В клетке возбудителя чумы нет рибосом цитоплазмы
Строение клетки
Как мы уже знаем, ядро управляет всеми процессами жизнедеятельности клетки. Эти процессы сложны и многообразны: клетка должна поддерживать форму, получать извне вещества для пластического и энергетического обмена, синтезировать органические вещества (Рис. 1).
Рис. 1. Строение клетки (Источник)
Каждая клетка представляет собой сложнейшую биохимическую фабрику, во много раз более совершенную, чем любой созданный руками человека механизм или завод. И все эти многочисленные биохимические реакции протекают в цитоплазме и в органеллах клетки.
Цитоплазма
Цитоплазма, или внутриклеточная жидкость, – жидкость, находящаяся внутри клеток. У эукариот матрикс цитоплазмы отделен клеточными мембранами от содержимого органоидов, например матрикса митохондрий. Содержимое клетки, за исключением плазматической мембраны и ядра, называют цитоплазмой.
Цитоплазма состоит из основного водянистого вещества и находящихся в ней различных органелл. Основное вещество цитоплазмы получило название гиалоплазмы или цитазоля и представляет собой густой бесцветный коллоидный раствор, который состоит из воды, содержание которой колеблется от 70 до 90 %.
В гиалоплазме находятся малые органические молекулы и биополимеры, а также различные неорганические соединения (Рис. 2).
Рис. 2. Концентрация ионов в цитоплазме (Источник)
Гиалоплазма – не только место хранения биомолекул, в ней же и протекают процессы обмена веществ в клетке – биосинтез белка, через нее происходит взаимодействие ядра и органоидов. Цитоплазма постоянно перемещается внутри клетки, что хорошо заметно по движению органелл. При помощи современного микроскопа удалось обнаружить тонкую структуру цитоплазмы (Рис. 3).
Цитоплазма эукариотических клеток пронизана трехмерной сетью из белковых нитей, называемых цитоскелетом. Он состоит из трех элементов: микротрубочек, промежуточных филаментов и микрофиламентов. Микротрубочки пронизывают всю цитоплазму и представляют собой полые трубки диаметром 20-30 нм. Их стенки толщиной 5 нм образованы специально закрученными нитями, построенными из белка тубулина. Сбор микротрубочек из тубулина происходит в клеточном центре. Микротрубочки прочны и образуют опорную основу цитоскелета. Часто они располагаются таким образом, чтобы противодействовать растяжению и сжатию клетки. Кроме механической функции, микротрубочки выполняют также и транспортную функцию, участвуя в переносе по цитоплазме различных веществ.
Они являются главным белковым компонентом аксонов и дендритов. В аксоне имеются трубочки, идущие по всей его длине, поддерживают структуру аксона и обеспечивают транспорт веществ вдоль аксона (Рис. 4).
Рис. 4. Нервная клетка (Источник)
Животные клетки, у которых нарушена система микротрубочек, принимают сферическую форму. В растительных клетках расположение микротрубочек соответствует расположению целлюлозных волокон, отлагающихся при построении клеточной стенки, таким образом, они косвенно определяют форму клетки.
Микрофиламенты (МФ) – нити, состоящие из молекул глобулярного белка актина и присутствующие в цитоплазме всех эукариотических клеток. Микрофиламенты образуют сплетения или пучки (Рис. 5).
Рис. 5. Пучки микрофиламентов (Источник)
Микрофиламенты чаще всего располагаются вблизи плазматической мембраны. Они способны менять ее форму, что очень важно, например, для процессов фагоцитоза и пиноцитоза.
Промежуточные филаменты (ПФ) – нитевидные структуры из особых белков, один из трех основных компонентов цитоскелета клеток эукариот. Средний диаметр ПФ – около 10 нм – меньше, чем у микротрубочек (около 25 нм), и больше, чем у актиновых микрофиламентов (5-9 нм). Они играют роль в движении и участвуют в образовании цитоскелета.
Мы видим, что цитоплазма пронизана компонентами цитоскелета, основные функции которого:
- механический каркас клетки для поддержания ее формы;
- мотор клеточного движения, так как компоненты цитоскелета определяют деление клетки, перемещение органелл внутри клетки и движение цитоплазмы;
- транспорт органелл и клеточных комплексов внутри клетки.
Клеточный центр
Клеточный центр, или центросома, расположен в цитоплазме вблизи ядра и образован двумя центриолями – цилиндрами, расположенными перпендикулярно друг другу (Рис. 6).
Рис. 6. Телофаза митоза клетки (Источник)
Диаметр каждой центриоли – 150–250 нм, а длина – 300–500 нм. Стенка каждой центриоли состоит из девяти комплексов микротрубочек, а каждый комплекс (или триплет), в свою очередь, построен из трех микротрубочек. Триплеты центриоли соединены между собой рядом связок (Рис. 7). Основной белок, образующий центриоли, – тубулин.
Рис. 7. Триплеты центриоли (Источник)
Центриоли необходимы для образования базальных телец ресничек и жгутиков. Перед делением клетки центриоли удваиваются. В процессе деления клетки они попарно расходятся к противоположным полюсам клетки и участвуют в образовании нитей веретена деления (Рис. 8).
Рис. 8. Строение жгутика и деление клетки (Источник)
Само веретено деления образуется из микротрубочек, при сборке которых центриоли играют роль центров организации. Центриоли встречаются практически во всех животных клетках и в клетках низших растений, в клетках высших растений клеточный центр устроен по-другому и центриолей не содержит.
Рибосомы
Рибосомы – это очень мелкие органеллы, диаметром около 20 нм, необходимые клетке для синтеза белка (Рис. 9).
Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой. В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. В состав рибосом входят белки и РНК. Функция рибосом – это синтез белка. Синтез белка – сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой. Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляются. Эндоплазматическая сеть и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков.
Если рибосомы находятся в свободном состоянии, то, как правило, они синтезируют белок, необходимый для данной клетки (Рис. 10).
Рис. 10. Свободные рибосомы (Источник)
Если рибосомы прикреплены к эндоплазматической сети, то считается, что такой белок идет на экспорт – секретируется во внеклеточное пространство или используется другими клетками данного организма (Рис. 11).
Рис. 11. Эндоплазматическая сеть (Источник)
Заключение
Мы рассмотрели строение и значение цитоплазмы, клеточного центра и рибосом.
Список литературы
- Мамонтов С.Г., Захаров В.Б., Агафонова И.Б., Сонин Н.И. Биология 11 класс. Общая биология. Профильный уровень. – 5-е издание, стереотипное. – Дрофа, 2010.
- Беляев Д.К. Общая биология. Базовый уровень. – 11 издание, стереотипное. – М.: Просвещение, 2012.
- Пасечник В.В., Каменский А.А., Криксунов Е.А. Общая биология, 10-11 класс. – М.: Дрофа, 2005.
- 4. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Домашнее задание
- Что такое цитоплазма, из чего она состоит?
- Какова роль микрофиламентов и промежуточных филаментов?
- Назовите расположение клеточного центра и его функции.
Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.
Внутреннюю среду клетки составляет цитоплазма, в которой расположены органеллы, осуществляющие жизнедеятельность клетки. В цитоплазме проходят все процессы, связанные с обменом веществ, а также взаимодействием ядра и органоидов. Жизнь клетки без цитоплазмы, очевидно, невозможна. Несмотря на то, что функции синтеза, пищеварения, выведения и дыхания выполняют органоиды, без внутренней среды это бы не происходило. Аналогично человек не смог бы жить без крови, ведь питательные вещества, гормоны, кислород не разносились бы по организму.
Цитоплазма состоит из двух компонентов: гиалоплазмы и цитоскелета.
Гиалоплазма – густой бесцветный раствор, преимущественно состоящий из воды (от 70% до 90%). В ней находятся и органические соединения (белки, липиды), и неорганические. Гиалоплазма не стоит на месте. Это весьма логично, для обменных процессов ей необходимо постоянно циркулировать внутри клетки. Вместе с ней по клетке путешествуют и органоиды. Такое движение называется циклозом.
Циклоз в клетках листа элодеи
Цитоскелет выполняет механическую функцию, он как каркас для клетки. Естественно, он не самый крепкий, но достаточно жесткий для того, чтобы придавать ей форму. Также при помощи микротрубочек переносятся некоторые вещества, так что они выполняют еще и транспортную функцию.
Цитоскелет имеет свои составляющие структуры: микротрубочки, микрофиламенты и промежуточные филаменты. Все эти компоненты не являются мембранными.
Микротрубочки собираются в клеточном центре из белка тубулина. Эти полые структуры пронизывают всю цитоплазму, не давая клетке слишком сильно сжаться или растянуться. Транспортную функцию выполняют именно микротрубочки, они же тубулиновые нити. Они полярны, поэтому во время деления клетки микротрубочки прикрепляются к хромосомам в определенном участке белковой природы – кинетохоре, а далее, в анафазе, хромосомы расходятся к полюсам клетки. Не все микротрубочки присоединяются к хромосомам, некоторые остаются без ничего. Благодаря полярности тубулиновые нити не присоединяются друг к другу.
Структура и функции промежуточных филаментов изучена не до конца.
Клеточный центр располагается в непосредственной близости от ядра и состоит из 2 центриолей. Центриоли имеют вид цилиндров, они расположены перпендикулярно друг другу. Центриоли удваиваются и начинают расходиться в интерфазе, а уже в профазе стартует образование нитей веретена деления. Сами центриоли тоже состоят из микротрубочек и, следовательно, из белка тубулина. У высших растений клеточный центр имеет иное строение, в нем центриолей нет.
Рибосомы – немембранные органоиды клетки.
Рибосома состоит из двух субъединиц – большой и малой. В свою очередь, каждая субъединица это рРНК (рибосомальная РНК) и белки.
Рибосомы образуются в ядрышках ядра, затем рибосомы выходят через ядерные поры в цитоплазму. До трансляции происходит процесс транскрипции, то один из концов цепи иРНК обхватывается субъединицами рибосомы. тРНК (транспортная РНК) подносит к иРНК аминокислоты, которые собираются в цепочку и выходят из рибосомы.
Кроме как в ядре, рибосомы могут находится в свободном виде в гиалоплазме, тогда они занимаются синтезом белков, необходимых для жизнедеятельности клетки. Также рибосомы располагаются на шероховатой ЭПС, такие рибосомы тоже синтезируют белки, но не для этой клетки, а для выведения их в другие клетки или внеклеточное пространство.
Автор разборов ОГЭ и ЕГЭ по биологии, модератор многих разделов сайта. Студентка 3 курса бакалавриата направления "биология" БФУ им.Канта. К экзамену готовилась своими силами, поступила на бюджет в первую волну.
05 октября 2017
- 1106
- 0,9
- 0
- 0
Один монах, странствуя по белому свету, встретил Чуму, которая направлялась в его город.
— Ты куда это направляешься, Чума? — спросил он ее.
— Иду в твой родной город, — ответила она. — Мне нужно забрать там тысячу жизней.
Через некоторое время монах снова встретил Чуму на своем пути.
— Почему ты меня обманула тогда? — спросил он ее с укором. — Ты говорила, что должна забрать тысячу жизней, а забрала пять тысяч.
— Я тогда сказала тебе правду, — ответила Чума. — Я действительно забрала тысячу жизней. Остальные умерли от страха.
Жертвы чумы исчислялись сотнями тысяч и даже миллионами человек, вымирали города, становились безлюдными целые области, и ужас пандемий чумы затмевал ужасы всех войн, какие знала история человечества. Целые тысячелетия люди не понимали, что является источником заболевания [2].
Библия — одно из древнейших дошедших до нас свидетельств эпидемий чумы (1 книга Царств, глава 5; 4 книга Царств, глава 19, стихи 35–36). В мировой истории отмечают три пандемии этой болезни:
Крупные вспышки чумы регистрируют с определенной периодичностью (Индия — 1994 г.; Мадагаскар — 2011 и 2013 гг.). В США с 1965 по настоящее время ежегодно регистрируют до 40 случаев заражения людей чумой (в среднем 10 больных в год) [5]. В России в сентябре 2014 г. и в августе 2015 г. впервые за последние 35 лет были зарегистрированы два случая заражения человека чумой [6], [7].
Бубонная форма чумы является наиболее распространенной формой заболевания и при отсутствии лечения приводит к гибели 40–60% заболевших. Легочная форма возникает либо как осложнение бубонной или септической форм, либо при вдыхании воздуха, зараженного возбудителем чумы. Если лечение не начинают в первые 24 часа после появления симптомов, смерть наступает через 48 часов [8].
В природе чумной микроб встречается практически на всех континентах, исключая Австралию, Антарктиду, а также Арктику, что обусловливает ежегодно регистрируемые случаи этой болезни. Стремительная эволюция микроорганизмов приводит к появлению популяций бактерий (штаммов), устойчивых к антибиотикам [9], что в случае с возбудителем чумы особенно опасно. Кроме того, этих бактерий могут использовать в качестве агента биотерроризма. Все вышесказанное объясняет необходимость изучения чумного микроба.
Возбудитель чумы Yersinia pestis — самая опасная бактерия в мире [10]. Что делает ее столь смертоносной?
Факторы вирулентности, или вооружен и очень опасен
Со времен открытия возбудителя чумы в 1894 году французом Александром Йерсеном и японцем Китасато Сибасабуро ученые пытались выяснить, что определяет патогенность Y. рestis. В результате многолетней тяжелой и рискованной работы, которая продолжается и по сей день, выделили следующие факторы патогенности возбудителя:
- белки внешней мембраны (Yersinia outer proteins — называемые Yop-белками, эффекторными белками, или комплексом Yop-вирулона) [11];
- комплекс области пигментации [12];
- активатор плазминогена [13];
- капсульный антиген [14];
- пили адгезии или pH6-антиген [15].
Рисунок 1. Схема действия системы секреции III типа.
При вдыхании чумных микробов (и развитии легочной чумы) этот белок обеспечивает быстрое размножение бактерий в тканях легких и приводит к развитию молниеносной пневмонии и отеку легких, тогда как в отсутствии Pla инфекция не развивается в смертельную пневмонию. Установлено, что активатор плазминогена нарушает постоянство внутренней среды организма хозяина и блокирует иммунные реакции, направленные на уничтожение патогена [27].
Бактерии окружены капсулой из слизистого вещества (фракция I, Fra1), которая препятствует поглощению и обезвреживанию Y. pestis иммунными клетками организма-хозяина в процессе фагоцитоза. На выявлении этого вещества-антигена основаны многие современные методы лабораторной диагностики чумы, оно входит в состав многих экспериментальных химических вакцин против чумы. Однако позднее обнаружили популяции бактерий, лишенные капсулы [28]. Кроме того, слизистая капсула есть у многих других микроорганизмов, например, возбудителя сибирской язвы, туляремии. Капсульное вещество иерсинии образуют при температуре 37 °С.
Антигены, схожие с рН6, были обнаружены у ряда возбудителей, вызывающих менее опасные болезни — кишечные инфекции (Y. pseudotuberculosis [31], Y. enterocolitica [32], Escherichia coli [8]).
Температурный фактор, или то, что действительно имеет значение
Необходимо заострить внимание на особой роли температуры в физиологии чумного микроба. Именно при температуре 37 °С у него повышаются питательные потребности [33] и синтезируются практически все известные детерминанты вирулентности (рис. 2) [34]. У других бактерий подобная зависимость выражена в меньшей степени, что позволяет говорить о ведущей роли температурного фактора в вирулентности возбудителя чумы [8].
Геном или все важное внутри
Помимо хромосомы у чумного микроба есть плазмиды — внехромосомные участки ДНК [38]. Большинство белковых факторов вирулентности закодированы на плазмидах: эффекторные белки на плазмиде pCad; капсула — pFra; активатор плазминогена — рPla (pPst, pPCP). Плазмиды pFra и рPla обнаружены только у Y. pestis (видоспецифические), pCad является общей с возбудителем псевдотуберкулеза (родоспецифическая) [20].
Заключение
В настоящее время продолжается работа по выявлению новых, еще не изученных маркеров вирулентности [39]. С использованием 2D-электрофореза, масс-спектрометрии, полногеномного секвенирования проводят сравнительный анализ отличающихся по вирулентности популяций чумного микроба для выявления различий в их белковых спектрах и геномных последовательностях. Ранее не известные белки и участки генома становятся объектом пристального внимания и изучения как потенциальные детерминанты вирулентности.
Таким образом, патогенность возбудителя чумы — это множественный (полидетерминантный) признак. Соединение многих факторов в единое целое создает страшную угрозу чумных эпидемий, с противостоянием которым, однако, прогрессивное человечество успешно справляется.
С момента своего появления человек подвержен воздействию бактериальных инфекций. Различные патогенные микроорганизмы внесли свой вклад в историю человечества, но самый кровавый след оставил возбудитель чумы. Выделить бактерию Yersinia pestis, являющуюся возбудителем чумы, удалось только в конце XIX века. А до этого даже не эпидемии, а пандемии уносили миллионы жизней.
История открытия микроба
Задолго до открытия учеными возбудителя было известно о высокой заразности заболевания. В Средние века, чтобы не допустить распространения заразы, к людям и вещам, попавшим в область заражения, применялись жесткие карантинные меры. Первый чумной карантин ввели в Венеции в 1422 г.
Попытки выявить причины, провоцирующие развитие чумы, делались врачами во все времена. Однако только с появлением развитой техники микробиологических исследований ученым удалось обнаружить микроорганизм, являющийся возбудителем заболевания. Русские врачи Самойлович Д.С., Скворцов И.П. начали искать возбудителя болезни, используя микроскопы. Но слабая техника работы с микропрепаратами и отсутствие методик микробиологических исследований не позволили выявить причину инфекции.
Только в 1894 г возбудитель чумы удалось обнаружить – ученые работали в Гонконге, где началась третья пандемия. Исследовав образцы тканей, взятых у трупов и зараженных людей, японский бактериолог Китасато Сибасабуро выявил одинаковые микроорганизмы в форме коротких палочек. Ему удалось на питательных средах вырастить чистую культуру возбудителя чумы. Лабораторные животные, зараженные выращенной культурой, погибали, а вскрытие обнаруживало характерные патологоанатомические изменения. О результатах исследования – выявлении причины чумы – Китасато доложил в Гонконге 7 июля 1894 г.
Одновременно с Китасато французский бактериолог Александр Йерсен, исследуя трупы зараженных чумой, выделил вызывающий заболевание микроорганизм и вырастил чистую культуру. Результаты своих исследований он обнародовал 30 июля 1894 г. Но только в 1926 г. Хавкину В.А. удалось создать эффективную вакцину против чумы. Сегодня в природных очагах инфекции фиксируются только отдельные случаи заражения.
Хотя первым об открытии микроорганизма, вызывающего чуму, доложил Китасато, честь открытия чумной бациллы принадлежит французскому бактериологу и медику Александру Йерсену. Изучая выделенную бактерию, Китасато допустил ошибки при окрашивании мазков, и неверно оценил подвижность микроорганизма. В результате Китасато ошибочно охарактеризовал выделенный микроорганизм как грамположительный и слабоподвижный. Первоначально чумную бактерию отнесли к роду Bacterium, затем – к Pasteurella. В 1967 г. этот род, в честь А. Йерсена, переименовали в Yersinia.
Характеристика возбудителя
Возбудителем чумы является неспорообразующая коккобацилла Yersinia pestis. Бацилла неподвижна и имеет слизистую капсулу.
Таксономия возбудителя чумы:
- Отдел Gracilicutes;
- Семейство Enterobacteriaceae;
- Род Yersinia;
- Вид Yersinia pestis.
У иерсиний микробиология насчитывает 18 видов (на май 2015 г.), среди которых только три опасны для человека, являясь инфекционными агентами:
- болезни чума – Yersinia pestis;
- псевдотуберкулеза – Yersinia pseudotuberculosis;
- иерсиниоза – Yersinia enterocolitica.
Все иерсинии являются грамотрицательными палочками, но, в отличие от псевдотуберкулезной и иерсиниозной, у чумной палочки-прокариота нет жгутика.
Морфология возбудителя чумы изучена достаточно полно. Возбудитель бубонной чумы по форме клетки является коккобациллой и выглядит как неподвижная короткая овоидная палочка. Для Yersinia pestis характерен полиморфизм – были обнаружены удлиненные, нитевидные, шарообразные и зернистые разновидности. В связи с особенностью строения иерсинии (неоднородное распределение цитоплазмы в клетке с повышением концентрации в концевых областях), для чумной палочки характерно биполярное окрашивание. Она лучше окрашивается на полюсах, чем в центре. Как и у всех прокариотов, ядро – это то, чего нет в клетках Yersinia pestis.
Бактерия приобретает синий цвет при окраске по Леффлеру метиленовым синим или окрашивается по Романовскому-Гимзе (синий цвет) с ярко выраженной биполярностью.
Возбудитель чумы легко переносит низкие температуры, вплоть до замораживания. При низких температурах может сохраняться достаточно длительно:
- 6 месяцев в трупах;
- 9 месяцев в воде и влажных почвах.
При комнатной температуре микроорганизмы, являющиеся возбудителем чумы, могут сохранять жизнеспособность до 4 месяцев. В выделениях заболевших, попавших на одежду и белье, бактерии живут неделями. Микроорганизмы защищены слизистой капсулой от пересыхания, которое для них губительно.
Коккобацилла Yersinia pestis чувствительна к УФ-облучению и нагреванию, при которых быстро погибает:
- при 60°С – в течение часа;
- при 70°С – уже через 10 минут.
При обработке дезинфицирующими растворами возбудитель чумы быстро погибает – достаточно всего 5-минутного воздействия 5% раствора Acidum carbolicum (карболовая кислота).
Бактерии – возбудители чумы – обладают сложной антигенной структурой. Ее составляют около 10 различных антигенов, среди которых:
- О – соматический, в клеточной стенке (эндотоксин);
- F – поверхностный термостабильный (капсульный);
- V/W – обеспечивают антифагоцитарную активность.
Возбудитель чумы является одной из самых агрессивных и патогенных бактерий, поэтому заболевание всегда протекает крайне тяжело.
Коккобацилла Yersinia pestis по форме существования представляет собой факультативный анаэроб, она хорошо растет на мясопептонном агаре и бульоне. Оптимальной температурой для культивирования возбудителя чумы считается 25-30°С, а начинается размножение уже при +5°С. Бациллы Yersinia pestis, помещенные в питательные среды, растут в виде специфических колоний, которые могут быть двух форм:
Бактерии чумы, высеянные на агаре, образуют светло-серый налет. На питательном бульоне спустя 48 часов формируют рыхлую пленку, от которой вниз спускаются сосульки. Бактерия Yersinia pestis не способна разжижать желатин, не створаживает молоко. Разлагает ряд сахаров на кислоту.
- поражению сердца – кардиотоксин;
- разрушению печени – гепатотоксин;
- тромбоцитопатии и непроницаемости сосудов – капилляротоксин.
Чума представляет собой природно-очаговый трансмиссивный зооноз. Трансмиссивными называются инфекционные болезни человека, возбудители которых переносятся кровососущими насекомыми и клещами. Зоонозы – это инфекции, общие для человека и животного. Основным источником и переносчиком возбудителя болезни были и остаются дикие грызуны (около 300 разновидностей), живущие повсеместно. Возбудитель антропозоонозной чумы – коккобацилла Yersinia pestis – поражает диких животных, формируя случаи чумы нерегулярного характера (спорадические).
В природных условиях естественными носителями возбудителя чумы чаще всего являются мыши, суслики и подобные грызуны, с сохранением своего специфического хранителя инфекции в каждом территориальном очаге. Заражение чумной коккобациллой происходит при контакте инфицированных животных со здоровыми. В результате развития острой формы болезни зараженные животные погибают, и эпизоотия может прекратиться. Другие во время спячки переносят чуму в вялотекущей форме и, проснувшись весной, являются естественным источником болезни, поддерживая природный инфекционный очаг на данной территории.
Бактерия Yersinia pestis, при схожести названия болезни, не имеет никакого отношения к чуме крупного рогатого скота (КРС). Ее инфекционным агентом является РНК-содержащий вирус, наиболее близкий к возбудителю собачьей чумки. В июне 2011 г. ООН провозгласила, что чума КРС полностью уничтожена на планете.
Если в дикой природе бациллоносителями являются грызуны, то в городах основным резервуаром чумной палочки считаются синантропные крысы (то есть те, образ жизни которых связан с человеком). Основные виды крыс, ответственные за распространение чумы:
- пасюк, житель городских канализационных систем и подвалов;
- черная (корабельная) крыса, обитает в домах, зернохранилищах, трюмах кораблей;
- александрийская (египетская, рыжая) крыса.
Когда происходит заражение человека от инфицированного животного, имеются следующие пути передачи:
- Воздушно-капельный. Источник заражения – больной легочной формой чумы.
- Трансмиссивный – возбудитель передается при укусе насекомых, блох или клещей.
- Пищевой – через продукты, полученные от зараженных животных, чаще всего верблюдов.
- Контактно-бытовой. Возбудитель зооантропонозной чумы переносится через контакт со шкурами больных животных.
Высокая вирулентность и патогенность чумной бациллы обусловлены значительной проникающей способностью и наличием белкового токсина. Факторы патогенности Yersinia pestis закодированы в плазмиде и хромосоме бактерии.
Чума является острым инфекционным заболеванием и относится к особоопасным. Это строго карантинная инфекция, которая характеризуется:
- исключительной тяжестью протекания;
- крайней заразностью;
- высоким уровнем летальности.
Чумная бацилла попадает в организм через ранку при укусе насекомого или сквозь неповрежденный эпидермис и слизистые оболочки дыхательных путей или ЖКТ. Болезнь поражала людей во все времена – достоверно известно о трех пандемиях чумы, охвативших огромные территории:
- Юстинианова (551-580 годы) зародилась в Египте, жертв более 100 млн.
- Черную смерть (XIV в.) занесли из Китая в Европу – вымерла третья часть населения.
- Третья пандемия (конец XIX в.) началась в Гонконге и Бомбее, 6 млн жертв только в одной Индии.
Во время последней пандемии удалось выявить возбудитель чумы – бактерию Yersinia pestis. Действующую вакцину против этих микроорганизмов создали только в 1926 г.
Скрытый период болезни может продолжаться до 9 дней, а для легочной формы – не более 1-2 дней. Начинается чума остро, температура резко поднимается до 40°С, сопровождается ознобом, признаки интоксикации всегда ярко выражены. В процессе развития болезни быстро поражаются лимфоузлы, легкие, печень, сердце. Независимо от формы, для чумы типичны жалобы больных на мышечные боли и постоянную головную боль. Часто присутствует психомоторное возбуждение, возможны галлюцинации.
Внешнее проявление чумы на лице больного:
Такие симптомы начальной стадии типичны для чумы любой формы. Исходя их симптоматики болезни, Рудневым Г.П. была предложена клиническая классификация чумы, которая используется и сегодня:
- локальная (кожная, бубонная, кожно-бубонная);
- генерализованная (септическая, может быть как первичной, так и вторичной);
- внешнедиссеминированная (кишечная).
Симптоматика заболевания в зависимости от вида чумы разнообразна:
- Описание кожной чумы. На кожном покрове место проникновения бациллы обозначается болезненной пустулой, с темно-красным содержимым, которая, вскрываясь, оставляет увеличивающуюся язву. Первоначально ее дно имеет желтоватый цвет, потом на месте язвы появляется черная корочка, которая отпадает и оставляет после себя грубые рубцы.
- Протекание бубонной формы. Такое течение чумы наиболее типично. Характеризуется поражением близлежащих к месту проникновения инфекции лимфатических узлов. Наиболее характерно увеличение паховых лимфоузлов, возможно – подмышечных, и совсем не типично – шейных. Обычно бубоны одиночные, их появление сопровождается болями в месте появления и выраженными симптомами интоксикации. Спустя 2 дня лимфоузлы пальпируются резко-болезненно, первоначально имеют твердую консистенцию, далее размягчаются до тестообразного состояния. Пораженные лимфоузлы превращаются в единую массу, подвижную при пальпации. Далее они сами изъязвляются или рассасываются. Дальнейшее протекание чумы сопровождается воспалением серозно-геморрагического характера с последующим некрозом тканей.
- Особенности кожно-бубонной инфекции. Протекание объединяет в себе признаки поражения чумной коккобациллой лимфоузлов и кожные проявления. Локальные формы чумы предрасположены к переходу во вторичную пневмонию или чумной сепсис. Каких-либо значимых клинических отличий протекания первичной и вторичной чумы не выявлено.
- Клиника септической формы. Скрытый период септической чумы короткий – менее двух суток. После происходит молниеносная интоксикация, приводящая к инфекционно-токсическому шоку с формированием клинической симптоматики желудочно-кишечных и почечных кровотечений. Это становится причиной гибели больного. Без оказания экстренной медицинской помощи смерть наступает в 100% случаев.
- Признаки легочной чумы. Заболевание, проявившееся как результат аэрогенного инфицирования, носит название первично-легочной формы. Она характеризуется короткой инкубацией, сразу же после чего проявляется синдром острой интоксикации. Спустя еще 2 дня добавляется резкий кашель с сильными режущими болями в области грудной клетки. Во время кашля первоначально отхаркиваются стекловидные выделения, быстро переходящие в пенистую кровяную мокроту. Появляется тахикардия, давление падает, начинаются обширные кровоизлияния, с дальнейшим сопором (глубоким угнетением сознания) и комой.
- Симптоматика кишечной формы. Первыми клиническими проявлениями являются резкие боли в области живота, сопровождающиеся изматывающей рвотой и диарей (выделения представляют собой слизисто-кровянистую субстанцию). Интоксикация всегда выраженная общая. Вопрос рассмотрения кишечной как самостоятельной формы, согласно клинической классификации Руднева, на данный момент окончательно не решен. Не совсем ясно, является заболевание результатом внедрения бацилл чумы в кишечник или данное состояние связано с собственной реакцией кишечной микрофлоры.
Лабораторная диагностика чумы проводится с использованием современных методов микробиологии, иммуносерологии и генетики. Применение современных методов диагностики заболевания, которое вызывается чумными бактериями, полностью оправданно при обследовании пациентов с аномально высокой температурой, находившихся в очаге возникновения инфекции.
После продолжительных исследований микробиологам удалось установить, что заболевание чумой у человека вызывают бактерии Yersinia pestis. Чума представляет собой особо опасное инфекционное заболевание, поэтому ее лечение проводят исключительно в условиях специализированного стационара. Больным назначается этиотропная терапия и симптоматическое лечение. Препараты, дозировка и схемы подбирают согласно форме инфекции. Параллельно проводится глубокая дезинтоксикация, назначаются жаропонижающие, сердечные, дыхательные и сосудистые аналептики, а также симптоматические средства.
Хотя после перенесения болезни иммунитет формируется, но он крайне слабый и непродолжительный. Нередко наблюдались случаи повторного заражения, и болезнь протекала в столь же тяжелой форме, как первый раз. Противочумная вакцинация дает иммунитет к заболеванию только на 1 год и не имеет 100% гарантии.
При возникновении угрозы инфицирования лицам группы риска – пастухам, сельхозработникам, охотникам, сотрудникам противочумных учреждений – проводится повторная вакцинация через 6 месяцев.
Имею два образования: техническое и экономическое. Также интересуюсь воспитанием детей, медициной, женскими темами, путешествиями, психологией, а также дизайном и ремонтом.
Читайте также: