Из чего состоит нервная ткань межклеточное вещество
Неотъемлемой часть любого живого организма, который только можно встретить на планете, является межклеточное вещество. Оно образовывается из известных нам компонентов – плазмы крови, лимфы, коллагеновых белковых волокон, эластина, матрикса и так далее. В любом организме клетки и межклеточное вещество неразрывно связаны между собой. И сейчас мы подробно рассмотрим состав этой субстанции, ее функции и особенности.
Общие данные
Итак, межклеточное вещество – это один из многочисленных видов соединительной ткани. Оно присутствует в различных частях нашего организма, и в зависимости от местонахождения меняется и его состав. Как правило, такая связующая субстанция выделяется опорно-трофическими тканями, которые отвечают за целостность работы всего организма. Состав межклеточного вещества можно также охарактеризовать в общем. Это плазма крови, лимфа, белковые, ретикулиновые и эластиновые волокна. В основе этой ткани лежит матрикс, который также называют аморфным веществом. В свою очередь матрикс состоит из очень сложного набора органических веществ, клетки которых по размерам крайне малы по сравнению с основными известными микроскопическими элементами организма.
Особенности связующей ткани
Образуемое межклеточное вещество в тканях является результатом их деятельности. Именно поэтому его состав зависит от того, какую часть организма мы рассматриваем. Если говорить о зародыше, то в данном случае тип вещества будет единым. Тут оно появляется из углеводов, белков, липидов и эмбриальной соединительной ткани. В процессе роста организма более разнообразными по своим функциям и наполнению становятся и его клетки. Вследствие этого меняется и межклеточное вещество. Его можно встретить в эпителии и в недрах внутренних органов, в костях человека и в его хрящах. И в каждом случае мы найдем индивидуальный состав, определить принадлежность которого сможет лишь знающий биолог или медик.
Самое важное волокно организма
В организме человека межклеточное вещество соединительной ткани выполняет основную опорную функцию. Оно не отвечает за работу конкретного органа или системы, а поддерживает жизнедеятельность и взаимосвязь всех составляющих человека или животного, начиная от самых глубоких органов и заканчивая дермой. В среднем данный связующий компонент представляет собой от 60 до 90 процентов массы всего тела. Иными словами, данная субстанция в организме является опорным каркасом, который обеспечивает нам жизнедеятельность. Такое вещество делится на множество подвидов (см. ниже), структура которых схожа между собой, но не полностью идентична.
Само же межклеточное вещество соединительной ткани – это матрикс. Он выполняет транспортную функцию между различными системами в организме, служит ему опорой и при необходимости передает различные сигналы от одних органов к другим. Благодаря этому матриксу в человеке или в животном происходит обмен веществ, он участвует в локомоции клеток, а также является важной составляющей их массы. Также важно отметить, что в процессе эмбриогенеза многие клетки, которые ранее были самостоятельными или относились к определенной внутренней системе, становятся частью этой субстанции. Основными составляющими матрикса является гиалуроновая кислота, протеогликаны и гликопротеины. Одним из самых ярких представителей последних является коллаген. Этот компонент наполняет собой межклеточное вещество и встречается буквально в каждом, даже самом маленьком уголке нашего организма.
Внутреннее строение скелета
Особенности строения крови
Каждый прекрасно знает, в состав нашей красной жидкости входит такой компонент, как плазма. Она обеспечивает необходимую вязкость, возможность оседания крови и многое другое. Таким образом, межклеточное вещество крови – это и есть плазма. Макроскопически представляет она собою вязкую жидкость, которая либо прозрачная, либо имеет легкий желтоватый оттенок. Плазма всегда собирается в верхней части сосуда после осаждения других основных элементов крови. Процентное содержание такой межклеточной жидкости в крови – от 50 до 60%. Основу самой же плазмы составляет вода, в которой содержатся липиды, белки, глюкоза и гормоны. Также плазма впитывает в себя все продукты переработки обмена веществ, которые после утилизируются.
Виды белков, которые находятся в нашем организме
Как мы уже поняли, строение межклеточного вещества основывается на белках, которые являются конечным продуктом работы клеток. В свою очередь эти белки можно поделить на две категории: те, которые обладают адгезивными свойствами, и те, которые устраняют адгезию клеток. К первой группе главным образом мы относим фибронектин, который является основной матрикса. За ним следуют нидоген, ламинин, а также фибриллярные коллагены, которые образуют волокна. По этим канальцам транспортируются различные вещества, которые обеспечивают обмен веществ. Вторая группа белков – это антиадгезивные компоненты. В их состав входят различные гликопротеины. Среди них назовем тенасцин, остеонектин, тромпоспондин. Данные компоненты отвечают в первую очередь за заживление ран, повреждений. Они в большом количестве вырабатываются также во время инфекционных заболеваний.
Функциональность
Вечный двигатель
Присутствующее межклеточное вещество в тканях нашего организма буквально обеспечивает его жизнедеятельность. Оно делится на множество различных категорий, может иметь различную молекулярную структуру, а в некоторых случаях разнятся и функции вещества. Что же, рассмотрим, какие бывают типы такой соединительной материи и что характерно для каждого из них. Упустим мы тут, пожалуй, только плазму, так как ее функции и особенности мы уже достаточно изучили, и повторяться не станем.
Межклеточное простое соединение
Межклеточное плотное соединение
Третий типаж – десмосома
Данная субстанция представляет собой в своем роде липкую связь, которая образуется над поверхностью клеток. Это может быть небольшая площадка, диаметром не более 0,5 мкм, которая будет обеспечивать максимально эффективную механическую связь между мембранами. Благодаря тому, что десмосомы обладают липкой структурой, они весьма плотно и надежно склеивают между собой клетки. Вследствие этого обменные процессы в них происходят более эффективно и быстро, нежели в условиях простого межклеточного вещества. Такие липкие образования встречаются в межклеточных тканях любого типа, и все они связаны между собой волокнами. Их синхронная и последовательная работа позволяет организму как можно скорее реагировать на любые внешние поражения, а также перерабатывать сложные органические структуры и передавать их в нужные органы.
Клеточный нексус
Такой тип контакта между клетками еще называют щелевым. Суть заключается в том, что тут участие принимают только две клетки, которые плотно прилегают друг к другу, и при этом между ними находится множество белковых канальчиков. Обмен веществ происходит только между конкретными двумя составляющими. Между клетками, которые настолько близко расположены друг к другу, имеется межклеточное пространство, однако в данном случае оно практически бездейственно. Далее по цепной реакции, после обмена веществами между двумя составляющими, витамины и ионы передаются по белковым каналам дальше и дальше. Считается, что этот способ обмена веществ наиболее эффективный, и чем здоровее организм, тем лучше он развивается.
Как работает нервная система
Краткое послесловие
Межклеточное вещество в тканях, как оказалось, играет крайне важную роль в развитии, формировании и дальнейшей жизнедеятельности каждого живого организма. Такое вещество составляет большую часть массы нашего тела, оно выполняет самую важную функцию – транспортную, и позволяет всем органам работать слаженно, дополняя друг друга. Межклеточное вещество способно самостоятельно восстанавливаться после различных повреждений, приводить весь организм в тонус и корректировать работу тех или иных поврежденных клеток. Эта субстанция делится на множество различных типов, она встречается как в скелете, так и в крови, и даже в нервных окончаниях живых существ. И во всех случаях она сигнализирует нам о том, что происходит с нами, дает возможность почувствовать боль, если работа определенного органа нарушена, или потребность в получении определенного элемента, когда его не хватает.
Всеми процессами в организме людей управляет нервная ткань. Именно строением ее клеток, их функциональными возможностями человек и отличается от животных. Однако, далеко не все знают, что головной мозг состоит из разных элементов, которые объединены в структурные единицы, несущие ответственность за регуляцию двигательной и чувствительной сферы организма. Подобная информация помогает специалистам лучше понимать неврологические и психиатрические болезни людей.
Строение и морфологические характеристики ткани
Основная составляющая головного мозга – нервная ткань, имеет клеточное строение. В ее основе нейроны, а также нейроглия – межклеточное вещество. Подобным строением нервной ткани обеспечены ее физиологические параметры – тканевое раздражение, последующее возбуждение, а также вырабатывание и передача сигналов.
Нейроны являются крупными функциональными единицами. Они состоят из следующих элементов:
- ядро;
- дендриты;
- тело;
- аксон.
В нейроглии присутствуют вспомогательные клетки – к примеру, астроциты плазматические, олигодендриты, шванновские клетки. Нейрон, как основная морфо-функциональная единица, как правило, состоит из нескольких дендритов, но всегда одного аксона – по нему перемещается потенциал действия от одной клетки к соседним. Именно с помощью этих окончаний в организме людей осуществляется связь между внутренними органами и головным мозгом.
В своей массе отростки нейронов образуют волокна, в которых осевой цилиндр распадается на чувствительные окончания и двигательные. Сверху они окружены множеством миелиновых и безмиелиновых клеток защитной оболочки.
Классификация
Среди существующих нервных клеток, специалисты традиционно выделяют следующие единицы, по количеству отростков и функциональной предназначенности:
Исходя из количества окончаний:
- униполярные – с единичным отростком;
- псевдоуниполярные – из двух ветвей одного и того же дендрита;
- биполярные – имеется 1 дендрит и 1аксон;
- мультиполярные – несколько дендритов, но 1 аксон.
По функциональным обязанностям:
- воспринимающие – для принятия и передачи сигналов извне, а также от внутренних тканей;
- контактные – промежуточные, которые обеспечивают обработку и проведение информации к двигательным нейронам;
- двигательные – формируют управляющие сигналы, а затем передают их к остальным органам.
Дополнительные единицы периферической нерворегулирующей системы – леммоциты. Они обволакивают отростки нейронов и формируют безмиелиновую/ миелиновую оболочку. Их еще именую шванновскими клетками в честь первооткрывателя. Именно мембрана шванновской клетки, по мере обхвата аксона и формирования оболочки, способствует улучшению проводимости нервного импульса.
Специалисты обязательно выделяют в ткани мозга особые контакты нейронов, их синапсы, классификация которых зависит от формы передачи сигнала:
- электрические – имеют значение в эмбриональном периоде развитии человека для процесса межнейронных взаимодействий;
- химические – широко представлены у взрослых людей, они для передачи нервного импульса прибегают к помощи медиаторов, к примеру, в двигательных клетках для однонаправленности возбуждения по волокну.
Подобная классификация дает полное представление о сложном строении ткани головного мозга людей, как представителей подкласса млекопитающих.
Функции ткани
Особенности нейронов таковы, что физиологическими свойствами нервной ткани обеспечиваются сразу несколько функций. Так, она принимает участие в формировании основных структур мозга – центральной и периферической его части. В частности – от мелких узлов до коры полушарий. При этом образуется сложнейшая система с гармоничным взаимодействием.
Помимо строительных функций нервной ткани присуща обработка всей информации, поступающей изнутри, а также извне. Нейроны воспринимают, перерабатывают и анализируют данные, которые затем трансформируют в особые импульсы. Они по окончаниям аксонов поступают в кору мозга. При этом, от скорости проведения возбуждения напрямую зависит реакция человека на изменение в окружающей среде.
Мозг, в свою очередь, использует природные свойства нейронов для регулирования, а также согласования деятельности всех внутренних систем организма – с помощью синаптического контакта и рецепторов. Это позволяет человеку адаптироваться к изменившимся условиям, сохраняя целостность системы жизнедеятельности – благодаря коррекции передачи импульса.
Химический состав ткани
Специфика гистологии паренхимы мозга заключается в присутствии гематоэнцефалического барьера. Именно он обеспечивает избирательную проницаемость химических метаболитов, а также способствует накоплению отдельных компонентов в межклеточном веществе.
Поскольку структура нервной ткани состоит из серого вещества – тел нейронов, и белого – аксонов, то их внутренняя среда имеет отличия по химическому составу. Так, больше воды присутствует в сером веществе – на долю сухого остатка не более 16%. При этом половину занимают белки, а еще треть – липиды. Тогда как особенности строения нервных клеток белого вещества – нейроны структур центральной части мозга, предусматривают меньшее количество воды, и больший процент сухого остатка. Его насчитывают до 30%. К тому же и липидов вдвое больше, чем белков.
Белковые вещества в главных и вспомогательных клетках ткани мозга представлены альбуминами и нейроглобулинами. Реже присутствует нейрокератин – в оболочках нервных волокон и аксонных отростках. Множество белковых соединений свойственно медиаторам – мальтаза либо фосфатаза, а также амилаза. Медиатор поступает в синапс и этим ускоряет импульсы.
Присутствует в химическом составе углеводы – глюкоза, пентаза, а также гликоген. Имеются и жиры в минимальном объеме – холестерол, фосфолипиды, либо цереброзиды. Не менее важны микроэлементы, передающие нервный импульс по нервному волокну – магний, калий, натрий и железо. Они принимают участие в продуктивной интеллектуальной деятельности людей, регулируют функционирование мозга в целом.
Свойства ткани
В организме людей основными свойствами нервной ткани специалисты указывают:
- Возбудимость – способность клетки иметь ответную реакцию на раздражители. Свойство проявляется непосредственно в двух видах – возбуждение нервной реакции либо ее торможение. Если первое может свободно перемещаться от клетки к клетке и даже внутрь ее, то торможение ослабляет либо даже препятствует деятельности нейронов. В этом взаимодействии и заключается гармоничность функционирования структур головного мозга человека.
- Проводимость – обусловлено природной способностью нейроцитов перемещать импульсы. Процесс можно представить следующим образом – в единичной клетке возник импульс, он перемещается на соседние участки, а при переходе в отдаленные зоны меняет в них концентрацию ионов.
- Раздражимость – переход клеток из состояния покоя в прямо ему противоположное, их активность. Для этого требуются провоцирующие факторы, которые поступают из окружающей ткань среды. Так, рецепты глаз реагируют на яркий свет, тогда как клетки височной доли мозга – на громкий звук.
Если одно из свойств нервной ткани нарушено, то люди утрачивают сознание, а психические процессы вовсе прекращают свою деятельность. Подобное происходит при использовании наркоза дл оперативного вмешательств – нервные импульсы полностью отсутствуют.
Специалисты на протяжении столетий изучают строение, функции, состав и свойства нервной ткани. Однако, они и в настоящее время знают о ней далеко не все. Природа преподносит людям все новые загадки, разгадать которые пытаются великие умы человечества.
Нервная ткань – совокупность связанных между собой нервных клеток (нейронов, нейроцитов) и вспомогательных элементов (нейроглии), которая регулирует деятельность всех органов и систем живых организмов. Это основной элемент нервной системы, которая делится на центральную (включает головной и спинной мозг) и периферическую (состоящую из нервных узлов, стволов, окончаний).
Основные функции нервной ткани
- Восприятие раздражения;
- формирование нервного импульса;
- быстрая доставка возбуждения к центральной нервной системе;
- хранение информации;
- выработка медиаторов (биологически активных веществ);
- адаптация организма к переменам внешней среды.
Свойства нервной ткани
- Регенерация — происходит очень медленно и возможна только при наличии неповрежденного перикариона. Восстановление утраченных отростков идет путем прорастания.
- Торможение — предотвращает возникновение возбуждения или ослабляет его
- Раздражимость — ответ на влияние внешней среды благодаря наличию рецепторов.
- Возбудимость — генерирование импульса при достижении порогового значения раздражения. Существует нижний порог возбудимости, при котором самое маленькое влияние на клетку вызывает возбуждение. Верхний порог – это величина внешнего воздействия, которая вызывает боль.
Строение и морфологическая характеристика нервных тканей
Основная структурная единица – это нейрон. Он имеет тело – перикарион (в котором находятся ядро, органеллы и цитоплазма) и несколько отростков. Именно отростки являются отличительной чертой клеток этой ткани и служат для переноса возбуждения. Длина их колеблется от микрометров до 1,5м. Тела нейронов также различных размеров: от 5 мкм в мозжечке, до 120 мкм в коре головного мозга.
До недавнего времени считалось, что нейроциты не способны к делению. Сейчас известно, что образование новых нейронов возможно, правда только в двух местах – это субвентрикулякная зона мозга и гиппокамп. Продолжительность жизни нейронов ровна длительности жизни отдельного индивидуума. Каждый человек при рождении имеет около триллиона нейроцитов и в процессе жизнедеятельности теряет каждый год 10млн клеток.
Отростки делятся на два типа – это дендриты и аксоны.
Строение аксона. Начинается он от тела нейрона аксонным холмиком, на всем протяжении не разветвляется и только в конце разделяется на ветки. Аксон – это длинный отросток нейроцита, который выполняет передачу возбуждения от перикариона.
По количеству отростков нейроциты делятся на:
- униполярные (есть только один отросток, аксон);
- биполярные (присутствует и аксон, и дендрит);
- псевдоуниполярные (от некоторых клеток в начале отходит один отросток, но затем он делится на два и по сути является биполярным);
- мультиполярные (имеют множество дендритов, и среди них будет лишь один аксон).
Мультиполярные нейроны превалируют в организме человека, биполярные встречаются только в сетчатке глаза, в спинномозговых узлах – псевдоуниполярные. Монополярные нейроны вовсе не встречаются в организме человека, они характерны только для малодифференцированной нервной ткани.
Нейроглия
Нейроглия – это совокупность клеток, которая окружает нейроны (макроглиоциты и микроглиоциты). Около 40% ЦНС приходится на клетки глии, они создают условия для выработки возбуждения и его дальнейшей передачи, выполняют опорную, трофическую, защитную функции.
Клетки нейроглии
Макроглия:
Эпендимоциты – образуются из глиобластов нервной трубки, выстилают канал спинного мозга.
Астроциты – звездчатые, небольших размеров с многочисленными отростками, которые образуют гематоэнцефалический барьер и входят в состав серого вещества ГМ.
Олигодендроциты – основные представители нейроглии, окружают перикарион вместе с его отростками, выполняя такие функции: трофическую, изолирования, регенерации.
Нейролемоциты – клетки Шванна, их задача образование миелина, электрическая изоляция.
Микроглия – состоит из клеток с 2-3 ответвлениями, которые способны к фагоцитозу. Обеспечивает защиту от чужеродных тел, повреждений, а также удаление продуктов апоптоза нервных клеток.
Нервные волокна — это отростки (аксоны или дендриты) покрытые оболочкой. Они делятся на миелиновые и безмиелиновые. Миелиновые в диаметре от 1 до 20 мкм. Важно, что миелин отсутствует в месте перехода оболочки от перикариона к отростку и в области аксональных разветвлений. Немиелинизированные волокна встречаются в вегетативной нервной системе, их диаметр 1-4 мкм, перемещение импульса осуществляется со скоростью 1-2 м/с, что намного медленнее, чем по миелинизированых, у них скорость передачи 5-120 м/с.
Нейроны подразделяются за функциональными возможностями:
- Афферентные – то есть чувствительные, принимают раздражение и способны генерировать импульс;
- ассоциативные — выполняют функцию трансляции импульса между нейроцитами;
- эфферентные — завершают перенос импульса, осуществляя моторную, двигательную, секреторную функцию.
Вместе они формируют рефлекторную дугу, которая обеспечивает движение импульса только в одном направлении: от чувствительных волокон к двигательным. Один отдельный нейрон способен к разнонаправленной передачи возбуждения и только в составе рефлекторной дуги происходит однонаправленное течение импульса. Это происходит из-за наличия в рефлекторной дуге синапса – межнейронного контакта.
Синапс состоит из двух частей: пресинаптической и постсинаптической, между ними находится щель. Пресинаптическая часть – это окончание аксона, который принес импульс от клетки, в нем находятся медиаторы, именно они способствуют дальнейшей передачи возбуждения на постсинаптическую мембрану. Самые распространённые нейротрансмитеры: дофамин, норадреналин, гамма аминомасляная кислота, глицин, к ним на поверхности постсинаптической мембраны находятся специфические рецепторы.
Химический состав нервной ткани
Вода содержится в значительном количестве в коре головного мозга, меньше ее в белом веществе и нервных волокнах.
Белковые вещества представлены глобулинами, альбуминами, нейроглобулинами. В белом веществе мозга и аксонных отростках встречается нейрокератин. Множество белков в нервной системе принадлежит медиаторам: амилаза, мальтаза, фосфатаза и др.
В химический состав нервной ткани входят также углеводы – это глюкоза, пентоза, гликоген.
Среди жиров обнаружены фосфолипиды, холестерол, цереброзиды (известно, что цереброзидов нет у новорожденных, их количество постепенно вырастает во время развития).
Микроэлементы во всех структурах нервной ткани распределены равномерно: Mg, K, Cu, Fe, Na. Их значение очень велико для нормального функционирования живого организма. Так магний участвует в регуляции работы нервной ткани, фосфор важен для продуктивной умственной деятельности, калий обеспечивает передачу нервных импульсов.
Содержание
- Нейроны
- Виды нейронов
- Нервные волокна и нервы
- Список черепно-мозговых нервов с обозначением доминирующих волокон
- Глия
Для начала, я советую посмотреть небольшое видео, в котором рассказывается о различных тканях человека. Но нас будет интересовать именно нервная ткань. В более красочном и наглядном виде вам будет легче усвоить основы, а потом вы сможете расширить свои знания.
Основной тканью, из которой образована нервная система является нервная ткань, которая состоит из клеток и межклеточного вещества.
Ткань — это совокупность клеток и межклеточного вещества, сходных по строению и выполняемым функциям.
Нервная ткань имеет эктодермальное происхождение. Нервная ткань отличается от других видов ткани тем, что в ней отсутствует межклеточное вещество. Межклеточное вещество является производной глиальной клетки, состоит из волокон и аморфного вещества.
Функцией нервной ткани является обеспечение получения, переработки и хранения информации из внешней и внутренней среды, а также регуляция и координация деятельности всех частей организма.
Нервная ткань состоит из двух видов клеток: нейронов и глиальных клеток. Нейроны играют главную роль, обеспечивая все функции ЦНС. Глиальные клетки имеют вспомогательное значение, выполняя опорную, защитную, трофическую функции и др. В среднем количество глиальных клеток превышает количество нейронов в соотношении 10:1 соответственно.
Каждый нейрон имеет расширенную центральную часть: тело — сому и отростки — дендриты и аксоны. По дендритам импульсы поступают к телу нервной клетки, а по аксонам от тела нервной клетки к другим нейронам или органам.
Отростки могут быть длинными и короткими. Длинные отростки нейронов называются нервными волокнами. Большинство дендритов (дендрон — дерево) короткие, сильно ветвящиеся отростки. Аксон (аксис — отросток) чаще длинный, мало ветвящийся отросток.
Нейроны
Нейрон — это сложно устроенная высокоспециализированная клетка с отростками, способная генерировать, воспринимать, трансформировать и передавать электрические сигналы, а также способная образовывать функциональные контакты и обмениваться информацией с другими клетками.
Каждый нейрон имеет только 1 аксон, длина которого может достигать несколько десятков сантиметров. Иногда от аксона отходят боковые отростки — коллатерали. Окончания аксона, как правило, ветвятся, и их называют терминалями. Место, где от сомы клеток отходит аксон, называется аксональным (аксонным) холмиком.
По отношению к отросткам сома нейрона выполняет трофическую функцию, регулируя обмен веществ. Нейрон обладает признаками, общими для всех клеток: имеет оболочку, ядро и цитоплазму, в которой находятся органеллы (эндоплазматический ретикулум, аппарат Гольджи, митохондрии, лизосомы, рибосомы и т.д.).
Кроме того, в нейроплазме содержатся органеллы специального назначения: микротрубочки и микрофиламенты, которые различаются размером и строением. Микрофиламенты представляют внутренний скелет нейроплазмы и расположены в соме. Микротрубочки тянутся вдоль аксона по внутренним полостям от сомы до окончания аксона. По ним распространяются биологически активные вещества.
Кроме того, отличительной особенностью нейронов является наличие митохондрий в аксоне как добавочного источника энергии. Взрослые нейроны не способны к делению.
Существует несколько классификаций нейронов, основанных на разных признаках: по форме сомы, количеству отростков, функциям и эффектам, которые нейрон оказывает на другие клетки.
В зависимости от формы сомы различают:
1. Зернистые (ганглиозные) нейроны, у которых сома имеет округлую форму;
2. Пирамидные нейроны разных размеров — большие и малые пирамиды;
3. Звездчатые нейроны;
4. Веретенообразные нейроны.
По количеству отростков (по строению)выделяют:
1. Униполярные нейроны (одноотростчатые), имеющие один отросток, отходящий от сомы клеток, в нервной системе человека практически не встречаются;
2. Псевдоуниполярные нейроны (ложноодноотростчатые), такие нейроны имеют Т-образный ветвящийся отросток, это клетки общей чувствительности (боль, изменения температуры и прикосновение);
3. Биполярные нейроны (двухотростчатые), имеющие один дендрит и один аксон (т.е. 2 отростка), это клетки специальной чувствительности (зрение, обоняние, вкус, слух и вестибулярные раздражения);
4. Мультиполярные нейроны (многоотростчатые), которые имеют множество дендритов и один аксон (т.е. много отростков); мелкие мультиполярные нейроны являются ассоциативными; средние и крупные мультиполярные, пирамидные нейроны — двигательными, эффекторными.
Униполярные клетки (без дендритов) не характерны для взрослых людей и наблюдаются только в процессе эмбриогенеза. Вместо них в организме человека имеются псевдоуниполярные клетки, у которых единственный аксон разделяется на 2 ветви сразу же после выхода из тела клетки. Биполярные нейроны имеются в сетчатке глаза и передают возбуждение от фоторецепторов к ганглионарным клеткам, образующим зрительный нерв. Мультиполярные нейроны составляют большинство клеток нервной системы.
По выполняемым функциям нейроны бывают:
1. Афферентные (рецепторные, чувствительные) нейроны — сенсорные (псевдоуниполярные), их сомы расположены вне ЦНС в ганглиях (спинномозговых или черепно-мозговых). По чувствительным нейронам нервные импульсы движутся от периферии к центру.
Форма сомы — зернистая. Афферентные нейроны имеют один дендрит, который подходит к рецепторам (кожи, мышц, сухожилий и т.д.). По дендритам информация о свойствах раздражителей передается на сому нейрона и по аксону в ЦНС.
Пример чувствительных нейронов: нейрон, реагирующий на стимуляцию кожи.
2. Эфферентные (эффекторные, секреторные, двигательные) нейроны регулируют работу эффекторов (мышц, желез и т.д.). Т.е. они могут посылать приказы к мышцам и железам. Это мультиполярные нейроны, их сомы имеют звездчатую или пирамидную форму. Они лежат в спинном или головном мозге или в ганглиях автономной нервной системы.
Короткие, обильно ветвящиеся дендриты воспринимают импульсы от других нейронов, а длинные аксоны выходят за пределы ЦНС и в составе нерва идут к эффекторам (рабочим органам), например, к скелетной мышце.
Пример двигательных нейронов: мотонейрон спинного мозга.
Тела чувствительных нейронов лежат вне спинного мозга, а двигательные нейроны лежат в передних рогах спинного мозга.
3. Вставочные (контактные, интернейроны, ассоциативные, замыкающие) составляют основную массу мозга. Они осуществляют связь между афферентными и эфферентными нейронами, перерабатывают информацию, поступающую от рецепторов в центральную нервную систему.
В основном это мультиполярные нейроны звездчатой формы. Среди вставочных нейронов различают нейроны с длинными и короткими аксонами.
Пример вставочных нейронов: нейрон обонятельной луковицы, пирамидная клетка коры головного мозга.
По эффекту, который нейроны оказывают на другие клетки:
1. Возбуждающие нейроны оказывают активизирующий эффект, повышая возбудимость клеток, с которыми они связаны.
2. Тормозные нейроны снижают возбудимость клеток, вызывая угнетающий эффект.
Нервные волокна — это покрытые глиальной оболочкой отростки нервных клеток, осуществляющие проведение нервных импульсов. По ним нервные импульсы могут передаваться на большие расстояния (до метра).
Классификация нервных волокон основана на морфологических и функциональных признаках.
По морфологическим признакам различают:
1. Миелинизированные (мякотные) нервные волокна — это нервные волокна, имеющие миелиновую оболочку;
2. Немиелинизированные (безмякотные) нервные волокна — это волокна, не имеющие миелиновой оболочки.
По функциональным признакам различают:
1. Афферентные (чувствительные) нервные волокна;
2. Эфферентные (двигательные) нервные волокна.
Нервные волокна, выходящие за пределы нервной системы, образуют нервы. Нерв — это совокупность нервных волокон. Каждый нерв имеет оболочку и кровоснабжение.
Различают спинномозговые нервы, связанные со спинным мозгом (31 пара), и черепно-мозговые нервы (12 пар), связанные с головным мозгом. В зависимости от количественного соотношения афферентных и эфферентных волокон в составе одного нерва различают чувствительные, двигательные и смешанные нервы (см. таблицу ниже).
В чувствительных нервах преобладают афферентные волокна, в двигательных — эфферентные, в смешанных — количественное соотношение афферентных и эфферентных волокон приблизительно равно. Все спинномозговые нервы являются смешанными нервами. Среди черепно-мозговых нервов выделяют три вышеперечисленных типа нервов.
I пара — обонятельные нервы (чувствительные);
II пара — зрительные нервы (чувствительные);
III пара — глазодвигательные (двигательные);
IV пара — блоковые нервы (двигательные);
V пара — тройничные нервы (смешанные);
VI пара — отводящие нервы (двигательные);
VII пара — лицевые нервы (смешанные);
VIII пара — вестибуло-кохлеарные нервы (чувствительные);
IX пара — языкоглоточные нервы (смешанные);
X пара — блуждающие нервы (чувствительные);
XI пара — добавочные нервы (двигательные);
XII пара — подъязычные нервы (двигательные).
Глия
Пространство между нейронами заполнено клетками, которые называются нейроглией (глией). По подсчетам глиальных клеток примерно в 5-10 раз больше, чем нейронов. В отличие от нейронов клетки нейроглии делятся в течение всей жизни человека.
Клетки нейроглии выполняют многообразные функции: опорную, трофическую, защитную, изолирующую, секреторную, участвуют в хранении информации, то есть памяти.
Выделяют два типа глиальных клеток:
1. клетки макроглии или глиоциты (астроциты, олигодендроциты, эпендимоциты);
2. клетки микроглии.
Астроциты имеют звездчатую форму и много отростков, которые отходят от тела клетки в разных направлениях, некоторые из них оканчиваются на кровеносных сосудах. Астроциты служат опорой для нейронов, обеспечивая их репарацию (восстановление) после повреждения, и участвуют в их метаболических процессах (обмене веществ).
Олигодендроциты — это мелкие овальные клетки с тонкими короткими отростками. Находятся в сером и белом веществе вокруг нейронов, входят в состав оболочек и в состав нервных окончаний. Олигодендроциты образуют миелиновые оболочки вокруг длинных аксонов и длинных дендритов.
Функции олигодендроцитов:
1. трофическая (участие в обмене веществ нейронов с окружающей тканью);
2. изолирующая (образование миелиновой оболочки вокруг нервов, что необходимо для лучшего проведения сигналов).
Миелиновая оболочка выполняет роль изолятора и увеличивает скорость проведения нервных импульсов вдоль мембраны отростков, предотвращает распространение на соседние ткани идущих по волокну нервных импульсов. Она сегментарна, пространство между сегментами называется перехват Ранвье (в честь ученого, который их открыл). Из-за того, что электрические импульсы проходят по миелинизированному волокну скачкообразно от одного перехвата к другому, такие волокна имеют высокую скорость проведения нервных импульсов.
Каждый сегмент миелиновой оболочки, как правило, образован одним олигодендроцитом в центральной нервной системе (Шванновская клетка (или клетки Шванна) в периферической нервной системе), которые, истончаясь, закручиваются вокруг аксона.
Миелиновая оболочка имеет белый цвет (белое вещество), так как в состав мембран олигодендроцитов входит жироподобное вещество — миелин. Иногда одна глиальная клетка, образуя выросты, принимает участие в образовании сегментов нескольких отростков.
Сома нейрона и дендриты покрыты тонкими оболочками, которые не образуют миелин и составляют серое вещество.
Т.е. миелином покрыты аксоны, поэтому они имеют белый цвет, а сома (тело) нейрона и короткие дендриты не имеют миелиновой оболочки, и поэтому они серого цвета. Вот так скопление аксонов, покрытых миелином, образуют белое вещество мозга. А скопление тел нейрона и коротких дендритов — серое.
Эпендимоциты — это такие клетки, которые выстилают желудочки мозга и центральный канал спинного мозга, секретируя спинномозговую жидкость. Они участвуют в обмене ликвора и растворения в нем веществ. На поверхности клеток, обращенных в спинномозговой канал, имеются реснички, которые своим мерцанием способствуют движению цереброспинальной жидкости.
Таким образом, функцией эпендимоцитов является секреция ликвора.
Микроглия — это часть из вспомогательных клеток нервной ткани, которая не является ею, т.к. имеет мезодермальное происхождение. Представлена мелкими клетками, которые находятся в белом и сером веществе мозга. Микроглия способна к амебовидному передвижению и фагоцитозу.
Клетки микроглии доставляют нейронам кислород и глюкозу. Кроме того, они входят в состав гематоэнцефалического барьера, который образован ими и эндотелиальными клетками, образующими стенки кровеносных капилляров. Гематоэнцефалический барьер задерживает макромолекулы, ограничивая их доступ к нейронам.
Читайте также: