Что является физиологической единицей нервной системы
Нервная система регулирует деятельность всех органов и систем, обусловливая их функциональное единство, и обеспечивает связь организма как целого с внешней средой (увеличить рисунок)
Структурной единицей нервной системы является нервная клетка с отростками - нейрон. Bся нервная система представляет собой совокупность нейронов, которые контактируют друг с другом при помощи специальных аппаратов - синапсов. По структуре и функции различают три типа нейронов:
- рецепторные, или чувствительные;
- вставочные, замыкательные (кондукторные);
- эффекторные, двигательные нейроны, от которых импульс направляется к рабочим органам (мышцам, железам).
Нервная система условно подразделяется на два больших отдела - соматическую, или анимальную, нервную систему и вегетативную, или автономную, нервную систему. Соматическая нервная система осуществляет преимущественно функции связи организма с внешней средой, обеспечивая чувствительность и движение вызывая сокращение скелетной мускулатуры. Так как функции движения и чувствования свойственны животным и отличают их от растений, эта часть нервной системы получила название анимальной (животной).
В нервной системе выделяют центральную часть - головной и спинной мозг - центральная нервная система и переферическую, представленную отходящими от головного и спинного мозга нервами, - переферическая нервная система. На разрезе мозга видно, что он состоит из серого и белого вещества.
Серое вещество образуется скоплениями нервных клеток ( с начальными отделами отходящих от их тел отростков). Отдельные ограниченные скопления серого вещества носят названия ядер.
Белое вещество образуют нервные волокна, покрытые миелиновой оболочкой (отростки нервных клеток, образующих серое вещество). Нервные волокна в головном и спинном мозге образуют проводящие пути.
И.П. Павлов показал, что центральная нервная система может оказывать три рода воздействий на органы:
- 1) пусковое, вызывающее либо прекращающее функцию органа (сокращение мышцы, секрецию железы);
- 2) сосудодвигательное, изменяющее ширину просвета сосудов и тем самым регулирующее приток к органу крови;
- 3) трофическое, повышающее или понижающее обмен веществ и, следовательно потребление питательных веществ и кислорода. Благодаря этому постоянно согласуется функциональное состояние ргана и его потребность в питательных веществах и кислороде. Когда к работающей скелетной мышце по двигательным волокнам направляются импульсы, вызывающие ее сокращение, то одновременно по вегетативным нервным волокнам поступают импульсы, расширяющие сосуды и у силивающие обмен веществ. Тем самым обеспечивается энергетическая возможность выполнения мышечной работы.
Центральная нервная система воспринимает афферентную (чувствительную) информацию, возникающую при раздражении спецефических рецепторов и в ответ на это формирует соответствующие эфферентные импульсы, вызывающие изменения в деятельности определнных органов и систем организма.
Структурной и функциональной единицей нервной системы является нейрон. Нейрон – высокоспециализированная клетка нервной ткани. Эти клетки способны обеспечивать следующие функции:
- восприятие информационного потока;
- обработку поступающего информационного потока;
- кодировку информации;
- передачу информации другим структурным элементам организма;
- хранение получаемой информации;
- реагирование на внешние раздражения;
- обеспечение взаимодействия между другими клетками нервной системы;
- обеспечение взаимодействия между собой и клетками других органов.
Особенностью структурно-функциональной единицы нервной системы является наличие способности генерировать электрические импульсы.
Каждая функциональная единица нервной системы в своем составе содержит специальные окончания – синапсы, служащие для обеспечения передачи информационного потока. На одной клетке может содержаться до 10 000 синапсов. Человеческий организм в составе НС содержит около 85 миллиардов нейронов. Этими клетками и взаимодействиями между ними обуславливается сложность и разнообразие НС. Сигнальные импульсы генерируются и разносятся при помощи ионов, провоцирующих возникновение электроразряда.
Функциональная структура нейрона
В структуре единицы НС можно выделить несколько элементов, которые отличаются между собой как по анатомическому строению, так и по выполняемым функциональным обязанностям. Такими элементами являются:
- тело нервной клетки;
- дендрит;
- аксон;
- синапс.
Тело клетки НС представляет собой центральную часть структурной единицы, которая в своем составе имеет цитоплазму и ядро. Цитоплазма содержит в своем составе все клеточные элементы, которые необходимы для обеспечения жизнедеятельности клеточного тела, а в ядре расположен генетический аппарат клетки. Тело снаружи покрыто клеточной оболочкой, состоящей из двух липидных слоев. Дополнительно в составе клеточной оболочки имеются ионные каналы, которые отвечают за обеспечение прохода определенных ионов. Билипидный слой позволяет проникать в клетку только кислороду, а наружу из клетки выводится углекислый газ.
Поверхность билипидного слоя имеет прикрепленные к ней в виде наростов, разветвленные полисахариды, которые обеспечивают принятие раздражения. Аксон чаще всего является длинным отростком нейрона, который необходим для обеспечения транспортировки возбуждения и получаемой информации от тела к органу и ткани-исполнителю. Снаружи аксон покрывает оболочка из миелина.
Дендриты являются короткими и разветвленными отростками нервной структурной единицы, которые обеспечивают восприятие импульсов возбуждения и торможения и передачу этих сигналов на тело. Дендриты обеспечивают связь между разными нейронами. Количество таких связей может достигать 20 тысяч. В отличие от аксона он не имеет на своей поверхности миелиновой оболочки.
Синапс – обособленная зона контакта нейрона, получающая информацию исполнительной клеткой. Синапс предназначен для осуществления передачи импульса между различными компонентами, входящими в состав нервной системы. Для ответной реакции структурное образование НС должно получить определенное количество импульсов от определенного количества синапсов. Этот эффект носит название порога возбудимости.
Классификация нейронов НС в зависимости от анатомического строения
В зависимости от количества и размещения дендритов и аксона структурные единицы НС можно разделить на несколько видов. Основными видами структурных формирований НС являются:
- безаксонные;
- униполярные;
- псевдоуниполярные;
- биполярные;
- мультиполярные.
Безаксонные единицы представляют собой небольшие образования, которые группируются в межпозвоночных ганглиях спинного мозга, они не имеют четкого, анатомически обусловленного разделения образуемых отростков на аксоны и дендриты. Все образующиеся у них отростки имеют одинаковую структуру. Функциональное значение этих структурных единиц НС изучено недостаточно хорошо.
Униполярные являются элементами, которые имеют один отросток, они присутствуют в структуре сенсорного ядра тройничного нерва и среднего мозга.
Биполярные структурные образования имеют в своем строении два отростка, один из которых является аксоном, а второй дендритом. Такой тип структурных единиц НС располагается в высокоспециализированных сенсорных структурах организма, таких как, например, сетчатка глаза или вестибулярный ганглий.
Мультиполярные клеточные элементы имеют один аксон и несколько дендритов. Этот вид образований характерен для отделов ЦНС. Псевдоуниполярные единицы являются уникальными образованиями, у которых есть только один отросток, покрытый миелиновой оболочкой и имеющий Т-образное разветвление: по одной ветви возбуждение транспортируется к телу, а по второй – от него. Такой тип образований располагается в спинальных ганглиях.
Функциональная классификация элементов НС
В зависимости от положения в рефлекторной дуге выделяют несколько типов структурных элементов. Такими типами являются:
- чувствительные;
- эфферентные;
- вставочные;
- секреторные.
Чувствительные структурные элементы носят название афферентных структур, к ним относятся первичные клеточные образования, располагающиеся в органах чувств, и псевдоуниполярные нервные образования, имеющие дендриты со свободными окончаниями.
Вставочные элементы носят название интернейронов и представляют собой группу нервных образований, которые обеспечивают связь между чувствительными и двигательными структурами НС. Этот тип структур делится на три разновидности. Секреторная группа элементов обеспечивает секрецию высокоактивных веществ, которые носят название нейрогормонов. Эти элементы имеют развитой комплекс Гольджи, отвечающий за синтез нейрогормонов.
Эфферентные структурные элементы – образования, обеспечивающие передачу импульсов к органам или клеткам-мишеням. Они бывают ультиматными или неультиматными. В зависимости от формы и размера тела элементы делятся на сферические, зернистые, звездчатые, пирамидальные грушевидные и т.д. Размер может варьироваться в диапазоне от 5 мкм до 120-150 мкм.
Развитие и рост нейрона
Развитие функционально-структурного компонента НС начинается с маленькой клетки-предшественника, которая прекращает процесс деления еще до образования отростков. Первым образованием, которое начинает свой рост, является аксон, образование дендритов происходит позже. В процессе роста на конце отростка формируется образование в виде утолщения, имеющего неправильную форму. Вероятнее всего, оно необходимо для прокладки пути для роста через ткани. Это образование называется конусом роста. Утолщение на поверхности имеет большое количество шипиков. Длина шипов – 50 мкм, а ширина 0,1 – 0,2 мкм. Расширенная часть конуса имеет ширину приблизительно 5 мкм. Форма расширенной части ростового конуса способна изменяться. Между шипами расположена складчатая мембрана. Микрошипы постоянно двигаются, поэтому способны вытягиваться в длину или втягиваться, прикасаться к окружающему субстрату и прилипать к нему.
Ростовой конус заполняется мелкими пузырьками. Под складчатой мембраной располагается уплотненная масса, состоящая из актиновых филаментов. В состав содержимого конуса входят митохондрии.
Микротрубочки и нейрофиламенты, находящиеся в этой области, способны удлиняться за счет синтезирования новых структурных компонентов у основания отростка. Конус роста представляет собой зону быстрого экзо- и эндоцитоза, о чем может свидетельствовать множество расположенных здесь пузырьков. Образующиеся в большом количестве мембранные пузырьки транспортируются по отростку от тела к конусу при осуществлении аксонного транспорта. Мембранный материал, который синтезируется в теле, транспортируется по отростку к конусу роста. Здесь происходит его включение в плазматическую мембрану путем осуществления процессов экзоцитоза. При осуществлении этого процесса происходит удлинение отростка тела структурного элемента нервной системы.
1.Введение. 1стр.
2.Рефлекс. Торможение. Доминанта. 2стр.
3.Анатомия головного мозга. 4стр.
4.Деятельность головного мозга. 6стр.
5.Спинной мозг. Анатомия спинного мозга. 7стр.
6.Физиология спинного мозга. 9стр.
7.Значение нервной системы. 11стр.
8.Литература. 12стр.
1.ВВЕДЕНИЕ
Нервная система регулирует деятельность всех органов и систем, обусловливая их функциональное единство, и обеспечивает связь организма как целого с внешней средой.
Структурной единицей нервной системы является нервная клетка с отростками -нейрон. Вся нервная система представляет собой совокупность нейронов, которые контактируют друг с другом при помощи специальных аппаратов - синапсов. По структуре и функции различают три типа нейронов:
1. рецепторные, или чувствительные;
2. вставочные, замыкательные (кондукторные);
3. эффекторные, двигательные нейроны, от которых импульс направляется к рабочим органам (мышцам, железам).
Нервная система условно подразделяется на два больших отдела - соматическую, или анимальную, нервную систему и вегетативную, или автономную, нервную систему. Соматическая нервная система осуществляет преимущественно функции связи организма с внешней средой, обеспечивая чувствительность и движение вызывая сокращение скелетной мускулатуры. Так как функции движения и чувствования свойственны животным и отличают их от растений, эта часть нервной системы получила название анимальной (животной). Вегетативная нервная система оказывает влияние на процессы так называемой растительной жизни, общие для животных и растений (обмен веществ, дыхание, выделение и др.), отчего и происходит ее название (вегетативная - растительная). Обе системы тесно связаны между собой, однако вегетативная нервная система обладает некоторой долей самостоятельности и не зависит от нашей воли, вследствие чего ее также называют автономной нервной системой.
В нервной системе выделяют центральную часть - головной и спинной мозг - центральная нервная система и периферическую, представленную отходящими от головного и спинного мозга нервами, - периферическая нервная система. На разрезе мозга видно, что он состоит из серого и белого вещества.
Серое вещество образуется скоплениями нервных клеток ( с начальными отделами отходящих от их тел отростков). Отдельные ограниченные скопления серого вещества носят названияядер.
Белое вещество образуют нервные волокна, которые в свою очередь образуют проводящие пути.
Периферические нервы в зависимости от того, из каких волокон (чувствительных либо двигательных) они состоят, подразделяются на чувствительные, двигательные и смешанные. Тела нейронов, отростки которых составляют чувствительные нервы, лежат в нервных узлах вне мозга. Тела двигательных нейронов лежат в передних рогах спинного мозга или двигательных ядрах головного мозга.
2.РЕФЛЕКС. ТОРМОЖЕНИЕ. ДОМИНАНТА.
Ответная реакция организма на раздражение из внешней или внутренней среды, осуществляющаяся при участии центральной нервной системы, называется рефлексом. Путь, по которому проходит нервный импульс от рецептора до эффектора, (действующий орган), называется рефлекторной дугой.
В рефлекторной дуге различают пять звеньев:
- рецептор;
- чувствительное волокно, проводящее возбуждение к центрам;
- нервный центр, где происходит переключение возбуждения с чувствительных клеток на двигательные;
- двигательное волокно, несущее нервные импульсы на периферию;
- действующий орган - мышца или железа.
Любое раздражение - механическое, световое, звуковое, химическое, температурное, воспринимаемое рецептором, кодируется им в нервный импульс и в таком виде по чувствительным волокнам направляется в центральную нервную систему. При помощи рецепторов организм получает информацию обо всех изменениях, происходящих во внешней среде и внутри организма. В центральной нервной системе эта информация перерабатывается, отбирается и передается на двигательные нервные клетки, которые посылают нервные импульсы к рабочим органам - мышцам, железам и вызывают тот или иной приспособительный акт - движение или секрецию. Рефлекс как приспособительная реакция организма обеспечивает тонкое, точное и совершенное уравновешивание организма с окружающей средой, а также контроль и регуляцию функций внутри организма. В этом его биологическое значение. Рефлекс является функциональной единицей нервной деятельности.
Вся нервная деятельность, как бы она не была сложна, складывается из рефлексов различной степени сложности, т.е. она является отраженной, вызванной внешним поводом, внешним толчком.
В центральной нервной системе, кроме процесса возбуждения, одновременно возникает процесс торможения, выключающий те нервные центры, которые могли бы мешать или препятствовать осуществлению какого-либо вида деятельности организма, например сгибанию ноги. Возбуждениемназывают нервный процесс, который либо вызывает деятельность органа, либо усиливает существующую.
Под торможением понимают такой нервный процесс, который ослабляет либо прекращает деятельность или препятствует ее возникновению. Взаимодействие этих двух активных процессов лежит в основе нервной деятельности.
Процесс торможения в центральной нервной системе был открыт в 1862 г. И. М. Сеченовым. Значительно позже английский физиолог Шеррингтон открыл, что процессы возбуждения и торможения участвуют в любом рефлекторном акте. При сокращении группы мышц тормозятся центры мышц-антагонистов. При сгибании руки или ноги центры мышц-разгибателей затормаживаются. Рефлекторный акт возможен только при сопряженном, так называемом реципрокном торможении мышц- антагонистов. При ходьбе сгибание ноги сопровождается расслаблением разгибателей и, наоборот, при разгибании тормозятся мышцы-сгибатели. Если бы этого не происходило, то возникла бы механическая борьба мышц, судороги, а не приспособительные двигательные акты.
При раздражении чувствительного нерва, вызывающего сгибательный рефлекс, импульсы направляются к центрам мышц-сгибателей и через тормозные клетки Реншоу - к центрам мышц-разгибателей. В - первых вызывают процесс возбуждения, а во вторых - торможения. В ответ возникает координированный, согласованный рефлекторный акт - сгибательный рефлекс.
В центральной нервной системе под влиянием тех или иных причин может возникнуть очаг повышенной возбудимости, который обладает свойством притягивать к себе возбуждения с других рефлекторных дуг и тем самым усиливать свою активность и тормозить другие нервные центры. Это явление носит название доминанты.
Доминанта относится к числу основных закономерностей в деятельности центральной нервной системы. Она может возникнуть под влиянием различных причин: голода, жажды, инстинкта самосохранения, размножения. У человека причиной доминанты может быть увлеченность работой, любовь, родительский инстинкт. Если студент занят подготовкой к экзамену или читает увлекательную книгу, то посторонние шумы не мешают ему, а даже углубляют его сосредоточенность, внимание. Весьма важным фактором координации рефлексов является наличие в центральной нервной системе известной функциональной субординации, т. е. определенного соподчинения между ее отделами, возникающего в процессе длительной эволюции. Нервные центры и рецепторы головы развиваются быстрее. Высшие отделы центральной нервной системы приобретают способность изменять активность и направление деятельности нижележащих отделов.
Важно отметить: чем выше уровень животного, тем сильнее власть самых высших отделов центральной нервной системы, "тем в большей степени высший отдел является распорядителем и распределителем деятельности организма" (И. П. Павлов).
У человека таким "распорядителем и распределителем" является кора больших полушарий головного мозга. Нет функций в организме, которые бы не поддавались решающему регулирующему влиянию коры.
3. АНАТОМИЯ ГОЛОВНОГО МОЗГА
Головной мозг расположен в черепной коробке и покрыт тремя оболочками. Мозг взрослого человека в среднем весит 1300-1350гр.
Головноймозг состоит:
1.из двух полушарий, соединенных между собой спайкой (мозолистое тело); 2.межуточного мозга (зрительные бугры и подбугровая область); 3.среднего мозга; 4.заднего мозга (мозжечок и варолиев мост); 5.продолговатого мозга;
Кратко остановимся на описании анатомии перечисленных выше отделов головного мозга.
Продолговатый мозг расположен в полости черепа на блюменбаховом скате. Книзу продолговатый мозг переходит непосредственно в спинной мозг. На передней поверхности продолговатого мозга имеется продольная щель, по сторонам которой расположены два возвышения в форме валиков - это пирамиды и оливы. На задней поверхности проходят продольная борозда и два задних канатика, которые являются продолжением задних столбов спинного мозга. В продолговатом мозге различают серое и белое вещество.
Задний мозг (варолиев мост и мозжечок). Варолиев мост располагается над продолговатым мозгом в виде утолщения. Боковые отделы моста постепенно суживаются и уходят под мозжечок – это ножки моста, они соединяют мост с мозжечком. На передней поверхности варолиева моста расположены пучки нервных волокон ,которые направляются к головному мозгу и переходят в ножки мозга .В глубине варолиева моста расположены ядра. В продолговатом мозгу и в мосту расположены также парасимпатические ядра, обуславливающие слюноотделение и жизненно важные функции (сердечно-сосудистый и дыхательный центры).
Мозжечок состоит из двух полушарий, соединенных между собой так называемым червячком. Мозжечок связан со среднем мозгом, с варолиевым мостом и продолговатым мозгом. Различают наружное серое вещество мозжечка - его кору и белое вещество, расположенное внутри.
ЛЕКЦИЯ 3. НЕРВНАЯ СИСТЕМА
Функции и общий план организации нервной системы
Значение нервной системы определяется ее способностью принимать, проводить и перерабатывать информацию, поступающую из внешней и внутренней среды. Благодаря такой способности нервная система:
1) обеспечивает взаимодействие между органами и системами органов,
2) регулирует и координирует их деятельность в соответствии с постоянно меняющимися условиями внешней и внутренней среды,
3) обеспечивает быструю и точную передачу информации,
4) отвечает за формирование ответной реакции на изменение условий внешней и внутренней среды,
5) обеспечивает реализацию высших психических функций – восприятие, запоминание, обучение, мышление, принятие решения и т.д.
Нервная система человека и животных может быть представлена как система нейронных цепочек, передающих возбуждающие и тормозные сигналы, т.е. как нервная сеть, которая включает в себя центральный и периферический отделы. Центральный отдел представлен головным и спинным мозгом, нейроны которых располагаются диффузно или образуют скопления - ядра.
Сложные функциональные объединения нейронов, расположенных в различных отделах ЦНС, согласованно участвующие в регуляции определенной функции или рефлекторной реакции, называют нервными центрами (дыхательный центр, сердечно-сосудистый центр, расположенные в продолговатом мозге).
Рис. 15. Типы глиальных клеток
Тем самым глиальные клетки, по всей видимости, астроциты защищают нейрон от излишней деполяризации.
Длинными отростками нейронов спинно-мозговых и черепно-мозговых ганглиев образованы нервы. Нервы – это пучки нервных волокон, окрытых сверху общей соединительно-тканной оболочкой, в которой имеются кровеносные сосуды. К периферическим нервам относятся: 12 пар черепномозговых нервов, иннервирующих в основном структуры головы и шеи, блуждающий нерв – внутренние органы, и 31 пара спинно-мозговых нервов, иннервирующих мускулатуру тела и конечностей.
Одни нервы несут информацию от рецепторов в ЦНС и называются афферентными или чувствительными, другие передают сигналы из ЦНС ко всем органам и системам и называются эфферентными или двигательными нервами. Большинство же периферических нервов смешанные, т.к. содержат и те, и другие волокна.
Нервная система условно подразделяется на два больших отдела – соматическую нервную систему и автономную (вегетативную) нервную систему. Соматическая нервная система осуществляет преимущественно связь организма с внешней средой, обеспечивая чувствительность и двигательную активность.
Автономная нервная система регулирует работу внутренних органов и
обеспечивает постоянство внутренней среды организма. Обе системы тесно связаны между собой, однако автономная нервная система обладает некоторой долей самостоятельности и не зависит от нашей воли, вследствие его ее и называют автономной.
Нейрон как структурная и функциональная единица ЦНС
Рис. 16. Схема строения нейрона (двигательный нейрон)
Функционально нейроны подразделяются на афферентные или чувст-
вительные, эфферентные или двигательные и вставочные или интернейроны.
Афферентные или чувствительные нейроны передают импульсы (возбуждение) от рецепторов в ЦНС. Обычно афферентный нейрон имеет длинный дендрит, который воспринимает информацию от рецептора или сам может являться рецептором (рис. 17, а), и второй отросток – аксон, входящий в спинной мозг. Тела афферентных нейронов расположены вне ЦНС – в спинно-мозговых и черепно-мозговых ганглиях.
Рис. 17. Афферентный (а) и вставочный (б) нейроны, в – электронная
фотография вставочного нейрона
Эфферентные или двигательные нейроны передают информацию из ЦНС к нижележащим отделам и рабочим органам – эффекторам. Такие нейроны имеют крупную сому с разветвленной сетью дендритов и длинный массивный аксон (рис. 16). Тела эфферентных нейронов располагаются в передних рогах спинного мозга или двигательных ядрах головного мозга.
Вставочные или интернейроны связывают нейроны между собой, в частности, осуществляют связь между афферентными и эфферентными нейронами. Это самые мелкие нейроны, отличающиеся мощным ветвлением дендритов, имеющих огромное количество выростов мембраны – шипиков, а также едва различимый аксон (рис. 17 а, б, в). Передача информации с одного нейрона на другой или с нейрона на эффекторную клетку (мышечную или секреторную) происходит через морфологически специализированные контакты – синапсы.
Дата добавления: 2018-10-26 ; просмотров: 961 ;
Методический материал по теме: "Физиология ЦНС" (дисциплина "Анатомия и физиология человека")
Скачать:
Вложение | Размер |
---|---|
lektsiya_fiziologiya_tsns.doc | 75 КБ |
Предварительный просмотр:
Основным принципом функционирования ЦНС является процесс регуляции, управления физиологическими функциями, которые направлены на поддержание постоянства свойств и состава внутренней среды организма. ЦНС обеспечивает оптимальные взаимоотношения организма с окружающей средой, устойчивость, целостность, оптимальный уровень жизнедеятельности организма.
Различают два основных вида регуляции: гуморальный и нервный.
Гуморальный процесс управления предусматривает изменение физиологической активности организма под влиянием химических веществ, которые доставляются жидкими средами организма. Источником передачи информации являются химические вещества – утилизоны, продукты метаболизма (углекислый газ, глюкоза, жирные кислоты), информоны, гормоны желез внутренней секреции, местные или тканевые гормоны.
Нервный процесс регуляции предусматривает управление изменения физиологических функций по нервным волокнам при помощи потенциала возбуждения под влиянием передачи информации.
1) является более поздним продуктом эволюции;
2) обеспечивает быструю регуляцию;
3) имеет точного адресата воздействия;
4) осуществляет экономичный способ регуляции;
5) обеспечивает высокую надежность передачи информации.
В организме нервный и гуморальный механизмы работают как единая система нейрогуморального управления. Это комбинированная форма, где одновременно используются два механизма управления, они взаимосвязаны и взаимообусловлены.
Нервная система представляет собой совокупность нервных клеток, или нейронов.
По локализации различают:
1) центральный отдел – головной и спинной мозг;
2) периферический – отростки нервных клеток головного и спинного мозга.
По функциональным особенностям различают:
1) соматический отдел, регулирующий двигательную активность;
2) вегетативный, регулирующий деятельность внутренних органов, желез внутренней секреции, сосудов, трофическую иннервацию мышц и самой ЦНС.
Функции нервной системы:
1) интегративно-коордиационная функция. Обеспечивает функции различных органов и физиологических систем, согласует их деятельность между собой;
2) обеспечение тесных связей организма человека с окружающей средой на биологическом и социальном уровнях;
3) регуляция уровня обменных процессов в различных органах и тканях, а также в самой себе;
4) обеспечение психической деятельности высшимие отделами ЦНС.
Нейрон. Особенности строения, значение, виды
Структурной и функциональной единицей нервной ткани является нервная клетка – нейрон .
Нейрон – специализированная клетка, которая способна принимать, кодировать, передавать и хранить информацию, устанавливать контакты с другими нейронами, организовывать ответную реакцию организма на раздражение.
Функционально в нейроне выделяют:
1) воспринимающую часть (дендриты и мембрану сомы нейрона);
2) интегративную часть (сому с аксоновым холмиком);
3) передающую часть (аксонный холмик с аксоном).
Мембрана сомы нейрона имеет толщину 6 нм и состоит из двух слоев липидных молекул. Гидрофильные концы этих молекул обращены в сторону водной фазы: один слой молекул обращен внутрь, другой – наружу. Гидрофильные концы повернуты друг к другу – внутрь мембраны. В двойной липидный слой мембраны встроены белки, которые выполняют несколько функций:
1) белки-насосы – перемещают в клетке ионы и молекулы против градиента концентрации;
2) белки, встроенные в каналы, обеспечивают избирательную проницаемость мембраны;
3) рецепторные белки осуществляют распознавание нужных молекул и их фиксацию на мембране;
4) ферменты облегчают протекание химической реакции на поверхности нейрона.
В некоторых случаях один и тот же белок может выполнять функции как рецептора, фермента, так и насоса.
Аксоновый холмик – место выхода аксона из нейрона.
Сома нейрона (тело нейрона) выполняет наряду с информационной и трофическую функцию относительно своих отростков и синапсов. Сома обеспечивает рост дендритов и аксонов. Сома нейрона заключена в многослойную мембрану, которая обеспечивает формирование и распространение электротонического потенциала к аксонному холмику.
Аксон – вырост цитоплазмы, приспособленный для проведения информации, которая собирается дендритами и перерабатывается в нейроне. Аксон дендритной клетки имеет постоянный диаметр и покрыт миелиновой оболочкой, которая образована из глии, у аксона разветвленные окончания, в которых находятся митохондрии и секреторные образования.
1) генерализация нервного импульса;
2) получение, хранение и передача информации;
3) способность суммировать возбуждающие и тормозящие сигналы (интегративная функция).
1) по локализации:
а) центральные (головной и спинной мозг);
б) периферические (мозговые ганглии, черепные нервы);
2) в зависимости от функции:
а) афферентные (чувствительные), несущие информацию от рецепторов в ЦНС;
б) вставочные (коннекторные), в элементарном случае обеспечивающие связь между афферентным и эфферентным нейронами;
– двигательные – передние рога спинного мозга;
– секреторные – боковые рога спинного мозга;
3) в зависимости от функций:
4) в зависимости от биохимических особенностей, от природы медиатора;
5) в зависимости от качества раздражителя, который воспринимается нейроном:
Рефлекторная дуга, ее компоненты, виды, функции
Деятельность организма – закономерная рефлекторная реакция на стимул. Рефлекс – реакция организма на раздражение рецепторов, которая осуществляется с участием ЦНС. Структурной основой рефлекса является рефлекторная дуга.
Рефлекторная дуга – последовательно соединенная цепочка нервных клеток, которая обеспечивает осуществление реакции, ответа на раздражение.
Рефлекторная дуга состоит из шести компонентов: рецепторов, афферентного (чувствительного) пути, рефлекторного центра, эфферентного (двигательного, секреторного) пути, эффектора (рабочего органа), обратной связи.
Рефлекторные дуги могут быть двух видов:
1) простые – моносинаптические рефлекторные дуги (рефлекторная дуга сухожильного рефлекса), состоящие из 2 нейронов (рецепторного (афферентного) и эффекторного), между ними имеется 1 синапс;
2) сложные – полисинаптические рефлекторные дуги. В их состав входят 3 нейрона (их может быть и больше) – рецепторный, один или несколько вставочных и эффекторный.
Представление о рефлекторной дуге как о целесообразном ответе организма диктует необходимость дополнить рефлекторную дугу еще одним звеном – петлей обратной связи. Этот компонент устанавливает связь между реализованным результатом рефлекторной реакции и нервным центром, который выдает исполнительные команды. При помощи этого компонента происходит трансформация открытой рефлекторной дуги в закрытую.
Особенности простой моносинаптической рефлекторной дуги:
1) территориально сближенные рецептор и эффектор;
2) рефлекторная дуга двухнейронная, моносинаптическая;
3) нервные волокна группы А? (70—120 м/с);
4) короткое время рефлекса;
5) мышцы, сокращающиеся по типу одиночного мышечного сокращения.
Особенности сложной моносинаптической рефлекторной дуги:
1) территориально разобщенные рецептор и эффектор;
2) рецепторная дуга трехнейронная (может быть и больше нейронов);
3) наличие нервных волокон группы С и В;
4) сокращение мышц по типу тетануса.
Особенности вегетативного рефлекса:
1) вставочный нейрон находится в боковых рогах;
2) от боковых рогов начинается преганглионарный нервный путь, после ганглия – постганглионарный;
3) эфферентный путь рефлекса вегетативной нервной дуги прерывается вегетативным ганглием, в котором лежит эфферентный нейрон.
Отличие симпатической нервной дуги от парасимпатической: у симпатической нервной дуги преганглионарный путь короткий, так как вегетативный ганглий лежит ближе к спинному мозгу, а постганглионарный путь длинный.
У парасимпатической дуги все наоборот: преганглионарный путь длинный, так как ганглий лежит близко к органу или в самом органе, а постганглионарный путь короткий.
Функциональные системы организма
Функциональная система – временное функциональное объединение нервных центров различных органов и систем организма для достижения конечного полезного результата.
Полезный результат – самообразующий фактор нервной системы. Результат действия представляет собой жизненно важный адаптивный показатель, который необходим для нормального функционирования организма.
Существует несколько групп конечных полезных результатов:
1) метаболическая – следствие обменных процессов на молекулярном уровне, которые создают необходимые для жизни вещества и конечные продукты;
2) гомеостатическая – постоянство показателей состояния и состава сред организма;
3) поведенческая – результат биологической потребности (половой, пищевой, питьевой);
4) социальная – удовлетворение социальных и духовных потребностей.
В состав функциональной системы включаются различные органы и системы, каждый из которых принимает активное участие в достижении полезного результата.
Функциональная система, по П. К. Анохину, включает в себя пять основных компонентов:
1) полезный приспособительный результат – то, ради чего создается функциональная система;
2) аппарат контроля (акцептор результата) – группу нервных клеток, в которых формируется модель будущего результата;
3) обратную афферентацию (поставляет информацию от рецептора в центральное звено функциональной системы) – вторичные афферентные нервные импульсы, которые идут в акцептор результата действия для оценки конечного результата;
4) аппарат управления (центральное звено) – функциональное объединение нервных центров с эндокринной системой;
5) исполнительные компоненты (аппарат реакции) – это органы и физиологические системы организма (вегетативная, эндокринные, соматические). Состоит из четырех компонентов:
а) внутренних органов;
б) желез внутренней секреции;
в) скелетных мышц;
г) поведенческих реакций.
Свойства функциональной системы:
1) динамичность. В функциональную систему могут включаться дополнительные органы и системы, что зависит от сложности сложившейся ситуации;
2) способность к саморегуляции. При отклонении регулируемой величины или конечного полезного результата от оптимальной величины происходит ряд реакций самопроизвольного комплекса, что возвращает показатели на оптимальный уровень. Саморегуляция осуществляется при наличии обратной связи.
В организме работает одновременно несколько функциональных систем. Они находятся в непрерывном взаимодействии, которое подчиняется определенным принципам:
1) принципу системы генеза. Происходят избирательное созревание и эволюция функциональных систем (функциональные системы кровообращения, дыхания, питания, созревают и развиваются раньше других);
2) принципу многосвязного взаимодействия. Происходит обобщение деятельности различных функциональных систем, направленное на достижение многокомпонентного результата (параметры гомеостаза);
3) принципу иерархии. Функциональные системы выстраиваются в определенный ряд в соответствии со своей значимостью (функциональная система целостности ткани, функциональная система питания, функциональная система воспроизведения и т. д.);
4) принципу последовательного динамического взаимодействия. Осуществляется четкая последовательность смены деятельности одной функциональной системы другой.
Координационная деятельность ЦНС
Координационная деятельность (КД) ЦНС представляет собой согласованную работу нейронов ЦНС, основанную на взаимодействии нейронов между собой.
1) обеспечивает четкое выполнение определенных функций, рефлексов;
2) обеспечивает последовательное включение в работу различных нервных центров для обеспечения сложных форм деятельности;
3) обеспечивает согласованную работу различных нервных центров (при акте глотания в момент глотания задерживается дыхание, при возбуждении центра глотания тормозится центр дыхания).
Основные принципы КД ЦНС и их нейронные механизмы.
1. Принцип иррадиации (распространения). При возбуждении небольших групп нейронов возбуждение распространяется на значительное количество нейронов. Иррадиация объясняется:
1) наличием ветвистых окончаний аксонов и дендритов, за счет разветвлений импульсы распространяются на большое количество нейронов;
2) наличием вставочных нейронов в ЦНС, которые обеспечивают передачу импульсов от клетки к клетке. Иррадиация имеет границы, которая обеспечивается тормозным нейроном.
2. Принцип конвергенции. При возбуждении большого количества нейронов возбуждение может сходиться к одной группе нервных клеток.
3. Принцип реципрокности – согласованная работа нервных центров, особенно у противоположных рефлексов (сгибание, разгибание и т. д.).
4. Принцип доминанты.
Доминанта – господствующий очаг возбуждения в ЦНС в данный момент. Это очаг стойкого, неколеблющегося, нераспространяющегося возбуждения. Он имеет определенные свойства: подавляет активность других нервных центров, имеет повышенную возбудимость, притягивает нервные импульсы из других очагов, суммирует нервные импульсы. Очаги доминанты бывают двух видов: экзогенного происхождения (вызванные факторами внешней среды) и эндогенными (вызванные факторами внутренней среды). Доминанта лежит в основе формирования условного рефлекса.
5. Принцип обратной связи. Обратная связь – поток импульсов в нервную систему, который информирует ЦНС о том, как осуществляется ответная реакция, достаточна она или нет. Различают два вида обратной связи:
1) положительная обратная связь, вызывающая усиление ответной реакции со стороны нервной системы. Лежит в основе порочного круга, который приводит к развитию заболеваний;
2) отрицательная обратная связь, снижающая активность нейронов ЦНС и ответную реакцию. Лежит в основе саморегуляции.
6. Принцип субординации. В ЦНС существует определенная подчиненность отделов друг другу, высшим отделом является кора головного мозга.
7. Принцип взаимодействия процессов возбуждения и торможения. ЦНС координирует процессы возбуждения и торможения:
оба процесса способны к конвергенции, процесс возбуждения и в меньшей степени торможения способны к иррадиации. Торможение и возбуждение связаны индукционными взаимоотношениями. Процесс возбуждения индуцирует торможение, и наоборот. Различаются два вида индукции:
1) последовательная. Процесс возбуждения и торможения сменяют друг друга по времени;
2) взаимная. Одновременно существует два процесса – возбуждения и торможения. Взаимная индукция осуществляется путем положительной и отрицательной взаимной индукции: если в группе нейронов возникает торможение, то вокруг него возникают очаги возбуждения (положительная взаимная индукция), и наоборот.
По определению И. П. Павлова, возбуждение и торможение – это две стороны одного и того же процесса. Координационная деятельность ЦНС обеспечивает четкое взаимодействие между отдельными нервными клетками и отдельными группами нервных клеток. Выделяют три уровня интеграции.
Первый уровень обеспечивается за счет того, что на теле одного нейрона могут сходиться импульсы от разных нейронов, в результате происходит или суммирование, или снижение возбуждения.
Второй уровень обеспечивает взаимодействиями между отдельными группами клеток.
Третий уровень обеспечивается клетками коры головного мозга, которые способствуют более совершенному уровню приспособления деятельности ЦНС к потребностям организма.
Виды торможения, взаимодействие процессов возбуждения и торможения в ЦНС. Опыт И. М. Сеченова
Торможение – активный процесс, возникающий при действии раздражителей на ткань, проявляется в подавлении другого возбуждения, функционального отправления ткани нет.
Торможение может развиваться только в форме локального ответа.
Выделяют два типа торможения :
1) первичное. Для его возникновения необходимо наличие специальных тормозных нейронов. Торможение возникает первично без предшествующего возбуждения под воздействием тормозного медиатора. Различают два вида первичного торможения:
а) пресинаптическое в аксо-аксональном синапсе;
б) постсинаптическое в аксодендрическом синапсе.
2) вторичное. Не требует специальных тормозных структур, возникает в результате изменения функциональной активности обычных возбудимых структур, всегда связано с процессом возбуждения. Виды вторичного торможения:
а) запредельное, возникающее при большом потоке информации, поступающей в клетку. Поток информации лежит за пределами работоспособности нейрона;
б) пессимальное, возникающее при высокой частоте раздражения;
в) парабиотическое, возникающее при сильно и длительно действующем раздражении;
г) торможение вслед за возбуждением, возникающее вследствие снижения функционального состояния нейронов после возбуждения;
д) торможение по принципу отрицательной индукции;
е) торможение условных рефлексов.
Процессы возбуждения и торможения тесно связаны между собой, протекают одновременно и являются различными проявлениями единого процесса. Очаги возбуждения и торможения подвижны, охватывают большие или меньшие области нейронных популяций и могут быть более или менее выраженными. Возбуждение непременно сменяется торможением, и наоборот, т. е. между торможением и возбуждением существуют индукционные отношения.
Торможение лежит в основе координации движений, обеспечивает защиту центральных нейронов от перевозбуждения. Торможение в ЦНС может возникать при одновременном поступлении в спинной мозг нервных импульсов различной силы с нескольких раздражителей. Более сильное раздражение тормозит рефлексы, которые должны были наступать в ответ на более слабые.
В 1862 г. И. М. Сеченов открыл явление центрального торможения. Он доказал в своем опыте, что раздражение кристалликом хлорида натрия зрительных бугров лягушки (большие полушария головного мозга удалены) вызывает торможение рефлексов спинного мозга. После устранения раздражителя рефлекторная деятельность спинного мозга восстанавливалась. Результат этого опыта позволил И. М. Сеченому сделать заключение, что в ЦНС наряду с процессом возбуждения развивается процесс торможения, который способен угнетать рефлекторные акты организма. Н. Е. Введенский высказал предположение, что в основе явления торможения лежит принцип отрицательной индукции: более возбудимый участок в ЦНС тормозит активность менее возбудимых участков.
Современная трактовка опыта И. М. Сеченова (И. М. Сеченов раздражал ретикулярную формацию ствола мозга): возбуждение ретикулярной формации повышает активность тормозных нейронов спинного мозга – клеток Реншоу, что приводит к торможению мотонейронов спинного мозга и угнетает рефлекторную деятельность спинного мозга.
Читайте также: