Как определить лабильность нервного волокна
Нервные волокна выполняют специализированную функцию — проведение нервных импульсов. По морфологическому признаку волокна делятся на миелиновые (покрытые миелиновой оболочкой) и безмиелиновые. Нерв состоит из большого числа нервных волокон (миелиновых и безмиелиновых), заключенных в общую оболочку.
Нервное волокно обладает следующими свойствами: возбудимостью, проводимостью и лабильностью.
Распространение возбуждения по нервным волокнам осуществляется на основе ионных механизмов генерации потенциала действия. При распространении возбуждения по безмиелиновому нервному волокну местные электрические токи, которые возникают между его возбужденным участком, заряженным отрицательно, и невозбужденными, заряженными положительно, деполяризуют мембрану до критического уровня, что приводит к генерации ПД в соседних невозбужденных участках, которые становятся возбужденными, и т.д. Этот процесс происходит в каждой точке мембраны на всем протяжении волокна. Такое проведение возбуждения называется непрерывным. Возбуждение по нервному волокну может распространяться в обе стороны от места его возникновения. Если на нервное волокно наложить регистрирующие электроды на некотором расстоянии друг от друга, а между ними нанести раздражение, то возбуждение зафиксируют электроды по обе стороны от места раздражения
Проведение возбуждения по нервному волокну возможно лишь в том случае, если сохранена его анатомическая и физиологическая целостность. Различные факторы, изменяющие свойства волокон (наркотические вещества, охлаждение, перевязка и т.д.), приводят к нарушению передачи возбуждения.
Возбуждение по нервному волокну, входящему в состав нерва, распространяется изолированно, т.е. не переходя с одного волокна на другое. Это обусловлено тем, что сопротивление жидкости, заполняющей межклеточные пространства, значительно ниже сопротивления мембраны нервных волокон, и основная часть тока, возникающего между возбужденным и невозбужденным участками, проходит по межклеточной жидкости, не действуя на другие волокна. Если бы возбуждение передавалось с одного нервного волокна на другое, то нормальное функционирование организма было бы невозможно, так как нервы содержат большое количество чувствительных, двигательных, вегетативных волокон, которые несут информацию как от различных рецепторов к ЦНС, так и от ЦНС к эффекторным органам.
Рис. 4. Распространение местных токов по безмиелиновому (А) и миелиновому (Б) нервным волокнам
Нервные волокна по скорости проведения возбуждения делятся на три типа: А, В, С. Волокна типа А, в свою очередь, делятся на подтипы: А-а, А-β, А-γ, А-δ (рис.5).
Волокна типа А покрыты миелиновой оболочкой. Наиболее толстые из них А-а имеют диаметр 12 — 22 мкм и скорость проведения возбуждения 70—120 м/с. Эти волокна проводят возбуждение от моторных нервных центров спинного мозга к скелетным мышцам (двигательные волокна) и от рецепторов мышц к соответствующим нервным центрам.
Рис. 5. Схематическое изображение сложного потенциала действия, возникающего в результате возбуждения различных волокон нерва, при отведении на большом расстоянии от места раздражения А,В,С-группы волокон:
α, β, γ — подгруппы волокон группы А
Три другие группы волокон типа А (β, γ, δ) имеют меньший диаметр — от 8 до 1 мкм и меньшую скорость проведения возбуждения — от 5 до 70 м/с. Волокна этих групп преимущественно проводят возбуждение от различных рецепторов (тактильных, температурных, болевых, рецепторов внутренних органов) в ЦНС, за исключением у-волокон, значительная часть которых проводит возбуждение от спинного мозга к интрафузальным мышечным волокнам.
К волокнам типа В относятся миелинизированные преганглионарные волокна вегетативной нервной системы. Их диаметр — 1 — 3,5 мкм, а скорость проведения возбуждения — 3—18 м/с.
К волокнам типа С относятся безмиелиновые нервные волокна малого диаметра — 0,5 — 2 мкм. Скорость проведения возбуждения в этих волокнах не более 3 м/с (0,5 — 3 м/с). Большинство волокон типа С — это постганглионарные волокна симпатического отдела вегетативной нервной системы, а также нервные волокна, которые проводят возбуждение от болевых рецепторов, некоторых терморецепторов и рецепторов давления.
Нервные волокна обладают лабильностью (функциональной подвижностью) — способностью воспроизводить определенное количество циклов возбуждения в единицу времени в соответствии с ритмом действующих раздражителей. Мерой лабильности является максимальное количество циклов возбуждения, которое способно воспроизвести нервное волокно в соответствии с ритмом раздражения без искажений. Лабильность определяется длительностью потенциала действия (длительностью фазы абсолютной рефрактерности), у нервных волокон лабильность очень высокая (до 1000 Гц).
Н. Е. Введенский (1891 г.) обнаружил, что если участок нерва подвергнуть воздействию повреждающего агента (химического вещества, нагревания или охлаждения, постоянного тока), то лабильность такого участка резко снижается. Восстановление исходного состояния нервного волокна после каждого потенциала действия в поврежденном участке происходит медленно. При действии на этот участок частых раздражителей он не может воспроизвести ритм раздражения — проведение импульсов нарушается. Такое состояние было названо парабиозом. В развитии парабиоза различают три последовательно сменяющие друг друга фазы: уравнительную, парадоксальную, тормозную.
В уравнительную фазу ответные реакции на частые и редкие раздражители становятся одинаковыми. В нормальных условиях величина ответной реакции иннервируемых нервом мышечных волокон зависит от частоты раздражения: на редкие раздражители ответная реакция меньше, а на частые — больше. В начальную стадию парабиоза при редком ритме раздражений (25 Гц) все импульсы проводятся через поврежденный участок, так как возбудимость после предыдущего импульса успевает восстановиться. При высоком ритме раздражений (100 Гц) последующие импульсы могут поступать в период рефрактерности, поэтому часть импульсов не проводится. Например, если проводится только каждое четвертое возбуждение (т.е. 25 импульсов из 100), то амплитуда ответной реакции становится такой же, как на редкие раздражители (25 Гц) — происходит уравнивание ответной реакции.
В парадоксальную фазу происходит дальнейшее снижение лабильности. Ответная реакция возникает и на редкие, и на частые раздражители, но на частые она меньше, так как они еще больше снижают лабильность, удлиняя фазу абсолютной рефрактерности. В результате ответная реакция на редкие раздражители будет больше, чем на частые.
В тормозную фазу и редкие, и частые раздражители не вызывают ответной реакции. При этом мембрана нервного волокна деполяризована и не способна генерировать ПД, т.е. нерв утрачивает способность к проведению возбуждений.
Явление парабиоза лежит в основе локального обезболивания. Влияние анестезирующих веществ связано с нарушением механизма проведения возбуждения по нервным волокнам и снижением лабильности. Парабиоз — явление обратимое. Если пара-биотическое вещество действует недолго, то после прекращения его действия нерв выходит из состояния парабиоза через те же фазы, но в обратной последовательности.
Возникновение парабиотического состояния связано с тем, что при действии на нервное волокно парабиотического фактора нарушается способность мембраны увеличивать натриевую проницаемость (инактивация натриевых каналов) в ответ на раздражение, и проведение следующего импульса блокируется.
Лабильность, или функциональная подвижность, - одно из физиологических свойств живых тканей. Это свойство описано Н.Е. Введенским.
Лабильность - способность воспроизводить максимальное количество циклов возбуждения (ПД) за единицу времени (в соответствии с ритмом действующих раздражителей). Считается, что мерой лабильности является максимальное число циклов возбуждения, которая способна воспроизвести возбудимая ткань в единицу времени (1с) в соответствии с ритмом получаемых раздражений.
Лабильность нервного волокна самая высокая, он способен воспроизводить от 500-1000имп/с. Меньшей лабильностью обладают мышечные волокна – 250-500 имп/с. Лабильность синапсов- 100 имп/с.
Лабильность любой ткани можно снизить искусственно например, КCI вызывает гиперполяризацию; новокаин - блокирует натриевые каналы; кураре - блокирует рецепторы постсинаптической мембраны нейро - мышечного синапса. Искусственным снижением лабильности широко пользуются в клинике. Различные наркозы вызывают снижение лабильности.
Лабильность - величина подвижная и изменчивая. Она может быть измерена косвенным путем по величине хронаксии возбудимых тканей.
Чем короче хронаксия, тем выше лабильность. Определение лабильности важно в физиологии труда и спорта.
Н.В.Введенский обнаружил, что если участок нерва подвергнуть воздействию повреждающего агента, то лабильность такого участка резко снижается. При действии на нерв частых раздражителей он не может воспроизвести ритм раздражения – проведения импульсов нарушается. Такое состояние названо было парабиозом.Парабиоз - фазовое снижение лабильности.
В развитии парабиоза различают три последовательно сменяющиеся фазы: уравнительную, парадоксальную, тормозную (рис. 6)
Рис.6. Фазы парабиоза.
I-серии раздражений разной силы; II- нормальная реакция возбудимой ткани (до парабиоза); III- уравнительная фаза; IV- парадоксальная фаза; V- тормозная фаза.
В уравнительной фазе наблюдается одинаковая ответная реакция со стороны мышцы, как на сильные, так и на слабые раздражения нерва. В норме величина ответной реакции зависит от частоты раздражения: на редкие раздражители ответная реакция меньше, на слабые - больше. В начальную стадию парабиоза при редком ритме раздражений (25Гц) все импульсы проводятся быстро, т.к. возбудимость после предыдущего импульса успевает восстановиться. При высоком ритме (100Гц) последующие импульсы могут поступать в период рефрактерности, поэтому часть импульсов не проводятся.
В парадоксальной фазе на слабый (редкий) раздражитель возникает большее по амплитуде сокращения мышцы, чем на сильный раздражитель. На слабые и умеренные раздражения ответная реакция регистрируется, а на сильные нет. Сильные (частые) раздражители еще больше снижают лабильность, удлиняя фазу абсолютной рефрактерности. Другими словами, в парадоксальную фазу парабиоза клетка на сильные раздражители отвечает слабо, а на сильные – сильно.
В тормозной фазе парабиоза никакие раздражители не способны вызвать ответную реакцию. При этом мембрана нервного волокна деполяризована и не способна генерировать ПД, т.е. нерв утрачивает способность к проведению возбуждения.
При различных стоматологических вмешательствах для предотвращения болевых ощущений необходимо проводить медикаментозное обезболивание. Одним из видов местной анестезии является проводниковый, часто используемый в стоматологической практике. При этом введение наркотического вещества нарушает обратимо физиологическую целостность нерва, что прекращает проведение возбуждения по нервному стволу. Обезболивающий эффект возникает не сразу, так как при воздействии наркотического вещества наблюдаются три последовательно сменяющиеся парабиотические фазы: уравнительная, парадоксальная, тормозная. Фазы парабиоза характеризуются разной степенью возбудимости и проводимости ткани. Врач-стоматолог должен учитывать это при различных вмешательствах в полости рта, которые следует начинать не раньше, чем разовьется тормозная стадия парабиоза
Парабиоз - явление обратимое. При устранении причины, вызвавшей парабиоз, физиологические свойства нервного волокна восстанавливаются. При этом наблюдается обратное развитие фаз парабиоза (тормозная, парадоксальная, уравнительная).
Нервные волокна обладают следующими физиологическими свойствами:
1)высокой возбудимостью (способностью приходить в состояние возбуждения в ответ на раздражение). Возбудимость нервной ткани выше, чем мышечной;
2)высокой проводимостью (способностью передавать возбуждения);
3)низкой рефрактерностью (способностью временно снижать возбудимость в процессе возбуждения). Имеет самый короткий рефрактерный период;
4)высокой лабильностью (способностью воспроизводить максимальное количество циклов возбуждения в единицу времени в соответствии с ритмом раздражения);
5)двустороннее направление проведения возбуждения;
5)низкой утомляемостью, практически нерв не утомляемы.
Самостоятельно проведите сравнение свойств нервного волокна и синапса (см. ранее).
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
В этой книге предельно сжато изложен курс лекций по нормальной физиологии. Благодаря четким определениям основных понятий студент может сформулировать ответ, за короткий срок усвоить и переработать важную часть информации, успешно сдать экзамен. Курс лекций будет полезен не только студентам, но и преподавателям.
- ЛЕКЦИЯ № 1. Введение в нормальную физиологию
- ЛЕКЦИЯ № 2. Физиологические свойства и особенности функционирования возбудимых тканей
- ЛЕКЦИЯ № 3. Физиологические свойства нервов и нервных волокон
- ЛЕКЦИЯ № 4. Физиология мышц
- ЛЕКЦИЯ № 5. Физиология синапсов
- ЛЕКЦИЯ № 6. Физиология центральной нервной системы
- ЛЕКЦИЯ № 7. Физиология различных разделов ЦНС
Приведённый ознакомительный фрагмент книги Нормальная физиология: конспект лекций (С. С. Фирсова) предоставлен нашим книжным партнёром — компанией ЛитРес.
ЛЕКЦИЯ № 3. Физиологические свойства нервов и нервных волокон
1. Физиология нервов и нервных волокон. Типы нервных волокон
Физиологические свойства нервных волокон:
1) возбудимость – способность приходить в состояние возбуждения в ответ на раздражение;
2) проводимость – способность передавать нервные возбуждение в виде потенциала действия от места раздражения по всей длине;
3) рефрактерность (устойчивость) – свойство временно резко снижать возбудимость в процессе возбуждения.
Нервная ткань имеет самый короткий рефрактерный период. Значение рефрактерности – предохранять ткань от перевозбуждения, осуществляет ответную реакцию на биологически значимый раздражитель;
4) лабильность – способность реагировать на раздражение с определенной скоростью. Лабильность характеризуется максимальным числом импульсов возбуждения за определенный период времени (1 с) в точном соответствии с ритмом наносимых раздражений.
Нервные волокна не являются самостоятельными структурными элементами нервной ткани, они представляют собой комплексное образование, включающее следующие элементы:
1) отростки нервных клеток – осевые цилиндры;
2) глиальные клетки;
3) соединительнотканную (базальную) пластинку.
Главная функция нервных волокон – проведение нервных импульсов. Отростки нервных клеток проводят сами нервные импульсы, а глиальные клетки способствуют этому проведению. По особенностям строения и функциям нервные волокна подразделяются на два вида: безмиелиновые и миелиновые.
Безмиелиновые нервные волокна не имеют миелиновой оболочки. Их диаметр 5–7 мкм, скорость проведения импульса 1–2 м/с. Миелиновые волокна состоят из осевого цилиндра, покрытого миелиновой оболочкой, образованной шванновскими клетками. Осевой цилиндр имеет мембрану и оксоплазму. Миелиновая оболочка состоит на 80 % из липидов, обладающих высоким омическим сопротивлением, и на 20 % из белка. Миелиновая оболочка не покрывает сплошь осевой цилиндр, а прерывается и оставляет открытыми участки осевого цилиндра, которые называются узловыми перехватами (перехваты Ранвье). Длина участков между перехватами различна и зависит от толщины нервного волокна: чем оно толще, тем длиннее расстояние между перехватами. При диаметре 12–20 мкм скорость проведения возбуждения составляет 70—120 м/с.
В зависимости от скорости проведения возбуждения нервные волокна делятся на три типа: А, В, С.
Наибольшей скорость проведения возбуждения обладают волокна типа А, скорость проведения возбуждения которых достигает 120 м/с, В имеет скорость от 3 до 14 м/с, С – от 0,5 до 2 м/с.
2. Механизмы проведения возбуждения по нервному волокну. Законы проведения возбуждения по нервному волокну
Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые.
В миелиновых волокнах благодаря совершенству метаболизма возбуждение проходит, не затухая, без декремента. За счет большого радиуса нервного волокна, обусловленного миелиновой оболочкой, электрический ток может входить и выходить из волокна только в области перехвата. При нанесения раздражения возникает деполяризация в области перехвата А, соседний перехват В в это время поляризован. Между перехватами возникает разность потенциалов, и появляются круговые токи. За счет круговых токов возбуждаются другие перехваты, при этом возбуждение распространяется сальтаторно, скачкообразно от одного перехвата к другому. Сальтаторный способ распространения возбуждения экономичен, и скорость распространения возбуждения гораздо выше (70—120 м/с), чем по безмиелиновым нервным волокнам (0,5–2 м/с).
Существует три закона проведения раздражения по нервному волокну.
Закон анатомо-физиологической целостности.
Проведение импульсов по нервному волокну возможно лишь в том случае, если не нарушена его целостность. При нарушении физиологических свойств нервного волокна путем охлаждения, применения различных наркотических средств, сдавливания, а также порезами и повреждениями анатомической целостности проведение нервного импульса по нему будет невозможно.
Закон изолированного проведения возбуждения.
Существует ряд особенностей распространения возбуждения в периферических, мякотных и безмякотных нервных волокнах.
В периферических нервных волокнах возбуждение передается только вдоль нервного волокна, но не передается на соседние, которые находятся в одном и том же нервном стволе.
В мякотных нервных волокнах роль изолятора выполняет миелиновая оболочка. За счет миелина увеличивается удельное сопротивление и происходит уменьшение электрической емкости оболочки.
В безмякотных нервных волокнах возбуждение передается изолированно. Это объясняется тем, что сопротивление жидкости, которая заполняет межклеточные щели, значительно ниже сопротивления мембраны нервных волокон. Поэтому ток, возникающий между деполяризованным участком и неполяризованным, проходит по межклеточным щелям и не заходит при этом в соседние нервные волокна.
Закон двустороннего проведения возбуждения.
Нервное волокно проводит нервные импульсы в двух направлениях – центростремительно и центробежно.
В живом организме возбуждение проводится только в одном направлении. Двусторонняя проводимость нервного волокна ограничена в организме местом возникновения импульса и клапанным свойством синапсов, которое заключается в возможности проведения возбуждения только в одном направлении.
- ЛЕКЦИЯ № 1. Введение в нормальную физиологию
- ЛЕКЦИЯ № 2. Физиологические свойства и особенности функционирования возбудимых тканей
- ЛЕКЦИЯ № 3. Физиологические свойства нервов и нервных волокон
- ЛЕКЦИЯ № 4. Физиология мышц
- ЛЕКЦИЯ № 5. Физиология синапсов
- ЛЕКЦИЯ № 6. Физиология центральной нервной системы
- ЛЕКЦИЯ № 7. Физиология различных разделов ЦНС
Приведённый ознакомительный фрагмент книги Нормальная физиология: конспект лекций (С. С. Фирсова) предоставлен нашим книжным партнёром — компанией ЛитРес.
Лекция 3. Физиологические свойства нервов и нервных волокон
1. Физиология нервов и нервных волокон.
2. Механизмы и законы проведения возбуждения по нервному волокну.
3. Физиологические свойства синапсов. Химическая природа медиаторов.
Физиология нервов и нервных волокон. Типы нервных волокон
Сравнительно быстрое проведение возбуждения считается специфическим свойством нервных волокон. Функциональными особенностями их являются:
а) высокая лабильность (максимальный ритм возбуждения одиночного нервного волокна достигает 400 импульсов в секунду);
б) высокие возбудимость и проводимость;
в) сравнительно низкие энерготраты и утомляемость.
Механизм проведения возбуждения по нервному и мышечному волокнам можно представить в виде двух явлений:
а) раздражающего действия катэлектротонического сигнала, порождаемого потенциалом действия возбужденного участка нервного волокна;
б) возникновения потенциала действия в новом, соседнем участке волокна.
Таким образом, каждый участок нервного и мышечного волокон сначала является раздражаемым, а затем - раздражающим. Фактически возбуждение проводится с помощью электрического поля, в котором движутся ионы. Последние формируют местные ионные токи (биотоки) между возбужденным и невозбужденным участками волокна. Теория локальных токов для объяснения механизма проведения возбуждения по нервным проводникам была обоснована в 1879 г. Л. Германном.
Физиологические свойства нервных волокон:
1) возбудимость — способность приходить в состояние возбуждения в ответ на раздражение;
2) проводимость — способность передавать нервные возбуждение в виде потенциала действия от места раздражения по всей длине;
3) рефрактерность (устойчивость) — свойство временно резко снижать возбудимость в процессе возбуждения.
Нервная ткань имеет самый короткий рефрактерный период. Значение рефрактерности — предохранять ткань от перевозбуждения, осуществляет ответную реакцию на биологически значимый раздражитель;
4) лабильность — способность реагировать на раздражение с определенной скоростью. Лабильность характеризуется максимальным числом импульсов возбуждения за определенный период времени (1 с) в точном соответствии с ритмом наносимых раздражений.
Нервные волокна не являются самостоятельными структурными элементами нервной ткани, они представляют собой комплексное образование, включающее следующие элементы:
1) отростки нервных клеток — осевые цилиндры;
2) глиальные клетки;
3) соединительнотканную (базальную) пластинку.
Безмиелиновые нервные волокна не имеют миелиновой оболочки. Их диаметр 5—7 мкм, скорость проведения импульса 1—2 м/с.
Миелиновые волокна состоят из осевого цилиндра, покрытого миелиновой оболочкой, образованной шванновскими клетками. Осевой цилиндр имеет мембрану и оксоплазму. Миелиновая оболочка состоит на 80 % из липидов, обладающих высоким омическим сопротивлением, и на 20 % из белка. Миелиновая оболочка не покрывает сплошь осевой цилиндр, а прерывается и оставляет открытыми участки осевого цилиндра, которые называются узловыми перехватами (перехваты Ранвье). Длина участков между перехватами различна и зависит от толщины нервного волокна: чем оно толще, тем длиннее расстояние между перехватами. При диаметре 12—20 мкм скорость проведения возбуждения составляет 70—120 м/с.
Нерв — комплексное образование, состоящее из нервного волокна (миелинового или безмиелинового), рыхлой волокнистой соединительной ткани, образующей оболочку нерва.
Для характеристики протекания отдельных ПД используется понятие лабильность. Лабильность – это скорость развития ответа на раздражитель (отдельных ПД). Чем выше лабильность тем больше ПД может произвести ткань в единицу времени. Мерой лабильности является наибольшее количество импульсов, которое ткань может генерировать в единицу времени. Максимальный ритм возбуждения лимитируется длительностью периода абсолютной рефрактерности. Если рефрактерность длиться 0,5 мс, то максимальный ритм составляет 1000 импульсов в секунду и выше.
Самой высокой лабильностью обладает нервная ткань. Она способна генерировать до 1000 импульсов в секунду. Мышечная ткань способна проводить до 500 импульсов в секунду. Наименьшей лабильность обладают синапсы. При этом в максимальном ритме ткань не может функционировать долго. В естественных условиях ткани реагируют на возбуждение в более низком ритме, который может сохраняться длительный период времени. Формируется этот ритм через период супернормальности и поэтому называется оптимальным. Так, у нервного волокна он составляет 500 импульсов в секунду, у мышцы 200 импульсов в секунду.
В ходе ритмического возбуждения лабильность может увеличиваться или уменьшаться. Снижение лабильности ведет к развитию процессов торможения, а ее увеличение определяет свойства ткани усваивать новые более высокие ритмы импульсации. Усвоение более высокого ритма связано с выкачиванием ионов Nа + из цитоплазмы, когда возбуждение проникает внутрь клетки. Таким образом мышцы способны усваивать более частый ритм импульсов поступающих к ним от нервных волокон.
В практической медицине используют эти фундаментальные знания
Местные анестетики блокируют натриевые каналы. Натрий не входит в нервные волокна, значит возбуждение не возникает (боль не распространяется).
Кардиологи управляют входом Кальция (лечение аритмий, гипертонии)
Физиология нервного волокна. Механизмы проведения нервного импульса в миелиновых и безмиелиновых волокнах.
Н
ервные волокна формируют нерв или нервный ствол, состоящий из нервных волокон, заключенных в общую соединительнотканную оболочку. Поверхность осевого цилиндра нервного волокна покрыта плазматической мембраной, которая выполняет главную роль в возникновении и проведении возбуждения.
Схема нервного ствола.
ФУНКЦИИ НЕРВОВ
Информационная - передача ПД от тела нейрона на периферию и обратно.
Трофическая – трафик нутриентов, органелл.
Генетическая детерминация направления роста.
Классификация нервных волокон.
По строению нервы делятся на:
миелинизированные (мякотные)
немиелинизированные.
Миелиновые волокна имеют прерывистую оболочку, которая образована сегментами миелина длиной 1—2 мм. Участок между двумя сегментами называется перехватом Ранвье. На поверхности миелин покрыт Швановскими клетками. Миелин обладает высоким сопротивлением и поэтому выполняет изоляционную функцию и кроме того он принимает участие в обмене веществ нервного волокна. Возбуждение по миелиновому волокну распространяется только через перехваты Ранвье так как там много натриевых каналов.
Безмиелиновые волокна обладают такой же структурой, но не имеют миелина. их поверхность покрыта Швановской клеткой.
Если перерезать нервное волокно, то его периферический конец через некоторое время теряет способность проводить возбуждение и дегенерирует. Перерождение периферического конца нервного волокна изучал Валлер (в 19 столетии) поэтому назвали Валлеровское перерождение. Миелин претерпевает жировое перерождение и превращается в жировые капли. Центральный конец нервного волокна способен регенерировать. На нем образуется колба роста, которая растет к периферии (в сутки от 0,4 до 4,5 мм) и достигает соответствующего органа или ткани. Таким образом, восстанавливается их иннервация. Так, первые признаки восстановления иннервации мышц могут появляться через 5—6 недель.
По направлению передачи информации (центр - периферия) нервы подразделяются на:
афферентные
эфферентные.
Эфферентные по физиологическому эффекту делятся на:
Двигательные (иннервируют мышцы).
Сосудодвигательные (иннервируют сосуды).
Секреторные (иннервируют железы).
По характеру влияния на эффекторный орган нейроны делятся на:
пусковые (переводят ткань из состояния физиологического покоя в состояние активности)
корригирующие (изменяют активность функционирующего органа).
По функциональным свойствам (строению, диаметру волокна, электровозбудимости, скорости развития потенциала действия, длительности различных фаз потенциала действия, по скорости проведения возбуждения) нервные волокна разделили на группы А, В и С.
Группа А неоднородна. Волокна этого типа в свою очередь делятся на подтипы: А-альфа, А-бета, А-гамма, А-дельта.
А-альфа – самые толстые волокна покрыты миелиновой оболочкой. Их диаметр от 12 до 22 мкм. Скорость распространения возбуждения по такому волокну составляет от 70 до 120 мс, ПД самый короткий. Эти волокна проводят возбуждение от моторных нервных центров спинного мозга к скелетным мышцам (двигательные волокна) и от проприорецепторов мышц к соответствующим нервным центрам.
Три другие группы волокон типа А (бета, гамма, дельта) имеют меньший диаметр от 8 до 1 мкм и меньшую скорость проведения возбуждения от 5 до 70 м/с. Волокна этих групп относятся преимущественно к чувствительным, проводящим возбуждение от различных рецепторов (тактильных, температурных, некоторых болевых рецепторов внутренних органов) в ЦНС. Исключение составляют лишь гамма-волокна, значительная часть которых проводит возбуждение от клеток спинного мозга к интрафузальным мышечным волокнам.
А-бета – диаметр от 8 до 13 мкм. Скорость распространения возбуждения от 40 до 70 мс.
А-гамма – диаметр от 4 до 8 мкм. Скорость распространения возбуждения от 15 до 40 мс.
А-дельта – диаметр от 1 до 4 мкм. Скорость распространения возбуждения от 5 до 15 мс.
К волокнам типа В относятся миелинизированные преганглионарные волокна вегетативной нервной системы. Их диаметр — 1- 3 мкм, а скорость проведения возбуждения — 3-18 м/с, ПД длиться 1—2 мс. У эти волокон отсутствует период супернормальности.
К волокнам типа С относятся безмиелиновые нервные волокна малого диаметра — 0,5-2,0 мкм. Скорость проведения возбуждения в этих волокнах не более от 0,5 до 3 м/с, ПД длиться 2 мс. Большинство волокон типа С — это постганглионарные волокна симпатического отдела вегетативной нервной системы, а также нервные волокна, которые проводят возбуждение от болевых рецепторов, некоторых терморецепторов и рецепторов давления.
Таким образом, скорость проведения возбуждения по нерву пропорциональна его диаметру.
Нервы практически не утомляются. Они способны очень длительное время проводить импульсы. Механизмы проведения нервного импульса в
Читайте также: