Дыхательная цепь и окислительное фосфорилирование.

Добавил пользователь Евгений Кузнецов
Обновлено: 21.12.2024

Водород на двух переносчиках (10 молекулах восстановленного НАД и двух молекулах восстановленного ФАД) направляется теперь к внутренней мембране митохондрий. Эта мембрана образует складки, так называемые кристы, увеличивающие площадь ее поверхности. Водород — это топливо. Мы уже отмечали, что при его окислении молекулярным кислородом образуется вода и выделяется энергия:

2 + 02 --------> 2Н20+ Энергия

Часть этой энергии используется для синтеза АТФ из АДФ и неорганического фосфата при окислительном фосфорилировании. Энергия не выделяется вся сразу в одной какой-нибудь реакции. Процесс разбит на ряд небольших этапов и среди них есть такие, на которых выделяется достаточно энергии для синтеза АТФ. Данная последовательность реакций известна как дыхательная цепь. В дыхательной цепи участвует ряд переносчиков водорода и электронов, заканчивается же она кислородом. Водород или электроны переходят от одного переносчика к другому, двигаясь в энергетическом смысле «вниз» до тех пор, пока на конечном этапе они не восстановят молекулярный кислород до воды. На каждом этапе выделяется некоторое количество энергии, причем в нескольких пунктах этот переход сопряжен с синтезом АТФ.

В подписи к рисунку сказано о дыхательной цепи несколько более подробно. На конечном этапе действует медьсодержащий переносчик, называемый цитохро-моксидазой. Цианид (или моноксид углерода) блокирует клеточное дыхание на этом этапе. Цианид связывается с медью, после чего кислород уже не может с ней соединиться.

На рисунке видно, что на каждую молекулу восстановленного НАД, поступающую в дыхательную цепь, при переходе водорода или электронов к кислороду образуются 3 молекулы АТФ. Однако на каждую молекулу восстановленного ФАД образуется всего лишь две молекулы АТФ, потому что восстановленный ФАД поступает в дыхательную цепь на более низком энергетическом уровне.

Общий баланс для дыхательной цепи приведен в таблице.


Суммарное уравнение для дыхательной цепи имеет вид:

12Н2 + 602---------> 12Н20 + 34АТФ

Объединим два приведенных ниже уравнения, 1 и 2:


Итак, на каждую молекулу глюкозы, окисленную в процессе аэробного дыхания, образуется 38 молекул АТФ.

Общая схема процесса аэробного дыхания приведена на рисунке.

Окисление жирных кислот

Когда в качестве дыхательного субстрата используются липиды, они сначала гидролизуются до глицерола и жирных кислот, после чего от молекулы жирной кислоты последовательно отщепляются двууглеродные фрагменты, так что на каждом этапе эта длинная молекула укорачивается на два атома углерода. Двууглеродная ацетильная группа соединяется с коферментом А и образовавшийся ацетил-КоА вступает, как обычно, в цикл Кребса. Из каждой молекулы жирной кислоты извлекается большое количество энергии: при окислении стеариновой кислоты, например, выход АТФ составляет 147 молекул. Неудивительно поэтому, что жирные кислоты — важный

-