переносчиков и т.д.).
Экспертный краткосрочный прогноз проводится в виде качественной оценки эпизоотического состояния очага, выраженной в четырех уровнях (градациях), соответствующих четырем фазам эпизоотического цикла: рост активности, пик, спад и депрессия. Такой прогноз дает важную информацию о тенденции изменения эпизоотической активности конкретного природного очага чумы. При этом прогностическая активность природного очага оценивается по следующим качественным показателям: единичные находки зараженных чумой животных или их отсутствие, локальные эпизоотии на участках их стойкого проявления, обширные эпизоотии. Поскольку каждый эпизоотический цикл конкретного природного очага чумы характеризуется определенными средними значениями основных показателей состояния его паразитарной системы (показатели численности и зараженности носителей и переносчиков), то с помощью качественного и количественного анализа состояния ведущих его биоценотических компонентов определяется текущий прогностический уровень эпизоотической активности рассматриваемой территории. Для фазы депрессивного состояния природного очага характерна низкая, для фаз роста и спада - средняя, для фазы пика - высокая эпизоотическая активность.
В природных очагах чумы с постоянной эпизоотической активностью качественная оценка текущей фазы эпизоотического цикла осуществляется, как правило, на основании проявляющейся связи между уровнями численности носителей и переносчиков и показателями их эпизоотической активности. При этом рост эпизоотической активности обычно совпадает с периодом роста численности основных носителей и переносчика. Соответственно, пик эпизоотической активности природных очагов наблюдается в годы пика или начала спада численности основных носителей и переносчиков возбудителя чумы. Минимальная эпизоотическая активность природных очагов, вплоть до установления длительных межэпизоотических периодов, отмечается в периоды, характеризующиеся депрессивным состоянием численности фоновых видов грызунов и их эктопаразитов.
В связи с этим основой качественного прогноза изменения эпизоотической активности природных очагов чумы является соответствующий по длительности прогноз сезонной (многолетней) динамики численности основных носителей и переносчиков возбудителя чумы.
Соответственно, прогнозы численности грызунов - основных носителей возбудителя чумы, строятся на основании результатов оценки плотности их населения, распределения и общего состояния их популяций, а также разностороннего анализа ретроспективной и текущей обстановки на рассматриваемой территории (погодные условия, антропогенные воздействия и др.). Особое внимание следует уделять прогнозированию массовых размножений фоновых видов (обычно основных носителей возбудителя), способствующих активизации очагов и осложнению эпидемиологической обстановки.
Для построения краткосрочного прогноза численности фоновых видов грызунов и их эктопаразитов, а также эпизоотической активности природного очага используют также данные, полученные на пунктах долговременного наблюдения, а именно:
метеоданные за теплый и холодный периоды года, аномальные погодные явления, состояние кормовых условий существования основных и второстепенных носителей чумы;
характер переживания основными и второстепенными носителями чумной инфекции холодного периода года;
показатели фоновой численности перезимовавшего поголовья зверьков;
для популяций малого, длиннохвостого и даурского сусликов - даты пробуждения, расселения, залегания в спячку и т.д.;
ход размножения основного носителя, а также видов грызунов и зайцеобразных, играющих заметную эпизоотологическую роль (начало, конец размножения, для полиэстральных видов - сроки и интенсивность вступления в размножение молодняка текущего года рождения, наличие повторного размножения перезимовавших самок);
показатели численности основного носителя, равно как и других видов мелких млекопитающих, в первую очередь, домовой мыши, в открытых и закрытых стациях;
прогностические параметры численности основных и дополнительных переносчиков чумы в открытых стациях;
данные по видовому составу и численности эктопаразитов в населенных пунктах;
сведения о ходе размножения переносчиков чумы (особенности размножения в текущем году, сроки и интенсивность откладки яиц и выплода молодых, изменения возрастного состава популяций и т.д.);
показатели численности и активность основных переносчиков чумы (характер изменения численности, периоды смены генераций, обилие мигрирующих блох, обилие блох на основных и второстепенных носителях чумы и т.д.).
На основании этих данных оценивают возможные причины происшедших изменений и вероятность дальнейших перестроек в биоценотических комплексах и эпизоотическом состоянии природных очагов чумы. В связи с этим только комплексный анализ факторов, оказывающих влияние на паразитарную систему природных очагов чумы, а также выделение среди них ведущих, является непременным условием при прогнозировании ожидаемых изменений их эпизоотической активности. В то же время следует учитывать, что все прогнозы природных явлений, находящихся под влиянием большого числа разнородных факторов, часто недостаточно точны, по своей сути сугубо относительны и характеризуются определенными пространственно-временными параметрами. В практике эпизоотологического мониторинга используют, как правило, краткосрочные прогнозы, составленные для конкретных территорий на ближайшие полгода или год.
При составлении эпизоотологического прогноза для конкретного природного очага чумы также оценивают реальную возможность эпидемических осложнений и дают рекомендации по организации комплекса профилактических мероприятий (содержание, сроки, дислокация и объемы дератизационных и дезинсекционных обработок, необходимость санпросветработы среди местного и приезжего населения, их вакцинации, специальной подготовки организаций общей медицинской сети к возможным обострениям эпидемиологической обстановки. С этой целью составляют прогнозы буферных зон (площади) эпизоотий, на которых необходимо проводить профилактические (противоэпидемические) мероприятия,
Теоретической предпосылкой долгосрочного прогнозирования служат представления о том, что крупные колебания эпизоотической активности очагов представляют собой результат совместного влияния составляющих их периодических флюктуации меньшей длительности. При наложении пиков нескольких мелких периодов проявляется максимальное значение более крупного цикла. При этом ряд лет, вошедших в краткосрочные прогнозы, может стать основой для долгосрочного прогнозирования, так как он дает возможность выделить значимые факторы и оценить их статистически. При этом выбор критериев (предикторов) прогнозирования эпизоотической активности природных очагов чумы ведется с помощью статистических методов при программном обеспечении ПК пакетом Statistica или его аналогов.
Прогноз эпизоотической активности природных очагов чумы на территории Российской Федерации на первое полугодие представляется к 15 декабря; на второе полугодие - к 15 июля. Долгосрочный прогноз эпизоотической активности природных очагов чумы разрабатывается на 5 лет.
В настоящее время в биологических исследованиях широко применяют компьютерные программы Statistica и Excel и другие пакеты для статистической обработки данных.
Анализ данных следует начинать с ввода исходных количественных значений в электронную таблицу этих программ. Обычно по горизонтали (верхняя строка) вводятся наименования анализируемых показателей, по вертикали (столбцы или графы) - их количественные значения. В программе Statistica для этого используют модуль "Описательная статистика". Для сжатого описания временных рядов использованы статистические параметры: средняя арифметическая (характеризует центральную тенденцию) и период (интервал времени между двумя уровнями временного ряда с одинаковой фазой). Амплитуду колебаний значений временного ряда не анализировали, но при необходимости она может быть охарактеризована величиной показателя дисперсии, среднего квадратического отклонения или коэффициентом вариации. В программе Excel для такого анализа данных используют модуль "Анализ данных" => "Описательная статистика".
Существует два основных подхода к экстраполяции (прогнозу) значений временных рядов: путем выявления экологических предикторов (факторное прогнозирование) или моделирование тенденций развития исходной последовательности. Каждая статистическая компьютерная программа содержит определенный набор методов для решения этих задач. Выделить один метод в качестве наиболее "правильного" невозможно. Обусловлено это тем, что каждый из них лучше аппроксимирует временные ряды определенного типа, в разной степени отвечает решаемым на данный момент исследователем задачам, техническим возможностям, уровню подготовки исполнителя и т.д. Для целей выявления факторов, связанных с исходным временным рядом, используют корреляционный, регрессионный и дискриминантный анализы.
Корреляция - мера связи между переменными. Различают линейную и нелинейную зависимости. Линейная связь описывается коэффициентом корреляции Пирсона (r) и характеризует степень пропорциональности изменения переменных (тесноту связи). Коэффициент корреляции является безразмерной величиной. Значение коэффициента корреляции не зависит от масштаба измерения и изменяется в пределах от -1,0 до +1,0. Значение равное 1,0 (по абсолютной величине) показывает, что переменные связаны функционально. Если 0,3 - связь считается слабой; при 0,3 0,7 - умеренной: 0,7 - указывает на тесную зависимость между исследуемыми переменными.
Если связь между переменными нельзя описать прямой (или близкой к ней) линией, то либо связи нет, либо корреляция между переменными носит нелинейный характер. Для выявления связи нелинейного характера используется непараметрический коэффициент корреляции Спирмена. Его значения также изменяются в пределах от -1,0 до +1,0. Используя модуль "Анализ данных" => "Гистограмма", нужно проверить форму распределения данных. Если распределение значительно отличается от нормального, необходимо использовать непараметрические методы статистики (Спирмена или Кендала).
Главным источником информации о надежности корреляции служит уровень значимости (p), который зависит от объема проведенных наблюдений. Уровень значимости более 0,05 свидетельствует, что связь между значениями переменных не доказана.
Применение корреляционного анализа следует по возможности сопровождать биологической интерпретацией полученных результатов, так как само наличие связи не является доказательством причинно-следственной обусловленности явлений.
Перед проведением корреляционного анализа определяют тип связи: линейный или нелинейный.
Например, в программе Statistica для этого применяется вложение "Графики", которое выводит результаты на экран. Если зависимость носит нелинейный характер (точки не укладываются на изображенную линию регрессии), дальнейшую обработку материалов проводят с применением коэффициент корреляции Спирмена, который выводится на экран в виде таблицы (табл.2).
Итоговая таблица в программе Statistica
Читайте также: