Что препятствует созданию вакцины против вич
Более 30 лет поисков вакцины против ВИЧ пока не увенчались успехом. В этом году провалилась первая вакцина, которой удалось дойти до III фазы, то есть масштабных испытаний на людях. Но надежда не угасла — на данный момент несколько производителей вакцин получили разрешение на проведение клинических исследований. В России такие работы свернуты. Мы разобрались, что препятствует созданию эффективной вакцины против ВИЧ.
Национальные институты здоровья США объявили о провале клинических испытаний III фазы вакцины против ВИЧ. Крупномасштабное исследование стоимость $104 млн (6,6 млрд руб) прекращено — вакцина оказалась неэффективной.
Испытание вакцины, получившей название Uhambo, началось в 2016 году. Исследование проводили в Южной Африке, где распространение заболевания приобрело масштабы пандемии. В эксперименте участвовали 5407 добровольцев – сексуально активных мужчин и женщин в возрасте от 18 до 35 лет. Им случайным образом назначались инъекции вакцины или плацебо. Исследование должно было продлиться до 2022 года, однако в начале этого года оказалось, что в обеих группах произошло примерно одинаковое количество новых случаев инфицирования. Продолжать исследования было нецелесообразно.
В последние годы в лечении ВИЧ получены новые обнадеживающие результаты: пациенты, у которых выявлен вирус, могут жить на поддерживающей терапии много лет и вести практически обычный образ жизни. Однако темпы распространения ВИЧ снижают оптимизм: говорить о том, что эпидемия пошла на спад, пока нельзя.
На конференции AIDS 2018, которая проходила в Амстердаме, было отмечено, что ситуация в странах Восточной Европы и Центральной Азии (ВЕЦА: Россия, Армения, Белоруссия, Казахстан, Киргизия, Молдавия, Таджикистан, Украина и Узбекистан) сейчас наиболее тревожная. Причем 70% ВИЧ-положительных пациентов региона ВЕЦА живут в России.
Генассамблея ООН в июне 2016 года приняла резолюцию, в которой поставлена цель — к 2030 году положить конец эпидемии.
Как известно, предотвратить болезнь лучше, чем ее лечить — в этом смогла бы помочь вакцина. Но почему ее так сложно создать?
Так в идеале работает иммунитет. Делая прививку, мы заставляем организм переносить инфекцию в легкой форме, чтобы в нем остались антитела, которые будут и дальше защищать от опасных болезней.
Но ВИЧ имеет ряд особенностей, которые позволяют этому вирусу обходить все защитные механизмы:
- Антитела к ВИЧ вырабатываются в течение месяца. Для данного заболевания это слишком большой срок.
- Вирус иммунодефицита очень быстро мутирует и приспосабливается к тем антителам, которые организм успевает выработать.
- И главная особенность ВИЧ, которая делает его пока что неуязвимым: вирус поражает не просто клетки, а иммунные клетки. То есть те самые, которые должны с ним бороться.
Эти особенности ВИЧ делают работу по созданию вакцины такой сложной и долгой.
В частности, у ученых нет адекватной экспериментальной модели инфекции на животных. Если какая-либо вакцина оказывается эффективна в случае с приматами, это не значит, что тот же эффект будет получен и у людей. С этой сложностью столкнулась компания Merck, которая в 2007 году провела успешный эксперимент на обезьянах, однако клинические испытания вакцины провалились.
Вторая сложность — поиск добровольцев, которые готовы участвовать в испытаниях вакцин против ВИЧ. Помимо того, что найти людей для такого исследования нелегко, они еще должны быть застрахованы, а это требует значительных расходов.
Наконец, огромная стоимость самих исследований. Если в стране не осуществляется финансирование таких разработок на государственном уровне, то ученым остается работать в рамках гранатовой системы или искать инвестора.
Пока вакцины у нас нет, вы можете почитать, как в российских регионах борются с ВИЧ. Определенные успехи достигнуты, так что повод для оптимизма все-таки есть.
В условиях пандемии многие государства приступили к созданию лекарств и вакцин от нового коронавируса. Сообщается, что в России разработка прошла первую фазу — так ли это? Значит ли, что скоро можно ждать появления препарата? Чтобы разработать новое лекарство от неизвестного заболевания по всем правилам научного поиска нужно от 5 до 15 лет. Разобрали весь процесс на примере COVID-19 вместе с Равилем Ниязовым, специалистом по регуляторным вопросам и разработке лекарств Центра научного консультирования.
COVID-19 — инфекционное заболевание, вызываемое коронавирусом SARS-CoV-2. В тяжелых формах оно поражает легкие, иногда — сердце и другие органы. Особенно тяжело заболевание протекает, если у больного есть другие нарушения со стороны дыхательной или сердечно-сосудистой систем. Молниеносно возникшая пандемия COVID-19 поставила вопрос разработки лекарств и вакцин от новой инфекции. Это долгий процесс с множеством стадий, на каждой из которых исключают вещества-кандидатов. Только одно или небольшая группа таких веществ в итоге сможет стать безопасным и эффективным лекарством.
Шаг 1: понять, как развивается новое заболевание
Любая болезнь нарушает естественные физиологические и биохимические процессы в организме. Причины заболеваний могут быть разными, в том числе — инфекционными. Инфекционный агент (в случае COVID-19 это коронавирус SARS-CoV-2) заимствует и эксплуатирует биохимический аппарат клеток, перехватывая управление им, в результате чего клетки перестают выполнять свою физиологическую функцию. Для вируса SARS-CoV-2 основной мишенью являются клетки дыхательного эпителия, отвечающие за газообмен, то есть за дыхание.
Лекарством для лечения COVID-19 будет считаться любое вещество или комбинация веществ, которое будет способно (1) инактивировать вирус еще до того, как он успеет поразить клетку, или (2) нарушать жизненный цикл вируса внутри зараженной клетки, или (3) защищать новые непораженные здоровые клетки от инфицирования.
Чтобы создать лекарство от SARS-CoV-2, нужно хорошо знать, каков жизненный цикл вируса в организме человека:
- с какими клетками человека и через какие рецепторы на поверхности клеток он связывается, какой собственный вирусный аппарат для этого он использует;
- как вирус проникает в клетку;
- как вирус эксплуатирует биохимический аппарат клетки, чтобы воспроизводить собственный генетический материал и белки, нужные для сборки новых вирусных частиц;
- как вирус покидает инфицированную клетку, чтобы инфицировать новые клетки;
- как формируется иммунитет против вируса и какой вклад иммунитет вносит в тяжесть заболевания (чрезмерная иммунная реакция может вызывать тяжелое поражение внутренних органов).
Всё перечисленное — это совокупность фундаментальных знаний, необходимых для перехода к следующему этапу разработки лекарства — синтезу или биосинтезу веществ, которые могут нарушать свойства вирусных частиц, убивая вирус и при этом не вредя человеку. Например, так работают лекарства от ВИЧ-инфекции или гепатита C. Но при этих заболеваниях важно применять сразу несколько веществ из разных классов, чтобы вирус не становился устойчивым к терапии. Об этом нужно будет помнить и при разработке лекарств против SARS-CoV-2.
Для лечения вирусных заболеваний также могут использоваться иммуносыворотки, содержащие антитела, способные инактивировать вирус. Такие сыворотки можно получать от животных, например, лошадей или кроликов, но также и от человека, уже переболевшего заболеванием.
Однако самый эффективный подход — профилактика заболевания. Для этого используют вакцины — естественные или генетически модифицированные белки вируса, а иногда и живой, но ослабленный вирус. Вакцина имитирует инфекционное заболевание и стимулирует организм к формированию иммунитета. В последнее время также разрабатываются РНК- и ДНК-вакцины, но пока одобренных препаратов нет.
В отличие от традиционных вакцин, РНК-/ДНК-вакцины содержат не вирусные белки, а гены, кодирующие основные вирусные белки. Введение такой вакцины приводит к синтезу клетками белков вируса, на которые должна реагировать иммунная система и вырабатывать иммунитет против этих белков вируса. Гипотетически это должно препятствовать началу инфекционного процесса при заражении настоящим патогенным вирусом. Важно отметить, такие РНК- и ДНК-вакцины не должны кодировать те белки вируса, которые способны были бы привести к настоящей вирусной инфекции.
Шаг 2: поиск хитов
На ранней стадии разработки синтезируют и тестируют множество веществ — библиотеку. Основная цель этого этапа — найти группу хитов (hit — попадание в цель), которые бы связывались с нужной вирусной мишенью. Обычно это один из белков вируса. Иногда отбор идет из библиотек, состоящих из миллиардов низкомолекулярных веществ. Сейчас активно используют компьютерные алгоритмы — машинное и глубокое обучение — чтобы искать новые потенциально активные молекулы. Одна из компаний, успешно работающая в этом направлении, — InSilico Medicine, создана российскими математиками.
Другой источник потенциальных лекарств — выздоровевшие люди: в их крови содержатся антитела, часть из которых способны связываться с вирусом и, возможно, нейтрализовать его.
Шаг 3: поиск и тестирование лидов
Когда находят группу хитов, способную связываться с вирусным белком, переходят к следующему этапу скрининга. На этом шаге исключаются вещества, которые:
- нестабильны и быстро разлагаются;
- тяжелы/затратны в синтезе;
- токсичны для различных клеток человека в условиях лабораторных экспериментов на культуре клеток. Вещества не должны быть токсичны сами, токсичностью также не должны обладать продукты их метаболизма в организме, продукты их разложения и примеси, возникающие в процессе производства; вместе с тем если процесс производства способен с помощью очистки удалять продукты разложения или примеси, то такой хит может и не будет выведен из разработки;
- плохо растворимы в воде — лекарство должно в достаточном количестве растворяться в биологических жидкостях, чтобы распределиться по организму;
- быстро разлагаются в живом организме;
- плохо проникают через слизистые оболочки, клеточные мембраны или внутрь клетки, в зависимости от пути введения лекарства и расположения вирусной мишени.
Хиты, которые выдерживают эти испытания и проходят все фильтры, переводят в категорию лидов (lead — ведущий).
Лиды тестируют в еще более широкой серии экспериментов для принятия так называемых решений Go/No-Go о продолжении или остановке разработки. На этой стадии инициируются испытания на животных. Такая схема отбора нужна чтобы как можно раньше вывести из разработки бесперспективные молекулы, потратив на них минимальные время и ресурсы, поскольку каждый последующий этап является еще более затратным.
Те несколько лидов, которые успешно проходят очередные испытания, становятся кандидатами. К этому моменту разработка может длиться уже от трех до семи лет.
Шаг 4: испытания кандидатов и клинические исследования
Прежде чем перейти к испытаниям на людях, нужно выполнить исследования на животных и подтвердить отсутствие неприемлемой для человека токсичности, подобрать первоначальную безопасную дозу. На этом этапе кандидаты тоже могут отсеиваться — например, из-за генотоксичности (токсичности для генетического аппарата клетки) или канцерогенности (способности вызывать рак). Еще они могут оказаться небезопасными для беременных женщин или женщин детородного возраста, вызывать поражение головного мозга, печени, почек, сердца или легких. В зависимости от природы молекулы исследования проводят на грызунах, собаках, обезьянах, минипигах, кроликах и т.д.
В зависимости от природы заболевания, особенностей его терапии и свойств лекарства, какие-то исследования могут не проводиться или быть не значимы. Например, оценка канцерогенности лекарства не потребуется, если оно будет применяться в лечении краткосрочных заболеваний, как в случае COVID-19. Генотоксичность не оценивают для биопрепаратов или если лекарство предназначено для лечения метастатического рака и т. д. Суммарно доклинические исследования могут занимать 3–5 лет. Часть из них проводится параллельно с клиническими исследованиями.
Если доклинические исследования успешны, начинается клиническая разработка, которая условно делится на фазы. Это нужно, чтобы постепенно и контролируемо тестировать лекарство на все большем количестве людей. И снова стадийность процесса позволяет прекратить разработку на любом этапе, не подвергая риску многих людей.
- Первая фаза: здесь подтверждают первичную безопасность для людей в принципе, изучают поведение лекарства в организме человека, его биодоступность (способность достигать места действия в достаточных концентрациях), его взаимодействие с другими лекарствами, влияние пищи, половых и возрастных различий на свойства лекарства, а также безопасность для людей с сопутствующими заболеваниями (особенно важны заболевания печени и почек — эти органы отвечают за метаболизм и выведение лекарств), проверяют, не вызывает ли лекарство нарушение ритма сердца. Кроме того, на I фазе оценивают безопасный диапазон доз: эффективные дозы не должны быть неприемлемо токсичными.
- Вторая фаза: здесь начинают проверять эффективность лекарства на пациентах с заболеванием. На ранней II фазе оценивают, работает ли кандидатная молекула на людях с изучаемым заболеванием в принципе, а на поздней II фазе подбирают режим дозирования, если кандидатное лекарство было эффективным. При этом вещество, эффективное в лабораторных экспериментах, на животных моделях заболевания и даже в ранних клинических исследованиях на людях, вполне может не быть таким же рабочим в реальной медицинской практике. Поэтому и нужен длительный процесс поэтапной исключающей разработки, чтобы на выходе получить эффективное и безопасное лекарство.
- Третья фаза: здесь подтверждают эффективность и безопасность лекарства, а также доказывают, что его польза компенсирует те нежелательные реакции, которые неминуемо будет вызывать лекарство. Иными словами, в исследованиях третьей фазы надо понять, что баланс пользы и рисков положителен. Это всегда индивидуально. Например, у людей с ВИЧ в целом допустимо, если противовирусные лекарства вызывают некоторые нежелательные реакции, а в случае онкологических заболеваний приемлемы и более выраженные токсические реакции.
В случае вакцин, которые рассчитаны на здоровых людей, и особенно детей, приемлемы лишь легкие нежелательные реакции. Поэтому найти баланс трудно: вакцина должна быть высоко эффективной, и при этом вызывать минимальное число тяжелых реакций, например реже, чем 1 случай на 1000, 10 000 или даже 100 000 вакцинированных людей. Клиническая разработка может длиться до 5–7 лет, однако низкомолекулярные противовирусные лекарства для краткосрочного применения, как в случае COVID-19, можно протестировать быстрее — за 1–2 года.
Разработка многих отечественных противовирусных и иммуномодулирующих препаратов не соответствует такому научно выверенному процессу разработки.
Шаг 5: производство
Важный этап — наладить производство лекарства. Разработка процессов синтеза начинается в самом начале отбора лидов и постепенно дорабатывается, оптимизируется и доводится до промышленного масштаба.
В настоящее время против SARS-CoV-2 разрабатывается много разных методов лечения:
- низкомолекулярные соединения, которые нарушают жизненный цикл вируса. Трудность в том, что может быть нужно применять сразу несколько противовирусных лекарств. Сейчас надежды возлагают на ремдесивир. Есть данные, что может быть эффективен давно известный гидроксихлорохин, действующий не на сам вирус, а влияющий на иммунитет. Информацию, что комбинация лопинавира и ритонавира оказалась неэффективной у тяжелобольных пациентов, стоит интерпретировать с осторожностью: она может быть эффективна при более легких формах, или для профилактики, или у каких-то определенных подгрупп;
- противовирусные, в том числе моноклональные, антитела, которые связываются с ним на поверхности и блокируют его проникновение в клетку, а также помечают вирус для клеток иммунной системы. Антитела можно получать как биотехнологически, так и выделять из крови переболевших людей. Сейчас тестируются препараты, получаемые с помощью обоих методов;
- вакцины. Они могут представлять собой естественные или модифицированные белки вируса (модификации вводят для усиления выработки иммунитета), живой ослабленный вирус, вирусоподобные наночастицы, синтетический генетический материал вируса (РНК-вакцины) для того, чтобы сам организм человека синтезировал некоторые белки вируса и смог выработать антитела к нему. Одна из проблем в случае вакцин — простое введение белков вируса, пусть и модифицированных, не всегда позволяет сформировать иммунитет, способный защитить от реального заболевания — так называемый стерильный иммунитет. Даже образование антител в ответ на введение вакцины не гарантирует защиты: хорошим примером являются те же ВИЧ и гепатит C, хотя вакцина против гепатита B достаточно проста и при этом высокоэффективна. Хочется надеяться, что отечественные разработчики следуют рекомендациям Всемирной организации здравоохранения по проведению доклинических и клинических исследований вакцин, включая исследования провокации и изучение адъювантов;
- препараты для РНК-интерференции. Так называемые малые интерферирующие рибонуклеиновые кислоты (РНК) — это небольшие отрезки синтетически получаемой РНК, которые способны связываться с генетическим аппаратом вируса и блокировать его считывание, мешая синтезу вирусных белков или воспроизведению генетического материала вируса.
Процесс разработки лекарства — это научный поиск с неизвестным исходом. Он занимает много времени и требует участия большой команды профессионалов разных специальностей. Однако только реальный клинический опыт позволит оценить, удалось ли получить не только эффективное, но и безопасное лекарство, поэтому любое точное определение сроков получения лекарства — спекуляция. Получить эффективную и безопасную вакцину к концу года, если следовать всем правилам научного поиска, вряд ли удастся.
Детальные обсуждения процессов разработки новых лекарств и возникающих в связи с этим проблем — на YouTube-канале PhED.
Аннотация научной статьи по фундаментальной медицине, автор научной работы — Галиулина К.Ю.
В статье представлены существующие разработки и перспективные направления специфической профилактики ВИЧ-инфекции. Рассмотрены наиболее значимые факторы, осложняющие задачу создания эффективной вакцины против вируса иммунодефицита человека ( ВИЧ ).
Похожие темы научных работ по фундаментальной медицине , автор научной работы — Галиулина К.Ю.
VACCINE AGAINST HIV: DEVELOPMENT AND CAUSES OF FAILURE
The article presents existing developments and perspective directions of specific prevention of HIV infection. The most significant factors that complicate the task of creating an effective vaccine against the human immunodeficiency virus (HIV) are considered.
УДК 612.017.1:616.002 ББК 28.707
ВАКЦИНА ПРОТИВ ВИЧ: РАЗРАБОТКИ И ПРИЧИНЫ НЕУДАЧ
ГАЛИУЛИНА К.Ю. ФГБОУВО ЮУГМУМинздрава России, г. Челябинск, Россия e-mail: [email protected]
В статье представлены существующие разработки и перспективные направления специфической профилактики ВИЧ-инфекции. Рассмотрены наиболее значимые факторы, осложняющие задачу создания эффективной вакцины против вируса иммунодефицита человека (ВИЧ).
Ключевые слова: ВИЧ, СПИД, изменчивость, профилактика, вакцина.
Актуальность. Проблема ВИЧ / СПИДа на данный момент касается не только области локального медицинского, но и глобального социально-экономического, общественного интереса. За 35 лет, прошедших со времени начала эпидемии ВИЧ-инфекции, она стала причиной смерти 35-40 миллионов человек, что дало повод соизмерять масштабы демографического поражения с мировыми войнами. Несмотря на современные достижения диагностики ВИЧ-инфекции и ее терапии, эпидемиологическая ситуация остаётся крайне напряжённой, тенденция к нарастанию потерь сохраняется.
В 2015 г. в мире заразились ВИЧ 2,1 миллиона человек, СПИД унёс жизни 1,1 миллиона человек. На начало 2017 г. суммарное число зафиксированнных случаев ВИЧ-инфекции в структуре заболеваемости граждан Российской Федерации достигло 1 114 815 человек (в мире - 36,7 миллионов ВИЧ-инфицированных, в том числе 2,1 миллиона детей). Согласно расчётам объединённой программы организации объединённых наций по ВИЧ / СПИД (ЮНЕЙДС) (Joint United Nations Programme on HIV/AIDS (UNAIDS)), в России уже более 1 500 700 инфицированных ВИЧ, более того, по версии швейцарских и американских специалистов, неофициальное число инфицированных приближается к 2 000 000.
Стремительное распространение ВИЧ / СПИДа гарантированно снижает
продолжительность жизни населения земного шара, сокращает его численность в связи с гибелью мужчин и женщин детородного возраста, повышением уровня детской смертности. Отрицательное влияние ВИЧ на
экономическую компоненту объясняется снижением числа трудоспособного населения, увеличением доли лиц, не способных к труду и требующих социального обеспечения.
Всего за 30 лет ВИЧ удалось распространиться повсеместно, несмотря на ограниченный спектр возможного пути передачи (половой, инъекционный,
трансплацентарный, гемотрансфузионный, перинатальный), в связи в этим перед учёными всего мира стоит задача изобретения эффективной вакцины против ВИЧ. Несмотря на множественные попытки разработать эффективную вакцину против ВИЧ-инфекции, однозначный успешный результат достигнут не был [6]. В связи с этим, всё более актуальной становится проблема более тщательного изучения трудностей, связанных с разработкой результативной вакцины против ВИЧ [3].
Цель работы. Рассмотреть существующие разработки и перспективные направления специфической профилактики ВИЧ-инфекции, а также причины неудач в создании вакцин против ВИЧ-инфекции.
Материалы и методы. Анализ источников литературы, посвящённых специфической профилактике ВИЧ-инфекции, изменчивости и другим особенностям ВИЧ.
Результаты исследования. Вакцина - это препарат, содержащий антигены возбудителя инфекционного заболевания, введение которого сопровождается возникновением иммунитета (невосприимчивостью) к данному возбудителю.
Несмотря на значительные победы учёных в снижении заболеваемости населения
инфекционными заболеваниями путём своевременной вакцинации (так, в 1980 году была официально провозглашена ликвидация
натуральной оспы, достигнутая массовой вакцинацией), проблема ВИЧ-пандемии так и не решена.
За последние годы появлялось значительное количество информации о различных инновационных вакцинах против ВИЧ-инфекции, порядка 35 вакцин в настоящее время проходят доклинические и клинические испытания [11].
Со времени начала первых клинических испытаний предполагаемой действенной вакцины на людях, начатых свыше десяти лет назад, в тестировании приняли участие более 20 тысяч волонтёров. Тем не менее, огромные средства, вложенные в работы по разработке ВИЧ-вакцин и грандиозные усилия учёных, не оправдали себя, так как ни одна вакцина не доказала своей ожидаемой эффективности.
Одной из вакцин, на которую возлагались большие надежды, была ДНК-вакцина.
Для обеспечения необходимого иммунного ответа, направленного против вирусной инфекции, не нужен цельный вирус, достаточно наличия одного или нескольких белков, локализующихся на его поверхности. Данный компонент и обеспечивают ДНК-вакцины.
ДНК-вакцины (генные вакцины, вакцины на основе нуклеиновых кислот) представляют собой определённые генно-инженерные конструкции (ДНК-фрагмент), содержащие специфический ген, который при попадании в клетку инициирует продукцию нужного белка-антигена. Таким образом, производится введение не самого белка-антигена, а механизма, обеспечивающего его синтез, т.е. ДНК. Итог аналогичный: образование иммуноглобулинов, направленных на
уничтожение чужеродных организму белков.
Перспектива использования участков ДНК в целях вакцинации появилась ещё в 50-60-е годы, когда после проведения исследований подтвердился факт сохранения способности к транскрибированию генетической информации ДНК после переноса её в другую клетку. Следует отметить, что подобная вакцина, названная избирательной "генетической иммунизацией", способна обеспечивать активный гуморальный иммунитет, но и клеточный иммунный ответ.
ДНК-вакцина представляет собой
имплантированную в клетку, с помощью вектора (переносчика) последовательность нуклеотидов, кодирующую антиген/комплекс антигенов. Необходимо подобрать оптимальный вектор -вирус или бактерию. Были протестированы более 20 разных бактерий, РНК- и ДНК-содержащих вирусов. Наиболее подходящими векторами
оказались изменённый штамм
модифицированного вируса коровьей оспы ankara, а также вирусы fowlpox и сапагурох, которые обладают возможностью инфицирования клеток человека, но потеряли возможность к размножению в них.
Иной вариант ДНК-вакцинации, безвекторный, заключается в помещении ДНК в частички металла с дальнейшей их имплантацией в дендритные клетки.
Неоспоримое преимущество использования ДНК-вакцин состоит в том, что в сравнении с обычной вакцинацией, когда антиген вводится в организм в достаточно большом количестве и существует в нем относительно короткий промежуток времени, использование ДНК в качестве активного агента позволяет осуществлять регуляцию сразу нескольких параметров: дозы антигена, продолжительности и интенсивности его действия (дозированные количества белка-антигена продуцируются в организме внутриклеточно длительно).
Также применение ДНК-вакцин позволяет избежать множества нежелательных побочных эффектов старого поколения вакцин, произведённых на основе живого ослабленного возбудителя: риск развития инфекции, хроническая иммуностимуляция и др.
Принцип ДНК-вакцинации был положен в основу американской компанией VaxGen при разработке вакцины против ВИЧ AIDSVAX. Вакцина AIDSVAX создавалась на основе белка ВИЧ - gp 120, который вирус использует в сочетании с белком gp 41 для проникновения в клетку. Гипотеза действенности вышеупомянутой вакцины заключалась в выработке специфических антител к одному из белков ВИЧ - gp 120 или gp 41 или к обоим белкам, таким образом, полностью перекрывался бы доступ ВИЧ к искомой клетке. Тем не менее, несмотря на то, что вакцина AIDSVAX стала первым препаратом из серии ВИЧ-профилактики, прошедшим все этапы клинических тестов в 2002 г., AIDSVAX оказалась неэффективной.
Следующий тип вакцин очень близок к концепции ДНК-вакцин.
Так, первая вакцина IAVI, разработанная сотрудниками университетов Оксфорд (Англия) и Найроби (Кения) в сотрудничестве с Международной инициативой по разработке вакцины против СПИДа (International AIDS Vaccine Initiative (IAVI)), проект по созданию которой получил название инициатива Кенийской вакцины от СПИДа (Kenya AIDS Vaccine
Initiative), содержит РНК ВИЧ подтипа А.
Второй проект IAVI по производству вакцины в партнерстве с AlphaVax из Северной Каролины и университетом Кейптауна (ЮАР), ориентирован на разработку вакцины от ВИЧ подтипа C.
В третьем проекте IAVI-исследований планируется адаптировать инновации Балтиморского института вирусологии. Предполагаемая концепция вакцины против ВИЧ включает в себя пероральное использование. Подобное применение объясняется имплантацией активных компонентов вакцины внутрь непатогенных штаммов сальмонеллы.
Другой возможный путь инициации иммунного ответа на проникновение вируса иммунодефицита - это активация значительного пула клеток, обладающих способностями инактивировать клетки, инфицированные ВИЧ, иными словами, производится интенсификация клеточного иммунного ответа.
Вакцины, основанные на базисе стимулирования клеточного ответа, находятся в стадии клинических испытаний. Вакцина ALVAC, представленная французской фармацевтической компанией Sanofi Pasteur, включает в свой состав птичий вирус (canarypox), в котором были найдены ВИЧ-элементы. Необходимо отметить, что хотя и вакцины ALVAC первого поколения основывались на профилактике ВИЧ подтипа B, результаты исследований на американских добровольцах показали, что действие вакцины распространяется и на другие подтипы ВИЧ. Однако, после последних клинических испытаний в Уганде (Восточная Африка), новостей о препарате не появлялось.
Чем же объяснить неудачи в разработке средства вакцинации от ВИЧ?
Одна из главных проблем, возникающих при создании вакцины, связана со стремительной генетической изменчивостью вируса
иммунодефицита [8]. Данная изменчивость обуславливает как "феномен ускользания" вируса от защитных факторов иммунной системы, так и непродуктивность антиретровирусной терапии по отношению к специфическим вирусным вариантам, проходящим позитивный отбор в организме человека. Вариабельность генома ВИЧ иллюстрируется тем фактом, что на терминальной стадии СПИДа число вариантов исходной вирусной частицы (псевдовидов) сравнимо с генетическим полиморфизмом вируса гриппа (Influenza virus),
циркулировавшего в популяции в течение года
Одними из основных причин ВИЧ-изменчивости являются мутации в ходе обратной транскрипции, ключевую роль в которой играет фермент ревертаза (обратная транскриптаза), не имеющая З'-экзонуклеазной корректирующей активности. Точность работы ревертазы ВИЧ-1 в разы ниже, чем у обратных транскриптаз других известных ретровирусов, в результате чего скорость генерации ошибок оказывается высокой. Результат проявляется существованием в организме больного "популяции" разнообразных ВИЧ ("квазивидов" ВИЧ). Тенденцию обратной транскриптазы ВИЧ-1 к многочисленным ошибкам РНК-копирования позволяют подтвердить исследования in vitro (так, частота мутаций порядка 5-7х104 была выявлена при исследованиях с использованием гена протеина IacZa в качестве матрицы) [7].
Следует отметить, что обратная транскриптаза ВИЧ обладает значительным полиморфизмом, как природным, так и связанным с фармакологической
резистентностью, следовательно, присутствие определённых мутаций (например, M184V) обеспечивает повышение точности репликации, снижая частоту возникновения форм ВИЧ, крайне устойчивых к антиретровирусной терапии, наличие же мутаций, положительно влияющих на потенциал изменчивости генома ВИЧ, осложняет поиск эффективных антиретровирусных средств [9, 10].
Ферментом, играющим роль в формировании защиты организма против ВИЧ, является дезаминаза семейства APOBEC ("apolipoprotein B mRNA editing enzyme catalytic polypeptide"), выполняющая функцию дезаминирования цитозина в составе минус-цепи ДНК вируса на стадии обратной транскрипции. Несмотря на то, что гипермутагенез вируса, вызванный редактирующими ферментами, в большинстве случаев носит летальный характер, в определённых масштабах не приводит к уничтожению ВИЧ, а, напротив, способствует его эволюции. Примером тому служит выработанный ВИЧ-1 механизм ингибирования APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G), обеспечивающий ВИЧ-1 устойчивость по отношению к антиретровирусной терапии и повышенную скорость приспособления к иммунной системе человека по сравнению с
ВИЧ-2. Взаимодействие белка Vif (фактор инфекционности вируса) ВИЧ-1 с APOBEC3G потенциирует разрушение дезаминаз протеасомами. В результате возникает некоторое снижение (но не тотальная отмена) интенсивности гипермутагенетических реакций. Достигнутый уровень гипермутагенеза обеспечивает возникновение новых ВИЧ-вариантов [7].
В отличие от мутаций, провоцирующих медленные, но стойкие изменения генома ретровирусов, рекомбинации имеют более радикальный характер, являясь одним из ключевых звеньев механизма изменчивости ВИЧ. Процесс рекомбинации позволяет обеспечить целостность генома, нивелировать последствия повреждений, несовместимых с продолжением жизненного цикла. Реставрация генома вируса иммунодефицита нацелена на восстановление информации РНК, накопившей большое количество мутаций, вызывающих снижение устойчивости ВИЧ.
Так, при отсутствии рекомбинантных процессов ВИЧ имеет склонность к постепенному накоплению значительного количества подобных мутаций. Рекомбинация "перемешивает" уже существующие мутации, что позволяет вирусу стремительно, а не многостадийно приобретать мутации, полезные для выживания, а также обеспечивает разрыв сцепленных мутаций (к примеру, если некий псевдовид вируса иммунодефицита обладает мутацией, ведущей к повышению фармакологической резистентности, но вместе с тем снижает его защиту от цитотоксических Т-лимфоцитов, рекомбинативные механизмы помогают сохранить полезную мутацию до того времени, пока вирус не обретёт мутацию, позволяющую избежать уязвимости для T-лимфоцитов. Устранение конкуренции между мутациями, однозначно гарантирующими выживаемость ВИЧ, в разы повышает адаптационный потенциал вируса [5, 7].
Проблему разработки вакцины против ВИЧ-инфекции осложняет и отсутствие адекватной экспериментальной модели данной инфекции на животных [4]. Так, известно, что применение потенциальной вакцины на обезьянах хоть и
обеспечивает защиту животных от инфекции, но не гарантирует воспроизведение аналогичного эффекта на людях. Ярким примером является провал проекта фармацевтической фирмы "Merck". В 2007 г., несмотря на хорошие результаты вакцинации в отношении приматов, испытания среди людей-добровольцев были прерваны в связи с тем, что процент заражённых в опытной группе заметно превысил процент заражённых в контрольной. Данный факт иллюстрирует и проблему высокой степени риска, возникающей при проведении клинических испытаний с использованием добровольцев.
Возможность оценить истинную
иммуногенность и эффективность вакцины осложняется вопросами этического и социально-экономического характера. Так, трудности, связанные со взятием добровольного информированного согласия, предоставления гарантии конфиденциальности участия в клинических испытаниях, официальным определением ВИЧ-статуса (возможность ложно отнести иммунизированного волонтёра к группе ВИЧ-инфицированным в связи с наличием антител), дороговизной исследований, статистическими особенностями, страхованием волонтёров, правовой защитой и пр. позволяют определить задачу формирования групп добровольцев как одну из самых сложных и трудоёмких [2].
Нельзя не отметить и финансовую сторону вопроса. Вложений требуют не только научные и технологические разработки, но и юридическая поддержка и страхование участников исследований. Затраты на исследования оказываются весьма
значительными, в то же время неудача может случиться на любом из этапов, поскольку заведомо гарантировать безопасность и эффективность кандидатной вакцины представляется невозможным.
Выводы. Разработка вакцины против ВИЧ-инфекции представляет неоднозначную, многоплановую проблему, осложнённую как специфическими особенностями самого вируса, так и социальными, экономическими и моральными препятствиями.
1. Антигенная и генетическая изменчивость ВИЧ-1 в Российской Федерации на современном этапе. / Ф.Ф. Москалейчик [и др.] // Физиология и патология иммунной системы. - 2015. - №7. - С. 3-12.
2. Клинические испытания анти-ВИЧ/СПИД-вакцин: современное состояние проблемы / Г.О. Гудима [и др.] // Цитокины и воспаление. - 2005. - №3. - С. 65-69.
3. Комплексный анализ профилактических мероприятий по предотвращению распространения ВИЧ-инфекции в
Челябинской области за 2011-2016 гг. / М.В. Радзиховская [и др.] // Вестн. Совета молодых ученых и специалистов Челябинской области. - 2017. - №3 (18), т. 1. - С. 61-65.
4. Нетёсов С.В. Проблемы создания вакцин против гепатита С и ВИЧ-инфекции / С.В. Нетёсов //Вестн. Рос. академии наук. - 2008. - №10. - С. 880-892.
5. Перспективы иммунотерапии ВИЧ-инфекции и СПИДА, анти-ВИЧ/СПИД-вакцины и микробоциды /И.Г. Сидорович [и др.] //Цитокины и воспаление. - 2005. - №3. - С. 82-88.
6. Современные стратегии биомедицинской профилактики ВИЧ-инфекции/СПИДА. Часть I. анти-ВИЧ/СПИД-вакцины и антиретровирусная терапия /Г.О. Гудима [и др.] //Иммунология СПИДА. - 2013. - №1. - С. 4-9.
7. Сосин Д.В. Молекулярные механизмы генетической изменчивости ВИЧ-1 /Д.В. Сосин, Н.А. Чуриков //Молекулярная биология. - 2017. - №4. - С. 547-560.
8. Харченко Е.П. ВИЧ: коллизии вакцинологии /Е.П. Харченко //Иммунология. - 2012. - №4. - C. 206-212.
9. Brander C. The challenges of host and viral diversity in HIV vaccine design / C. Brander [et al.] // Current opinion in immunology. - 2006. - №18. - P. 430-437.
10. Carr J.K. Viral diversity as a challenge to HIV-1 vaccine development / J.K. Carr // Current opinion in HIV and AIDS. -2006. - №1. - P. 294-300.
11. Nabel G. HIV-1 diversity and vaccine development / G. Nabel [et al.] // Science. - 2002. - №296. - P. 2335.
VACCINE AGAINST HIV: DEVELOPMENT AND CAUSES OF FAILURE*
GALIULINA K.Y. FSBEI HE SUSMU MOH Russia, Chelyabinsk, Russia e-mail: [email protected]
The article presents existing developments and perspective directions of specific prevention of HIV infection. The most significant factors that complicate the task of creating an effective vaccine against the human immunodeficiency virus (HIV) are considered.
Keywords: HIV, AIDS, variability, prevention, vaccine.
* Научный руководитель: к.м.н., ст. преп. Пешикова М.В.
Читайте также: