Электромагнитные импульсы в нервной системе
Кандидат биологических наук Л. Чайлахян, научный сотрудник Института биофизики АН СССР
Велика и заманчива цель, но неимоверно сложен объект исследования. Шутка сказать, этот килограмм ткани представляет собой сложнейшую систему связи десятков миллиардов нервных клеток.
Однако первый существенный шаг к познанию работы мозга уже сделан. Может быть, он один из самых легких, но он чрезвычайно важен для всего дальнейшего.
Я имею в виду исследование механизма передачи нервных импульсов — сигналов, бегущих по нервам, как по проводам. Именно эти сигналы являются той азбукой мозга, с помощью которой органы чувств посылают в центральную нервную систему сведения-депеши о событиях во внешнем мире. Нервными импульсами зашифровывает мозг свои приказы мышцам и различным внутренним органам. Наконец, на языке этих сигналов говорят между собой отдельные нервные клетки и нервные центры.
В проблеме изучения механизма нервного импульса и его распространения можно выделить два основных вопроса: природа проведения нервного импульса или возбуждения в пределах одной клетки — по волокну и механизм передачи нервного импульса от клетки к клетке — через синапсы.
Какова природа сигналов, передающихся от клетки к клетка по нервным волокнам?
Этой проблемой человек интересовался уже давно, Декарт предполагал, что распространение сигнала связано с переливанием жидкости по нервам, как по трубкам. Ньютон думал, что это чисто механический процесс. Когда появилась электромагнитная теория, ученые решили, что нервный импульс аналогичен движению тока по проводнику со скоростью, близкой к скорости распространения электромагнитных колебаний. Наконец, с развитием биохимии появилась точка зрения, что движение нервного импульса — это распространение вдоль по нервному волокну особой биохимической реакции.
И всё же ни одно из этих представлений не оправдалось.
В настоящее время природа нервного импульса раскрыта: это удивительно тонкий электрохимический процесс, в основе которого лежит перемещение ионов через оболочку клетки.
Большой вклад в раскрытие этой природы внесли работы трех ученых: Алана Ходжкина, профессора биофизики Кембриджского университета; Эндрью Хаксли, профессора физиологии Лондонского университета, и Джона Экклса, профессора физиологии австралийского университета в Канберре. Им присуждена Нобелевская премия в области медицины за 1963 год,
Впервые предположение об электрохимической природе нервного импульса высказал известный немецкий физиолог Бернштейн в начале нашего столетия.
К началу двадцатого века было довольно многое известно о нервном возбуждении. Ученые уже знали, что нервное волокно можно возбудить электрическим током, причем возбуждение всегда возникает под катодом — под минусом. Было известно, что возбужденная область нерва заряжается отрицательно по отношению к невозбужденному участку. Было установлено, что нервный импульс в каждой точке длится всего 0,001—0,002 секунды, что величина возбуждения не зависит от силы раздражения, как громкость звонка в нашей квартире не зависит от того, как сильно мы нажимаем на кнопку. Наконец, ученые установили, что носителями электрического тока в живых тканях являются ионы; причем внутри клетки основной электролит — соли калия, а в тканевой жидкости — соли натрия. Внутри большинства клеток концентрация ионов калия в 30—50 раз больше, чем в крови и в межклеточной жидкости, омывающей клетки.
И вот на основании всех этих данных Бернштейн предположил, что оболочка нервных и мышечных клеток представляет собой особую полупроницаемую мембрану. Она проницаема только для ионов К + ; для всех остальных ионов, в том числе и для находящихся внутри клетки отрицательно заряженных анионов, путь закрыт. Ясно, что калий по законам диффузии будет стремиться выйти из клетки, в клетке возникает избыток анионов, и по обе стороны мембраны появится разность потенциалов: снаружи — плюс (избыток катионов), внутри — минус (избыток анионов). Эта разность потенциалов получила название потенциала покоя. Таким образом, в покое, в невозбужденном состоянии внутренняя часть клетки всегда заряжена отрицательно по сравнению с наружным раствором.
Бернштейн предположил, что в момент возбуждения нервного волокна происходят структурные изменения поверхностной мембраны, ее поры как бы увеличиваются, и она становится проницаемой для всех ионов. При этом, естественно, разность потенциалов исчезает. Это и вызывает нервный сигнал.
Мембранная теория Бернштейма быстро завоевала признание и просуществовала свыше 40 лет, вплоть до середины нашего столетия.
Но уже в конце 30-х годов теория Бернштейна встретилась с непреодолимыми противоречиями. Сильный удар ей был нанесен в 1939 году тонкими экспериментами Ходжкина и Хаксли. Эти ученые впервые измерили абсолютные величины мембранного потенциала нервного волокна в покое и при возбуждении. Оказалось, что при возбуждении мембранный потенциал не просто уменьшался до нуля, а переходил через ноль на несколько десятков милливольт. То есть внутренняя часть волокна из отрицательной становилась положительной.
Но мало ниспровергнуть теорию, надо заменить ее другой: наука не терпит вакуума. И Ходжкин, Хаксли, Катц в 1949—1953 годах предлагают новую теорию. Она получает название натриевой.
Здесь читатель вправе удивиться: до сих пор о натрии не было речи. В этом все и дело. Ученые установили с помощью меченых атомов, что в передаче нервного импульса замешаны не только ионы калия и анионы, но и ионы натрия и хлора.
В организме достаточно ионов натрия и хлора, все знают, что кровь соленая на вкус. Причем натрия в межклеточной жидкости в 5—10 раз больше, чем внутри нервного волокна.
Что же это может означать? Ученые предположили, что при возбуждении в первый момент резко увеличивается проницаемость мембраны только для натрия. Проницаемость становится в десятки раз больше, чем для ионов калия. А так как натрия снаружи в 5—10 рез больше, чем внутри, то он будет стремиться войти в нервное волокно. И тогда внутренняя часть волокна станет положительной.
А через какое-то время — после возбуждения — равновесие восстанавливается: мембрана начинает пропускать и ионы калия. И они выходят наружу. Тем самым они компенсируют тот положительный заряд, который был внесен внутрь волокна ионами натрия.
Совсем нелегко было прийти к таким представлениям. И вот почему: диаметр иона натрия в растворе раза в полтора больше диаметра ионов калия и хлора. И совершенно непонятно, каким образом больший по размеру ион проходит там, где не может пройти меньший.
Нужно было решительно изменить взгляд на механизм перехода ионов через мембраны. Ясно, что только рассуждениями о порах в мембране здесь не обойтись. И тогда была высказана идея, что ионы могут пересекать мембрану совершенно другим способом, с помощью тайных до поры до времени союзников — особых органических молекул-переносчиков, спрятанных в самой мембране. С помощью такой молекулы ионы могут пересекать мембрану в любом месте, а не только через поры. Причем эти молекулы-такси хорошо различают своих пассажиров, они не путают ионы натрия с ионами калия.
Интересно, что нервные волокна тратят на свою основную работу — проведение нервных импульсов — всего около 15 минут в сутки. Однако готовы к этому волокна в любую секунду: все элементы нервного волокна работают без перерыва — 24 часа в сутки. Нервные волокна в этом смысле подобны самолетам-перехватчикам, у которых непрерывно работают моторы для мгновенного вылета, однако сам вылет может состояться лишь раз в несколько месяцев.
Мы познакомились сейчас с первой половиной таинственного акта прохождения нервного импульса — вдоль одного волокна. А как же передается возбуждение от клетки к клетке, через места стыков — синапсы. Этот вопрос был исследован в блестящих опытах третьего нобелевского лауреата, Джона Экклса.
Возбуждение не может непосредственно перейти с нервных окончаний одной клетки на тело или дендриты другой клетки. Практически весь ток вытекает через синаптическую щель в наружную жидкость, и в соседнюю клетку через синапс попадает ничтожная его доля, неспособная вызвать возбуждение. Таким образом, в области синапсов электрическая непрерывность в распространении нервного импульса нарушается. Здесь, на стыке двух клеток, в силу вступает совершенно другой механизм.
Когда возбуждение подходит к окончанию клетки, к месту синапса, в межклеточную жидкость выделяются физиологически активные вещества — медиаторы, или посредники. Они становятся связующим звеном в передаче информации от клетки к клетке. Медиатор химически взаимодействует со второй нервной клеткой, изменяет ионную проницаемость ее мембраны — как бы пробивает брешь, в которую устремляются многие ионы, в том числе и ионы натрия.
Итак, благодаря работам Ходжкина, Хаксли и Экклса важнейшие состояния нервной клетки — возбуждение и торможение — можно описать в терминах ионных процессов, в терминах структурно-химических перестроек поверхностных мембран. На основании этих работ уже можно делать предположения о возможных механизмах кратковременной и долговременной памяти, о пластических свойствах нервной ткани. Однако это разговор о механизмах в пределах одной или нескольких клеток. Это лишь, азбука мозга. По-видимому, следующий этап, возможно, гораздо более трудный, — вскрытие законов, по которым строится координирующая деятельность тысяч нервных клеток, распознание языка, на котором говорят между собой нервные центры.
Мы сейчас в познании работы мозга находимся на уровне ребенка, который узнал буквы алфавита, но не умеет связывать их в слова. Однако недалеко время, когда ученые с помощью кода — элементарных биохимических актов, происходящих в нервной клетке, прочтут увлекательнейший диалог между нервными центрами мозга.
Детальное описание иллюстраций
Здравствуйте, уважаемое сообщество Geektimes! Идея взаимодействия нейронов не только через физические связи (синапсы, эфапсы), но и посредством электрических полей, давно не нова, но какой характер и значение этих взаимодействий?
Прямых исследований на указанную тему немного, это связанно с тем, что требуется трудоемкая работа по регистрации изменений в нейронах под действием внешних электрических полей. К примеру, эксперимент, проведенный нейрофизиологами из Калифорнийского Технологического института (C.A. Anastassiou, R. Perin, H. Markram, C. Koch (2011) Ephaptic communication in cortical neurons. — Nature Neuroscience [Abstract], [PDF]), показал, что внеклеточные электрические поля, генерируемые нейронами, изменяют характеристики потенциалов действия других нейронов.
Не смотря на то, что нейрон имеет множество контактов с клетками соседями, радиус его действия ограничен в сравнении с масштабами нервной системы в целом. Становится не ясным, как происходит коммутация нейронов при формировании простых условных рефлексов, поскольку расстояния между различными представительствами тех или иных рефлексов можно насчитывать до сотни миллиметров.
Если следовать Павловским идеям, то каждый активированный нейрон должен определять, в каком направлении существует наиболее сильный очаг возбуждения и, в последствии, передать в нужном направлении возбуждение. Нейрон может запомнить данное направление и использовать его в дальнейшем. Здесь нейрон представлен в виде некоторого коммутатора. Сеть таких коммутаторов формирует рефлекторную дугу, подобно электрической цепи которая может формироваться, укрепляться, перестраиваться и разрушаться. Конечно, функции сумматора сохраняются за нейроном, что расширяет возможности такой самоорганизованной системы.
Для проверки гипотезы мной разработана модель, в которой нейрон подобно клеточному автомату, проводит свои внутренние вычисления независимо от системы, только на основе собранной информации. Во-первых, при получении возбуждения нейроном его переменная q (заряд) начинает сменятся с частотой 0,01с в зависимости от заданного массива чисел характеризующих закон изменения заряда на поверхности его мембраны. Всего шестнадцать значений, после чего нейрон на некоторый короткий промежуток времени не реагирует на раздражение.
Для демонстрации представим четыре варианта закона изменения заряда, главным образом отличающиеся значением отрицательного следового потенциала. Считается, что следовые потенциалы являются лишь следствием реполяризации нейрона. В своих работах над моделями я пришел к выводу, что следовый потенциал имеет важное значения для коммуникации нейронов.
Во-вторых, через 0,05с после активации нейрон определяет направление передачи возбуждения и передает его. Для определения вектора направления логичней всего применить закон Кулона, но микромир клеток не так прост и никто не исключает наличие органоида у нейрона способного усиливать сигналы других активных нейронов. Поэтому в демонстрации представим три правила определения вектора направления:
Первое правило — это воплощение закона Кулона, вектор направления определятся, как сумма векторов взаимодействия с каждым другим активным нейроном. Вектора взаимодействия — это произведение заряда нейрона на единичный вектор, поделенное на квадрат расстояния между нейронами. Второе правило аналогичное, но с учетом обратной пропорциональности расстояния. И третий закон без учёта расстояния между нейронами.
Далее, осуществляется передача сигнала всем нейронам в направлении определенного вектора направления с учётом радиуса действия нейрона, его фокуса, который равен 90 градусов.
Если в направлении вектора не окажется нейронов, то создастся новый нейрон и ему будет передаваться возбуждение. Динамическое создание нейронов имеет здесь техническое значение, это делает работу модели более наглядной, упрощает просчет её работы.
Буду признателен за помощь в сборе информации подтверждающей идеи, изложенных в указанной статье и конструктивной критике.
- Как вывести сюда мое сообщество?
- -->Психосоматика - наше здоровье -->
- -->Анато́лий Сердюко́в - пробный оселок нашей власти -->
- -->Мужчина и женщина: наша жизнь, отношения и ВООБЩЕ. Истинное сообщество равных. -->
Мозг человека, электромагнитное излучение, раскрываем загадки
Мозг, пожалуй, самый загадочный орган в нашем теле. Ученые до сих пор не все знают о его возможностях и скрытых резервах.
Мозг работает по принципу электрической цепи, посылая импульсы по нервным волокнам таким же образом, как ток идет по проводам. Подобные волокна могут достигать метра.
Однако область, покрытая частью нерва, контролирующего передачу сообщений, не больше ширины человеческого волоса.
Мозг человека так же излучает электромагнитные импульсы очень малой интенсивности. Их частота измеряется в циклах в секунду, или в Герцах, и находятся в диапазоне от 0 до 30 Гц.
“ Каждую минуту десятки тысяч электрических импульсов передают сообщения между нервными клетками в нашем мозге. Выявление белков, инициирующих эти импульсы, поможет нам разгадать, как работает мозг”,-
утверждает доктор Мэтью Нолан из университетского Центра по Интегративной Физиологии.
Выделяют пять основных групп этих волн
Дельта-волны (0,5-4 Гц, амплитуда 50-500 мкВ): Появляются в период глубокого сна, транса, гипноза.
Такие колебания обычно преобладают, когда мы находимся либо в сонном, либо в бессознательном состоянии, но некоторые могут находиться в дельта-диапазоне и в сознательном состоянии.
Тета-волны (4-7 Гц, амплитуда 10-30 мкВ): Возникают во время сна, глубокой релаксации и медитации. Увеличивают способности памяти, фокусировку внимания, стимулируют фантазию, способствуют ярким снам.
Некоторые люди отмечают, что полчаса тета-волн в день заменяют 4 часа обычного сна. И именно этот уровень работы мозга мы связываем с интуицией.
Часто оно сопровождается видением неожиданных, сноподобных образов и открывает доступ к бессознательной части ума.
Тренировка мозга в тета-диапазоне значительно увеличивает творческие способности человека, способность его к обучению. Также значительно снижается потребность в алкоголе и наркотиках.
Альфа-волны (8-13 Гц, амплитуда 30-60 мкВ): Фиксируются в состоянии, пограничном между сном и пробуждением, медитации, вызывают положительные эмоции, чувство комфорта и гармонии. Характерны для состояния неглубокого расслабления.
У людей имеющих пониженный уровень активности альфа-ритмов обычно нарушается способность к полноценному отдыху, это вызывается сильным стрессом. Поэтому стимуляция в альфа-диапазоне рекомендуется для помощи в преодолении стрессовых состояний.
Бета-волны (13-30 Гц, амплитуда 3-10 мкВ): Возникают в активном, бодром состоянии. Настороженность, быстрое мышление, тревога. Высокая активность бета-волн всегда соответствует большому выделению стресс-гормонов.
Преобладают в обычном бодрствующем состоянии, когда мы с открытыми глазами наблюдаем мир вокруг себя, или сосредоточены на решении каких-то текущих проблем.
Бета-волны обычно связаны с бодрствованием, пробужденностью, сосредоточенностью, познанием и, в случае их избытка, — с беспокойством, страхом и паникой.
Недостаток бета волн связан с депрессией, плохим избирательным вниманием и проблемами с запоминанием информации. Стимуляция мозга в бета-диапазоне позволяет избавиться от депрессивных состояний, повысить уровень осознанности, внимания и кратковременной памяти.
Их существование на данный момент является спорным вопросом.
Они характерны для состояний, которые достигаются при применении некоторых йогических техник и медитаций. Мозг человека с трудом поддается воздействию в этом диапазоне.
Даже когда мы бодрствуем, наш мозг периодически погружается в альфа — и тета -ритм на короткое время. Например, если вы, забивая гвоздь, случайно угодили по пальцу, ваш мозг на короткое время впадает в тета-ритм, чтобы почувствовать и запомнить боль…
Или, например, вы пытаетесь что-то припомнить и обращаете задумчивый взор в пространство. Сами того не подозревая, вы настраиваете свой мозг на альфа-ритм, в котором лучше всего происходит запоминание и воспроизведение абстрактных знаний.
Наблюдается, например, любопытное совпадение между частотой альфа-волн и периодом инерции зрительного восприятия (примерно 0.1 секунды).
В состоянии альфа волн происходит:
чувство умиротворения
улучшение академической успеваемости
тепло в конечностях
повышенную производительность на рабочем месте
ощущение благополучия
снижение тревожности, улучшение сна
улучшение иммунной функции.
Характер альфа-ритма сугубо индивидуален. У большинства людей, имеющих четко выраженный альфа-ритм, преобладает способность к абстрактному мышлению. У незначительной группы испытуемых обнаруживается полное отсутствие альфа-ритмов даже при закрытых глазах.
Эти люди свободно мыслят зрительными образами, однако испытывают трудности в решении проблем абстрактного характера.
«Человеческий мозг работает с весьма низким коэффициентом полезного действия: он использует всего 3-4 процента своих предельных возможностей. Очевидно, что остальные 96-97 процентов могут содержать неожиданные тайны, невиданные возможности человека.
Известно также, что зона максимально ясного сознания в психической деятельности сравнительно невелика: на сознательном уровне перерабатывается 10Е2 бит информации в секунду, на бессознательном — 10Е9″.
В основе нашей жизни лежит энергия и ее свойства: амплитуда, частота и скорость колебания энергии. Каждый из нас является определенным передатчиком, и источником этих колебаний. Наше тело является электрической системой и все мы вибрируем на нашей собственной уникальной частоте. Это вибрационные излучения тела \ неслышимые ухом шумовые \звуковые \ колебания до 20 Гц \1\. Это результат действия совокупности собственных физических полей человека, определяемых процессами, происходящими внутри него.
Организм человека — сложная электромагнитная система, генерирующая биотоки, а также электрические и магнитные и другие физические поля, которые называются собственными физическими полями организма человека. Это внешние физические поля человека, являющиеся отражением его внутринних физических полей. Источниками внутренних физических полей \электрических и магнитных \ являются электрические импульсы клеток организма и постоянно текущие биотоки.
Постоянно текущие в организме биотоки — ионные потоки, плотность которых в значительной степени зависит от психологического и физического состояния организма. Ионные токи — источник напряженности электромагнитных полей на поверхности кожи, в каждом органе, клетке.
Плотность тока, а соответственно и напряженность электромагнитного поля являются с одной стороны источником информации о физическом и психологическом состоянии организма, с другой — импульсом к физиологическому действию того или иного органа.
Основными движущими силами, приводящими в движение ионы, а следовательно ответственными за появление биотоков, являются ионные насосы и ритмическая работа сердца.
Основные проводники биотоков — особые каналы, обладающие низким электрическим сопротивлением человеческого тела.
Такими каналами в живом организме являются центральная нервная система и сердечно-сосудистая система.
Кровь в движении — движение электрических зарядов, электрический ток. Любой ток, в том числе и в живых тканях создает вокруг себя электромагнитное поле.
Нервная система представляет собой единую сложную электрическую цепь. Нервные импульсы — импульсы электрического тока. Они порождают электромагнитные поля, регистрируемые как на теле человека, так и на удалении от него. Эти поля отражают характер электрического тока того органа,который их породил. Поэтому сердце имеет свое электромагнитное поле, печень свое и т. д. Кроме того каждой функции любого органа присуще свое электромагнитное поле.
Величина силового магнитного поля, создаваемого вокруг живых тканей зависит от электрического потенциала биологических клеток этих тканей.
Различают потенциал покоя и потенциал действия.
Потенциал покоя — потенциал наблюдаемый в состоянии покоя мембран клеток биологических тканей.
Потенциал действия \ электрический импульс, электрический ток\ - быстрый рост мембранного потенциала во время возбуждения биологических тканей и проводящей системы импульсов.
Электрический потенциал изменяется во времени, в результате чего изменяется и силовое поле вокруг органа, обладающего данным потенциалом.
Зависимость электрического потенциала или ткани от времени называется электрограммой, а диагностический метод исследования — электрографией
Электрографический метод находит свое применение для диагностики целого ряда органов: сердца, головного мозга и др.
Эти силовые потенциалы фиксируются и на определенном расстоянии от человеческого тела. Причем их величина по мере удаления от человеческого тела постоянно уменьшается.
Силовые линии электромагнитных полей, фиксируемые вокруг тела человека, носят название биополе.
В научных трудах ученых биофизиков, биологов, неврологов уделяется значительное внимание теоретическим и практическим вопросам биоэлектрического потенциала, электромагнитного поля, торсионного поля. Однако отсутствует единое представление, единая картина, объединяющая все эти явления.
В данной работе делается попытка представить человека целостной электромагнитной системой, отражающей внутренние электрические и физиологические процессы.
Электрический ток в организме человека.
Электрический ток в организме человека — постоянный поток ионов, электрических импульсов, постоянное перемещение ионов между внутренней и внешней сторонами мембраны.
Достигается это благодаря обладанию мембраной потенции, \ электрическим потенциалом\.
Электрический потенциал — возможности мембраны по перемещению электрических зарядов. В роли зарядов выступают заряженные химические частицы — ионы натрия и калия а также кальция и хлора. Из них только ионы хлора заряжены отрицательно \ -\, а остальные — положительно \ +\.
Обладая электрическим потенциалом, мембрана перемещает в клетку и из клетки с помощью ионных насосов указанные выше ионы.
В электрическом отношении клеточная мембрана представляет собой оболочку, обладающую разной проницаемостью для разных ионов. В невозбужденной клетке мембрана более проницаема для К+,и Сl. Поэтому ионы К+ в силу концентрационного градиента стремятся выйти из клетки, перенося свой положительный заряд во внеклеточную среду. Ионы Cl, наоборот, входят внутрь клетки, увеличивая тем самым отрицательный заряд внутриклеточной жидкости. Такое перемещение приводит к поляризации клеточной мембраны невозбужденной клетки. Наружная ее поверхность становится положительной, а внутренняя — отрицательной. В этом положении микроэлектроды регистрируют так называемый трансмембранный потенциал покоя \ ТМПП\, имеющий отрицательную величину\ -90мВ \2 с.7\.
При возбуждении клетки резко увеличивается проницаемость мембраны клетки для ионов Na, которые быстро устремляются внутрь клетки. При этом меняется заряд мембраны. Внутренняя поверхность становится положительной, а наружная -отрицательной. При этом наблюдается потенциал действия, достигающий +20мВ. Т.е. потенциал изменяется от -90мВ до +20мВ.\2с.7\. Для того, чтобы каналы оказались прозрачными для ионов натрия, достаточно уменьшить напряжение на 20 мВ. С учетом электропроводности и структуры нервных тканей этому состоянию соответствует усредненное состояние электрического поля 40В\м и плотность тока
Согласно многочисленным исследованиям воздействия электромагнитных полей на человека неопасной считается плотность тока в организме человека около 10мА\м2,что соответствует при частоте 50Гц напряженности внешних полей 20кВ\м и 4кА\м \3\.
Любая клетка организма, его отдельные органы или организм в целом могут находится в двух физиологических состояниях - физиологическом покое и активном, деятельном состоянии.
В состоянии физиологического покоя между содержимым клетки и внеклеточной жидкостью существует разность потенциалов которая именуется мембранным потенциалом \ МП \ или потенциалом покоя \ ПП \.
В состоянии покоя внутри клетки регистрируется отрицательный заряд. В скелетной клетке он составляет - 90 мВ, в гладко - мышечной около -30мВ, в нервной — от -40 до -90мВ, в секреторной — 20мВ\ 25 с. 53 55\. В скелетной мышце -60 - -90мВ, сердечной мышце - -80 - -90мВ. \4\.
Активность клетки связана с возникновением потенциала действия. В результате чего заряд мембраны меняется на противоположный +30 мВ. После этого происходит возврат уровня потенциала к исходному. Учитывая что уровень МП,к примеру, в крупных нейронах — около -90мВ, размах пика ПД в них составляет 120мВ, длительность процессов характеризующих ПД — около 1мс. Т.е. электрический импульс в нейроне составляет 120мВ., а его продолжительность 1мс.
Первоисточником электрических импульсов в живом организме человека являются
- атипичные кардиомиоциты \ клетки \ синусового узла сердца,
- клетка \нейрон\ центральной нервной системы,
- нейронная активность глаза.
Мембранный потенциал покоя сердечной клетки составляет — 90мВ, а мембранный потенциал действия -+ 20 мВ \2 с. 7-8 \
Размах пика ПД сердечной мышцы — 110мВ.
Потенциал покоя нейрона головного мозга составляет -70мВ. ,а потенциал действия - + 55мВ, абсолютная амплитуда — 125мВ.\5с. 34\. Собственная частота колебаний головного мозга — 72 — 90 Гц.\6\.
На поверхности тела величина потенциала достигает 03-1В.
Если все электричество, которое вырабатывается живыми тканями человеческого организма на протяжении суток принять за 100%, то 50% этого количества вырабатывается сердцем, 40% мозгом и только 10% органами чувств.
Если человек перенес сильную травму, тогда болевые рецепторы могут вырабатывать до 90% всего количества электрических импульсов, вырабатываемых человеком за сутки.
Как показали исследования, внутренние органы и ткани человеческого организма поглощают около 5% поступающей к ним энергии биотоков. Остальные 95% электричества поступает и сосредоточивается на акупунктурных точках.
Наибольшее количество электричества усваивает сердце — 7%, поперечно полосатая мускулатура \бицепс\ - 6%, желудок — 5%, мозг — 4%, кишечник — 3%, печень и почки — 2%,легкие — 2%, гладкая мускулатура — 1%,кости — 025% \7\.
Основное назначение тока \электрических импульсов\ возникающих в организме человека:
- сокращение сердечной мышцы \импульсы клеток сердца\,
- выработка и передача нервных импульсов \нейронов\.
Перераспределение электрических зарядов на мембране и изменение электрических потенциалов лежат в основе работы нейрона с нервными импульсами\8\.
Источники сердечного импульса.
Эксперименты показывают, что сердечный импульс возникает спонтанно в сино — артериальном узле — деликатной части нервно - мускульной ткани, расположенной в мышечной стенке правого предсердия, самой маленькой камере сердца Этот крошечный островок обладает замечательным и уникальным свойством — спонтанно генерировать свои собственные врожденные электрические импульсы \ 9\.
Синусовый узел — группа специализированных клеток ,расположенных в стенке правого предсердия впереди от отверстия верхней полой вены. Мембрана этих клеток характеризуется повышенной проницаемостью для натрия и кальция. Медленный ток натрия, в результате чего потенциал покоя синусового узла составляет \ -50 - -60мВ\ и имеет три важных следствия:
- постоянную инактивацию быстрых натриевых каналов,
- потенциал действия с порогом -40мВ,обусловленный в первую очередь движением ионов через медленные каналы,
- регулярную спонтанную деполяризацию.
В диастолу поступление натрия в клетку приводит к тому, что мембрана клетки постепенно становится все менее отрицательной. Когда достигается пороговый потенциал, то открываются кальциевые каналы, уменьшается проницаемость мембраны и развивается потенциал действия. Восстановление нормальной проницаемости кальция возвращает клетки синусового узла в состояние покоя \10\.
Импульсные возбуждения, исходящие из синусового узла, называются синусовым импульсом У здорового человека синусовый импульс — электрические импульсы с частотой 60 — 90 в мин. \1 — 07в сек.\,
Проводящая система сердца.
Проводящая система сердца — комплекс анатомических образований сердца \ узлов, пучков, волокон \ состоящих из атипичных мышечных волокон \сердечные проводящие мышечные волокна \ и обеспечивающих координированную работу разных отделов сердца \ предсердий и желудочков\, направленную на обеспечение нормальной сердечной деятельности.
Эти пучки и узлы, сопровождаемые нервами и их рецепторами , служат для передачи импульсов с одного отдела сердца на другое, обеспечивая последовательность сокращения миокарда отдельных камер сердца \11\.
Импульс возбуждения, исходящий из синусового узла, выйдя за его пределы, охватывает возбуждением правое предсердие, в котором находится синусовый узел. Далее, по проводящей системе, а именно по межпредсердечному пучку Бахмана, электрический импульс переходит на левое предсердие и возбуждает его. Скорость проведения импульсов в предсердиях 1м\сек \12\.
Одновременно с возбуждением предсердий. импульс, выходящий из синусового узла направляется к нижней веточке Бахмана, к атриовентрикулярному \ предсердно - желудочковому \ соединению. В нем происходит физиологическая задержка импульса \ замедление его проведения. Проходя по атриовентрикулярному соединению, электрический импульс не вызывает возбуждение прилежащих слоев.
Импульс, возникший в синусовом узле, в нормальных условиях, быстро распространяется предсердиям к АВ-узлу. АВ-узел расположен с правой стороны межпредсердечной перегородки, впереди над перегородочной створкой трехстворчатого клапана.
В АВ-узле выделяют три отдельные области: верхнюю, среднюю и нижнюю. Средняя область АВ-узла обладает внутренней спонтанной активностью \ автоматизмом \, в то время. как верхняя и нижняя не способны вырабатывать импульсы. В физиологических условиях водителем ритма является синусовый узел, потому что частота его спонтанной диастолической деполяризации выше, чем в верхней и нижней областях АВ-узла, где она составляет 40-60 колебаний в минуту.
Любой фактор, уменьшающий частоту деполяризации синусового узла или увеличивающий автоматизм верхней и нижней областей АВ-узла способствует возникновению АВ-узлового ритма. \10\.
Импульсы из синусового узла достигают АВ-узел через 0,04 сек. и покидают его через последующие 0,11 сек. Эта задержка связана с низкой скоростью проведения возбуждения в тонких волокнах внутри АВ-узла, что в свою очередь определяется активацией медленных кальциевых каналов. Напротив, проведение импульса между примыкающими друг к другу клетками в желудочках определяется активацией и инактивацией быстрых натриевых каналов. Волокна, отходящие от нижней части АВ-узла ,образуют пучок Гисса. Эта специализированная группа волокон проходит в межжелудочковую перегородку, а затем разделяется на левую и правую ножки. Электрический заряд достигает проводящих путей желудочков , представляемых пучком Гисса, и проходит по этому пучку. Следует отметить, что желудочки сердца возбуждаются в определенной последовательности. Сначала, в течении 0,03 сек. возбуждается межжелудочковая перегородка. Затем возбуждается верхушка сердца и примыкающие к ней области. И в последнюю очередь возбуждается основание сердца. Продолжительность возбуждения основания сердца составляет 0,02 сек.
Охватив возбуждением желудочки, импульс, начавший путь из синусового узла, угасает, потому что клетки миокарда не могут долго оставаться возбужденными. В них начинаются процессы восстановления первоначального состояния, бывшего до возбуждения \13\.
Импульсу, возникшему в синусовом узле, необходимо менее 0,2сек для деполяризации всего сердца \10\.
Особенностью клеток миокарда является то, что в естественных условиях потенциал покоя сосредоточивает около -90мВ и определяется концентрационным градиентом ионов К+.
Потенциал действия миокарда предсердий, сердечных проводящих миоцитов \волокна Пуркинье\ и миокарда поджелудочков обусловлены повышением натриевой проницаемости, т.е. активацией быстрых натриевых каналов клеточной мембраны. Во время пика потенциала действия происходит изменение знака мембранного потенциала \ с -90 до +30мВ.
В клетках рабочего миокарда \предсердия, желудочков \ мембранный потенциал \в интервалах между следующими друг за другом потенциалов действия\ поддерживается на более или менее постоянном уровне. Одновременно в клетках синусно-предсердного узла, выполняющего роль водителя ритма сердца, наблюдается спонтанная диастолическая деполяризация. При достижении критического уровня примерно -50мВ. возникает новый потенциал действия. На этом механизме основана авторитмическая активность сердечных клеток. Биологическая активность этих клеток имеет важные особенности: 1\ малую крутизну подъема потенциала действия, 2\ медленную реполяризацию, плавно переходящую в фазу быстрой реполяризации, во время которой мембранный потенциал достигает -60мВ \вместо -90мВ в рабочем миокарде, после чего начинается фаза медленной диастолической деполяризации. Сходные черты имеет электрическая активность клеток предсердно-желудочкового узла, однако скорость спонтанной диастолической деполяризации у них значительно ниже, чем у клеток синусно-предсердного узла. Соответственно ритм их потенциальной активности меньше \14\. В клетках синусового узла потенциал покоя составляет \-50мВ\. В мышечных волокнах предсердий величина мембранного потенциала составляет 80-90 мВ., в волокнах желудочков и пучка Гисса \-90мВ.\,а в волокнах Пурькинье -96мВ. Для синотриального и атриовентрикулярного узла характерна меньшая величина мембранного потенциала \-50- -65мВ \15\.
Все показания потенциала покоя и потенциала действия отделов проводящей системы сердца сведены в таблицу
Потенциал покоя и потенциал действия отделов проводящей системы сердца.
Читайте также: