Что такое регуляторные функции центральной нервной системы
Интегрирующая роль ЦНС в организме, функции ЦНС, принципы, механизмы регуляции. Единство и особенности нервной и гуморальной регуляции функций. Нервизм (Декарт, И.М.Сеченов, С.П.Боткин, И.П.Павлов). Виды влияния нервной системы на органы и ткани.
ЦНС в организме выполняет интегрирующую роль. Она объединяет в единое целое все ткани, органы, координируя их специфическую активность в составе целостных гомеостатических и целостных функциональных систем. Интегрирующая роль осуществляется на уровне нейрона, модуля, нервного центра и взаимодействия всех отделов ЦНС, объединяющих все системы организма в единую функциональную систему.
Управление деятельностью опорно – двигательного аппарата. ЦНС регулирует тонус мышц и посредством его перераспределения поддерживает естественную позу, а при нарушении восстанавливает ее, инициирует все виды двигательной активности.
Регуляция работы внутренних органов. Регуляция осуществляется посредством вегетативной НС и эндокринной системы: а) в покое – обеспечение гомеостазиса; б) во время работы – приспособительная рекакция деятельности внутренних органов согласно потребностям организма и поддержание гомеостаза;
Обеспечение сознания и всех видов психической деятельности. Психическая деятельность – идеальная, субъективно осознаваемая деятельность организма, осуществляемая с помощью нейрофизиологических процессов. ВНД – совокупность нейрофизиологических процессов, обеспечивающих сознание, подсознательное усвоение инфы и целенаправленное поведение организма в окружающей среде и обществе. Низшая нервная деятельность – совокупность нейрофизиологических процессов, обеспечивающих осуществление безусловных рефлексов и инстинктов.
Формирование взаимодействия организма с окружающей средой. Осуществляется с помощью избегания или избавления от неприятных раздражителей, регуляции интенсивности обмена веществ при изменении температуры окр среды.
Регуляция функций организма – изменение интенсивности их работы для достижения полезного результата в соответствии с потребностями организма в различных условиях его жизнедеятельности. Регуляция осуществляется согласно нескольким принципам, основным из которых является системный принцип – в регуляции любого показателя организма участвует несколько органов и систем. По уровням различают клеточный, органный, системный и организменный уровни регуляции. Регуляторные механизмы могут локализоваться внутри органов и экстраорганно. Поведенческая регуляция, как и другие механизмы регуляции, направлена на поддержание гомеостаза. Имеется три механизма регуляции: нервный, гуморальный и миогенный.
Нервный механизм регуляции.
Имеется два вида влияний НС на органы – пусковое и модулирующее.
Пусковое влияние вызывает деятельность органа, находящегося в покое, прекращение импульсации, вызвавшей деятельность органа, ведет к возвращению его в исходное состояние.
Модулирующее влияние ведет к изменению интенсивности деятельности органа. Оно распространяется как на органы, деятельность которых без нервных влияний невозможна, так и на органы, которые могут работать без пускового влияния НС.
Модулирующее влияние осуществляется несколькими способами: 1. Посредством изменения характера электрических процессов в органе; 2. С помощью изменения интенсивности обмена веществ в органе; за счет изменения кровоснабжения органа.
Гуморальная и миогенная регуляция.
Гуморальная регуляция осуществляется при помощи гормонов, метаболитов и медиаторов.
Гормоны – БАВ, вырабатываемые эндокринными железами или специализированными клетками, находящимися в различных органах. Гормоны вырабатываются также нервными клетками. Это нейрогормоны, например, гормоны гипоталамуса, регулирующие функции гипофиза. БАВ вырабатываются также неспециализированными клетками – тканевые гормоны.
Тканевые гормоны – биогенные амины (гистамин, серотонин), простагландины, кинины оказывают свое действие на клетки посредством изменения их биологических свойств (проницаемости мембран, возбудимости), изменения интенсивности обменных процессов, чувствительности клеточных рецепторов, образования вторичных посредников. Они изменяют чувствительность клеток к нервным и гуморальным влияниям, поэтому их называют модуляторами регуляторных сигналов. Тканевые гормоны действуют посредством специализированных клеточных рецепторов. Тканевые гормоны изменяют проницаемость клеток, тем самым влияя на развитие ПД.
Действие гормонов или парагормонов непосредственно на соседние клетки, минуя кровь называют паракринным. Действие вещества на рецепторы клетки, выделившей это вещество, называется аутокринным.
Гормны оказывают два вида влияний: функциональное и морфогенетическое.
Функциональное влияние гормонов бывает трех видов: пусковое, модулирующее и пермиссивное. Пусковое влияние – способность гормона запускать деятельность эффектора. Модулирующее влияние – изменение интенсивности протекания процессов в органах и тканях. Модулирующим является и изменение чувствительности к действию других гормонов. Пермисивное влияние – способность одного гормона обеспечивать реализацию эффектов другого гормона.
Метаболиты – продукты, образующиеся в организме в процессе обмена веществ как результат различных биохимических реакций. Это аминокислоты, нуклеотиды, коферменты, кислоты: угольная, молочная, пировиноградная, адреналиновая, ионный сдвиг, изменение рН. Метаболиты действуют в основном как местные регуляторы, но могут влиять на другие органы и ткани, а также на активность нервных центров.
Миогенный механизм регуляции.
Сущность миогенного механизма состоит в том, что предварительное умеренное растяжение скелетной или сердечной мышц увеличивает силу их сокращения. Сократительная активность гладкой мышцы также зависит от степени наполнения полого органа, а значит, и от его растяжения.
Единство регуляторных механизмов заключается в их взаимодействии. Так, при действии холодного воздуха на терморецепторы кожи увеличивается поток афферентных импульсов в ЦНС, это ведет к выбросу гормонов, повышающих интенсивность обмена веществ, и следовательно, к увеличению теплопродукции.
Нервная и гуморальная регуляция тесно связаны, но различаются рядом свойств.
1. НС, в отличие от гуморального механизма регуляции, формирует ответные реакции на изменения как внешней, так и внутренней среды организма.
2. У нервного и гуморального механизма регуляции различные способы связи: у НС – нервный импульс как универсальный сигнал, у гуморального механизма – гормоны, медиаторы, метаболиты и тканевые гормоны.
3. Различается точность нервных и гуморальных механизмов. Хим. вещества попадая в кровь, разносятся по всему телу и действуют на многие органы и ткани. НС может оказывать точное локальное влияние на отдельный орган или даже группу клеток этого органа.
4. У нервного и гуморального механизмов различная скорость связи.
5. В организации гуморального механизма нередко наблюдается противоположное действие БАВ на один и тот же орган взависимости от места его воздействия
6. Гормональные механизмы подчиняются НС, которая передает свое влияние на эндокринные железы непосредственно или с помощью нейропептидов и своих медиаторов, выделяемых нервными окончаниями и действующих на специальные, чувствительные к медиаторам структуры – рецепторы.
Почву для концепции нервизма подготовил Декарт, выдвинувший идею о рефлекторном принципе деятельности нервной системы. Гофман сформулировал гипотезу о влиянии нервов на все перемены в здоровом и больном состоянии. Согласно Куллену, все процессы в здоровом и больном организме регулирует нервный принцип, действующий через головной мозг посредством нервов – проводников нервной деятельности. По мнению Мухина, все человеческое тело можно рассматривать как построенное из нервов, ибо остальные части тела существуют вследствие нервов как управляющих их способностями.
Согласно Боткину, организм – целостная система, деятельность которой направляется и регулируется нервной системой.
Павлов обосновал представление о трофическом влиянии НС на органы и ткани, сформулировал принципы рефлекторной теории, доказал важную роль НС в регуляции секреции желез ЖКТ, ввел понятие об условных рефлексах и на их основе создал учение о ВНД.
Совокупность синаптически связанных нейронов, обеспечивающих приспособительную регуляцию функций органов или группы органов согласно потребностям организма, составляет нервный центр.
Системный принцип регуляции.
Заключается в том, что различные показатели организма поддерживаются на оптимальном уровне с помощью многих органов и систем. Системы органов объединяются в различные функциональные системы.
Функциональная система – динамическая совокупность органов и систем органов, объединяющихся для достижения организмом полезного результата.
Выделяют гомеостатические и поведенческие функциональные системы. Гомеостатические обеспечивают поддержание на оптимальных для метаболизма уровнях различных показателей организма. Это достигается посредством изменения интенсивности работы внутренних органов. Полезным результатом поведенческой функциональной системы является удовлетворение биологических потребностей, социальный и бытовой успех.
Типы регуляции функций организма.
По времени включения регуляторных механизмов относительно момента изменения величины регулируемого показателя организма имеется два типа регуляции: по отклонению и по опережению. Регуляция осуществляется с помощью обратной отрицательной связи: отклонение любого показателя от норма включает регуляторные механизмы, устраняющие это отклонение.
Регуляция по отклонению основана на циклическом механизме, при котором всякое отклонение от оптимального уровня регулируемого показателя мобилизует регуляторные механизмы для восстановления его на прежнем уровне. Регуляция по отклонению осуществляется при помощи обратной отрицательной связи, обеспечивающей разнонаправленной влияние: усиление функций органов при ослаблении показателей, и ослабление их деятельности при чрезмерном усилении и увеличения показателей организма. Положительная обратная связь оказывает только однонаправленное действие, причем стимулирует развитие процесса, находящегося под контролем управляющего комплекса.
Регуляция по опережению заключается в том, что регулирующие механизмы включаются до реального изменения показателя на основе инфы, поступающей о возможном изменении показателя в будущем.
В основе регуляции по опережению лежит механизм условного рефлекса.
Типы регуляции. Рефлекс. Универсальность и приспособленный характер изменчивости рефлекса, развитие концепции, рефлекс (Декарт, И.М.Сеченов, И.П.Павлов, П.К.Анохин).
Рефлекс – ответная реакция организма на раздражение сенсорных рецепторов, осуществляемая с помощью НС. Каждый рефлекс осуществляется посредством рефлекторной дуги, которая состоит из следующих структур.
1. Воспринимающее звено – рецептор. Он воспринимает изменение внешней или внутренней среды, что достигается посредством трансформации энергии раздражения в рецепторный потенциал, обеспечивающий возникновение нервного импульса. Совокупность рецепторов, раздражение которых вызывает рефлекс, называется рефлексогенной зоной.
2. Афферентное звено, передающее сигнал в ЦНС.
3. Управляющее звено – совокупность центральных и периферических нейронов, формирующих ответную реакцию организма.
4. Эфферентное звено – аксон эффекторного нейрона. Назначение – доставка нервных импульсов к эффекторам.
5. Эффектор (рабочий орган).
Рефлексы классифицируют по срокам появления в онтогенезе: врожденные и приобретенные. Безусловные делят на несколько групп:
1. В зависимости от числа синапсов в центральной части рефлекторной дуги различают моно и полисинаптические рефлексы. Моносинаптическим является коленный разгибательный рефлекс, возникающий при ударе по сухожилию надколенника. Большинство рефлексов являются полисинаптическими, в их осуществлении участвуют несколько последовательно включенных нейронов ЦНС. От числа нейронов, участвующих в осуществлении рефлекса, зависит время рефлекса – длительность интервала от начала стимуляции до конца ответной реакции. Оно включает: время трансформации энергии раздражения в распространяющийся импульс; время проведения возбуждения в афферентном пути, в центральной части рефлекторной дуги и в эфферентном пути; время активации эффектора и его ответной реакции.
2. По биологическому значению: пищедобывательные, половые, защитные.
3. По рецепторам, раздражение которых вызывает ответную реакцию: экстероцептивные, проприоцептивные, интероцептивные.
4. По локализации рефлекторной дуги: центральные и периферические. Последними могут быть только вегетативные рефлексы, они подразделяются на интраорганные, межорганные и экстероорганные.
5. В зависимости от отдела НС: соматические и вегетативные.
Развитие концепции рефлекса.
На первом этапе были сформулированы основные положения о принципе деятельности ЦНС французским естествоиспытателем Декартом. Он сформулировал два важных положения рефлекторной теории: 1. Реакция организма на внешние воздействия является отраженной. 2. Ответная реакция на раздражение осуществляется при помощи НС.
На втором этапе было экспериментально обосновано материалистическое представление о рефлексе. Было установлено, что рефлекторная реакция может осуществляться на одном метамере лягушки. Выявлено, что стимулы могут быть не только внешними, но и внутренними; установлена роль задних чувствительных и передних двигательных корешков спинного мозга.
Сеченов обосновал приспособительный характер изменчивости рефлекса, открыл центральное торможение, а также явление суммации возбуждения в ЦНС.
На третьем этапе были открыты условные рефлексы и разработаны основы учения о ВНД. Павлов сформулировал три принципа рефлекторной теории: 1. Принцип детерминизма, согласно которому любая рефлекторная реакция причинно обусловлена – возникает при действии раздражителя; 2. Принцип структурности, суть которого заключается в том, что каждая рефлекторная реакция осуществляется при помощи определенных структур, и чем больше структурных элементов участвует в осуществлении этой реакции, тем она совершеннее; 3. Принцип единства процессов анализа и синтеза – НС анализирует с помощью рецепторов все действующие внешние и внутренние раздражители и на основании этого анализа формирует целостную ответную реакцию (синтез).
На четвертом этапе было создано учение о функциональных системах (Анохин).
Уникальность нервной системы – центральная нервная система сформировалась за многие тысячи лет развития человеческой расы, в том, что взаимосвязь осуществляется сразу в двух направлениях. Каждый орган и подчиняется головному мозгу, и оказывает влияние на его деятельность. Основные структурные единицы ЦНС – головной, а также спинной мозг. Именно благодаря им, люди отличаются от иных представителей животного мира.
Общая характеристика
Эволюционные процессы, которым подвергались многоклеточные организмы на протяжении столетий, привели к необходимости регулирования, а также координирования всех жизненных функций. Эти механизмы способствовали приспособлению особей к изменяющимся параметрам внешней среды. Итогом явилось то, что отделы ЦНС стали сложными по строению и функционированию.
По сути, центральная нервная система – это высокоорганизованная совокупность специальных структурных единиц, которые объединяют и координируют деятельность каждой ткани, системы и органа, как изнутри, так и при взаимодействии со средой извне. Она представлена двумя важнейшими органами – внутричерепным, а также внутрипозвоночным мозгом. Тогда как черепно-мозговые нервные волокна к ЦНС не имеют отношения. Это уже периферическая система иннервации.
В основном, относящиеся к головному и спинному мозгу функциональные единицы несут ответственность за восприятие информации от внешних/внутренних раздражителей, ее переработку и формирование адекватного ответа. Благодаря этой являющейся частью целого организма системе, и обеспечивается полноценное взаимодействие людей с миром вокруг – через память, мышление, эмоции, творческие процессы.
Особенности строения
У людей с момента оплодотворения яйцеклетки начинается развитие и формирование ЦНС – из непосредственно нервной трубки образуются головной, а также спинной мозг. Их защищают костные каркасы – черепная коробка и позвонки. Ниже расположены три оболочки – твердая с паутинной и сосудистой. В их пределах находятся жидкие среды – ликвор с кровью.
Традиционно строение ЦНС подразумевает, что клетки – нейроны, объединяются в особые скопления – нервные центры. Тела нейронов образуют серое вещество, тогда как их короткие и длинные отростки – белую субстанцию, проводящие сигнальные импульсы пути.
Помимо этого, в ЦНС присутствует нейроглия, состоящая их глиальных клеток. Их количество в несколько раз превышает число нейронов. Поэтому они составляют большую часть массы центрального отдела нервной системы.
В головном отделе принято выделять несколько сегментов – мозжечок с большими полушариями, а также продолговатый, средний, промежуточный и задний участки. Каждый из них несет свою ответственность за правильное функционирование органа отдельно, и всего организма и систем в целом. В спинном мозге градация осуществляется согласно сегментам позвоночного ствола – от шейного, до грудного и пояснично-крестцового.
Анатомия головного мозга
В составе центральной нервной системы главенствующее место, безусловно, занимает головной мозг. Внутри черепной коробки он представлен двумя крупными полушариями, испещренными глубокими и мелкими бороздами, под которыми расположены иные структурные единицы:
- Продолговатый участок – локализуется на блюменбаховом скате. Книзу он плавно трансформируется в спинной мозг. На его передней поверхности определяется продольная щель, по бокам от которой специалисты выделяют 2 своеобразных возвышения в виде валиков. Их именуют пирамидами с оливами. Тогда как подобную же борозду на задней поверхности структуры с двумя задними канатиками принято называть столбами.
- Над продолговатой зоной расположен задний мозг – в форме Варолиева моста, а также мозжечка. Внешне схожи с большими полушариями, но функционально имеются свои особенности. В глубине ткани находятся скопления ядер, от которых берут свое начало черепно-мозговые нервы.
- Взаимосвязь между продолговатой единицей и вышерасположенными отделами осуществляет средний мозг – представлен ножками, нервными пучками, а также четверохолмием. Переоценить их значение невозможно – именно в этой зоне пролегает множество важнейших нервных путей и расположены ядра нескольких пар нервов.
- Промежуточный участок – известен как зрительные бугры с подбугровой областью, локализуется дальше от центра головного мозга. Они содержат первичные клетки зрительной системы, а также чувствительные проводниковые волокна. Гипоталамус, он же подбугровый участок, принимает участие в обменных процессах.
Каждая из перечисленных единиц системы – от полушарий и мозжечка, до ствола головного мозга имеет свое значение для жизнедеятельности людей. Если сбой происходит в одной зоне – оболочки ЦНС, к примеру, опухоли мозга, то влияние будет оказываться на все участки органа.
Анатомические особенности спинного мозга
Прочный каркас позвоночного столба надежно защищает еще одну структурную единицу центральной нервной системы – спинной мозг. Его протяженность впечатляет – от затылочного отверстия черепной коробки до поясничных позвонков.
Визуально с двух его сторон можно отметить присутствие продольных борозд, тогда как непосредственно по центру – спинномозговой канал. С внешней стороны размещена белая субстанция – множество отростков нервных клеток, которые объединены в волокна. Серое же вещество представлено преимущественно боковыми, а также задними с передними роговыми зонами – напоминает бабочку в полете.
Двигательные нервные клетки локализуются в передних рогах, а задние образования имеют вставочные нейроны, которые осуществляют взаимосвязь с чувствительными клетками. Они расположены в узловых сегментах нервной системы.
В месте соединения передних волокон с задними зонами формируются корешки спинного мозга. Они, по сути – проводники между центральной и периферической системой. Именно за счет подобного анатомического строения осуществляется взаимосвязь между разными участками человеческого организма, сохраняется равновесие внутренней среды – спинномозговыми рефлексами.
Функции ЦНС
Исходя из особенностей строения и расположения структур центральной нервной системы, следуют ее основные функции:
- интегративная – установление взаимосвязи между клетками в тканях, органах в системах для образования единого высокоорганизованного человеческого организма;
- координирующая – обеспечение согласованности действий различных органов для достижения единой стоящей перед человеком задачи, к примеру, адаптация к резко изменившейся ситуации;
- регулирующая – структуры нервной системы контролируют все протекающие внутри процессы, без их участия не происходит ни одна деятельность;
- трофическая – выполняет регуляцию трофики, а также интенсивности обменных процессов в тканях, чтобы реакция на изменения была адекватной и быстрой;
- приспособительная – анализ и последующий синтез поступающей извне информации для приспособления к внешней среде.
Несмотря на обилие научных работ о центральной нервной системе, в этой области таится много неизвестного. Человечество ожидает еще множество открытий.
Центральная нервная система (ЦНС) – основная часть нервной системы человека. Она состоит из двух отделов: головного мозга и спинного мозга. Основные функции нервной системы –контролировать все жизненно важные процессы в организме. Головной мозг отвечает за мышление, речь, координацию. Он обеспечивает работу всех органов чувств, начиная от простой температурной чувствительности и заканчивая зрением и слухом. Спинной мозг регулирует работу внутренних органов, обеспечивает координацию их деятельности и приводит тело в движение (под контролем головного мозга). Принимая во внимание множество функций ЦНС, клинические симптомы, позволяющие заподозрить опухоль головного или спинного мозга, могут быть чрезвычайно разнообразными: от нарушения поведенческих функций до невозможности осуществлять произвольные движения частями тела, нарушений функции тазовых органов.
Клетки головного и спинного мозга
Головной и спинной мозг состоят из клеток, чьи названия и характеристики определяются их функциями. Клетки, характерные только для нервной системы, – это нейроны и нейроглия.
К опухолям головного мозга, возникающим из нейронов или их предшественников, относятся эмбриональные опухоли (ранее их называли примитивные нейроэктодермальные опухоли - ПНЭО), такие как медуллобластомы и пинеобластомы.
Опухоли, возникающие из нейроглиальных (глиальных) клеток, в общем случае называют глиомами. Однако в зависимости от конкретного типа глиальных клеток, вовлеченных в опухоль, она может иметь то или иное специфическое название. Самые распространeнные глиальные опухоли у детей – мозжечковые и полушарные астроцитомы, глиомы ствола мозга, глиомы зрительныйх путей, эпендимомы и ганглиоглиомы. Виды опухолей подробнее описаны в этой статье.
Строение головного мозга
Головной мозг имеет очень сложное строение. Различают несколько больших его отделов: большие полушария; ствол головного мозга: средний мозг, мост, продолговатый мозг; мозжечок.
Рисунок 2. Строение головного мозга
Если посмотреть на головной мозг сверху и сбоку, то мы увидим правое и левое полушария, между которыми располагается разделяющая их большая борозда — межполушарная, или продольная щель. В глубине мозга находится мозолистое тело – пучок нервных волокон, соединяющий две половины мозга и позволяющих передавать информацию от одного полушария к другому и обратно. Поверхность полушарий изрезана более или менее глубоко проникающими щелями и бороздами, между которыми расположены извилины.
Рисунок 3. Строение полушария головного мозга
Несколько больших углублений (борозд) делят каждое полушарие на четыре доли:
- лобную (фронтальную);
- височную;
- теменную (париетальную);
- затылочную.
Теменные доли ответственны за чувство осязания, восприятие давления, боли, тепла и холода, а также за вычислительные и речевые навыки, ориентацию тела в пространстве. В передней части теменной доли располагается так называемая сенсорная (чувствительная) зона, куда сходится информация о влиянии окружающего мира на наше тело от болевых, температурных и других рецепторов.
Височные доли в значительной мере отвечает за память, слух и способность воспринимать устную или письменную информацию. В них также есть и дополнительные сложные объекты. Так, миндалевидные тела (миндалины) играют важную роль в возникновении таких состояний, как волнение, агрессия, страх или гнев. В свою очередь, миндалины связаны с гиппокампом, который содействует формированию воспоминаний из пережитых событий.
Затылочные доли – зрительный центр мозга, анализирующий информацию, которая поступает от глаз. Левая затылочная доля получает информацию из правого поля зрения, а правая – из левого. Хотя все доли больших полушарий отвечают за определенные функции, они не действуют в одиночку, и ни один процесс не связан только с одной определенной долей. Благодаря огромной сети взаимосвязей в головном мозге всегда существует коммуникация между разными полушариями и долями, а также между подкорковыми структурами. Мозг функционирует как единое целое.
Мозжечок – структура меньшего размера, которая располагается в нижней задней части мозга, под большими полушариями, и отделен от них отростком твердой мозговой оболочки – так называемым наметом мозжечка или палаткой мозжечка (тенториумом). По размеру он приблизительно в восемь раз меньше переднего мозга. Мозжечок непрерывно и автоматически осуществляет тонкое регулирование координации движений и равновесия тела.
Ствол мозга отходит вниз от центра головного мозга и проходит перед мозжечком, после чего сливается с верхней частью спинного мозга. Ствол мозга отвечает за базовые функции организма, многие из которых осуществляются автоматически, вне нашего сознательного контроля, такие как сердцебиение и дыхание. В ствол входят следующие части:
- Продолговатый мозг, который управляет дыханием, глотанием, артериальным давлением и частотой сердечных сокращений.
- Варолиев мост (или просто мост), который соединяет мозжечок с большим мозгом.
- Средний мозг, который участвует в осуществлении функций зрения и слуха.
Вдоль всего ствола мозга проходит ретикулярная формация (или ретикулярная субстанция) – структура, которая отвечает за пробуждение от сна и за реакции возбуждения, а также играет важную роль в регуляции мышечного тонуса, дыхания и сердечных сокращений.
Промежуточный мозг располагается над средним мозгом. В его состав входят, в частности, таламус и гипоталамус. Гипоталамус – это регуляторный центр, участвующий во многих важных функциях организма: в регуляции секреции гормонов (включая гормоны расположенного поблизости гипофиза), в работе автономной нервной системы, процессах пищеварения и сна, а также в контроле температуры тела, эмоций, сексуальности и т.п. Над гипоталамусом расположен таламус, который обрабатывает значительную часть информации, поступающей к головного мозгу и идущей от него.
12 пар черепно-мозговых нервов в медицинской практике нумеруются римскими цифрами от I до XII, при этом в каждой из этих пар один нерв отвечает левой стороне тела, а другой – правой. ЧМН отходит от ствола мозга. Они контролируют такие важные функции, как глотание, движения мышц лица, плеч и шеи, а также ощущения (зрение, вкус, слух). Главные нервы, передающие информацию к остальным частям тела, проходят через ствол мозга.
Мозговые оболочки питают, защищают головной и спинной мозг. Располагаются тремя слоями друг под другом: сразу под черепом находится твердая оболочка (dura mater), имеющая наибольшее количество болевых рецепторов в организме (в мозге их нет), под ней паутинная (arachnoidea), и ниже – ближайшая к мозгу сосудистая, или мягкая оболочка (pia mater).
Спинномозговая (или цереброспинальная) жидкость – это прозрачная водянистая жидкость, которая формирует еще один защитный слой вокруг головного и спинного мозга, смягчая удары и сотрясения, питая мозг и выводя ненужные продукты его жизнедеятельности. В обычной ситуации ликвор важен и полезен, но он может играть и вредную для организма роль, если опухоль головного мозга блокирует отток ликвора из желудочка или если ликвор вырабатывается в избыточном количестве. Тогда жидкость скапливается в головном мозге. Такое состояние называют гидроцефалией, или водянкой головного мозга. Поскольку внутри черепной коробки свободного места для лишней жидкости практически нет, возникает повышенное внутричерепное давление (ВЧД).
У ребёнка могут возникнуть головные боли, рвота, нарушения координации движений, сонливость. Нередко именно эти симптомы и становятся первыми наблюдаемыми признаками опухоли головного мозга.
Строение спинного мозга
Спинной мозг – это фактически продолжение головного мозга, окруженное теми же оболочками и спинномозговой жидкостью. Он составляет две трети ЦНС и является своего рода проводящей системой для нервных импульсов.
Рисунок 4. Строение позвонка и расположение спинного мозга в нем
Спинной мозг составляет две трети ЦНС и является своего рода проводящей системой для нервных импульсов. Сенсорная информация (ощущения от прикосновения, температура, давление, боль) идет через него к головному мозгу, а двигательные команды (моторная функция) и рефлексы проходят от головного мозга через спинной ко всем частям тела. Гибкий, состоящий из костей позвоночный столб защищает спинной мозг от внешних воздействий. Кости, составляющие позвоночник, называют позвонками; их выступающие части можно прощупать вдоль спины и задней части шеи. Различные части позвоночника называют отделами (уровнями), всего их пять: шейный (С), грудной (Th), поясничный (L), крестцовый (S) и копчиковый [1] .
[1] Отделы позвоночника обозначаются латинскими символами по начальным буквам соответствующих латинских названий.
Внутри каждого отдела позвонки пронумерованы.
Опухоль спинного мозга может образоваться в любом отделе –например, говорят, что опухоль обнаружена на уровне С1-С3 или на уровне L5. Вдоль всего позвоночного столба от спинного мозга отходят спинномозговые нервы в количестве 31 пары. Они связаны со спинным мозгом через нервные корешки и проходят через отверстия в позвонках к различным частям тела.
При опухолях спинного мозга возникают нарушения двух видов. Локальные (очаговые) симптомы – боль, слабость или расстройства чувствительности – связаны с ростом опухоли в конкретной области, когда этот рост затрагивает кость и/или корешки спинномозговых нервов. Более общие нарушения связаны с нарушением передачи нервных импульсов через затронутую опухолью часть спинного мозга. Может возникнуть слабость, потеря чувствительности или управления мышцами в той области тела, которая управляется спинным мозгом ниже уровня опухоли (паралич или парез). Возможны нарушения мочеиспускания и дефекации (опорожнения кишечника).
Во время операции по удалению опухоли хирургу иногда приходится удалять фрагмент внешней костной ткани (пластинку дуги позвонка, или дужку), чтобы добраться до опухоли.
Это может впоследствии спровоцировать искривление позвоночника, поэтому такой ребенок должен наблюдаться у ортопеда.
Локализация опухоли в ЦНС
Первичная опухоль головного мозга (то есть та, которая изначально родилась в данном месте и не является метастазом опухоли, возникшей в другом месте тела человека) может быть либо доброкачественной, либо злокачественной. Доброкачественная опухоль не прорастает в соседние органы и ткани, а растет, как бы отодвигая, смещая их. Злокачественное новообразование быстро растет, прорастая в соседние ткани и органы, и часто дает метастазы, распространяясь по организму. Первичные опухоли головного мозга, диагностируемые у взрослых, как правило, не распространяются за пределы ЦНС.
Дело в том, что доброкачественная опухоль, развивающаяся в другой части тела, может расти годами, не вызывая нарушения функции и не представляя угрозы для жизни и здоровья пациента. Рост же доброкачественной опухоли в полости черепа или спинномозговом канале, где мало места, быстро вызывает смещение структур мозга и появление угрожающих жизни симптомов. Удаление доброкачественной опухоли ЦНС также сопряжено с большим риском и не всегда возможно в полном объеме, учитывая количество и характер структур мозга, прилежащих к ней.
Первичные опухоли делят на низко- и высокозлокачественные. Для первых, как и для доброкачественных, характерен медленный рост и, в целом, благоприятный прогноз. Но иногда они могут перерождаться в агрессивный (высокозлокачественный) рак. Подробнее о видах опухолей мозга в статье.
Читайте также: