Как взаимодействуют нервные клетки
Основными структурными элементами нервной системы являются нервные клетки или нейроны. Через нейроны осуществляется передача информации от одного участка нервной системы к другому, обмен информацией между нервной системой и различными участками тела. В нейронах происходят сложнейшие процессы обработки информации. С их помощью формируются ответные реакции организма (рефлексы) на внешние и внутренние раздражения.
Таким образом, основными функциями нейронов являются: восприятие внешних раздражений — рецепторная функция, их переработка — интегративная функция и передача нервных влияний на другие нейроны или различные рабочие органы — эффекторная функция. В теле нервной клетки, или соме, происходят основные процессы переработки информации. Многочисленные древовидно разветвленные отростки — дендриты (греч. дендрон — дерево) служат входами нейрона, через которые сигналы поступают в нервную клетку. Выходом нейрона является отходящий от тела клетки отросток — аксон (греч. аксис — ось), который передает нервные импульсы дальше —другой нервной клетке или рабочему органу (мышце, железе). Особенно высокой возбудимостью обладает начальная часть аксона и расширение в месте его выхода из тела клетки — аксонный холмик нейрона. Именно в этом сегменте клетки возникает нервный импульс.
Нейроны подразделяются на три основных типа: афферентные, эфферентные и промежуточные. Афферентные нейроны (чувствительные, или центростремительные) передают информацию от рецепторов в ЦНС. Тела этих нейронов расположены вне ЦНС — в спинномозговых узлах и в узлах черепных нервов. Афферентные нейроны имеют длинный отросток — дендрит, который контактирует на периферии с воспринимающим образованием — рецептором или сам образует рецептор, а также второй отросток — аксон, входящий через задние рога в спинной мозг.
Эфферентные нейроны (центробежные, двигательные) связаны с передачей нисходящих влияний от вышележащих этажей нервной системы к нижележащим или из ЦНС к рабочим органам. Для эфферентных нейронов характерны разветвленная сеть коротких отростков — дендритов и один длинный отросток — аксон.
Промежуточные нейроны (интернейроны, или вставочные, контактные) — более мелкие клетки, осуществляющие связь между различными (в частности, афферентными и эфферентными) нейронами. Они передают нервные влияния в горизонтальном направлении (например, в пределах одного сегмента спинного мозга) и в вертикальном (например, из одного сегмента спинного мозга в другие — выше или нижележащие сегменты). Благодаря многочисленным разветвлениям аксона промежуточные нейроны могут одновременно возбуждать большое число других нейронов.
Взаимодействие нейронов между собой (и с эффекторными органами) происходит через специальные образования — синапсы (греч. — контакт). Они образуются концевыми разветвлениями нейрона на теле или отростках другого нейрона. Чем больше синапсов на нервной клетке, тем больше она воспринимает различных раздражений и, следовательно, шире сфера влияний на ее деятельность и возможность участия в разнообразных реакциях организма. Особенно много синапсов в высших отделах нервной системы и именно у нейронов с наиболее сложными функциями.
В структуре синапса различаюттри элемента (рисунок 9.1):
1)пресинаптическую мембрану, образованную утолщением мембраны конечной веточки аксона;
2)синаптическую щель между нейронами;
3)постсинаптическую мембрану — утолщение прилегающей поверхности следующего нейрона.
В большинстве случаев передача влияния одного нейрона на другой осуществляется химическим путем. В пресинаптической части контакта имеются синоптические пузырьки, которые содержат специальные вещества — медиаторы или посредники. Ими могут быть ацетилхолин (в некоторых клетках спинного мозга, в вегетативных узлах), норадреналин (в окончаниях симпатических нервных волокон, в гипоталамусе), некоторые аминокислоты и др. Приходящие в окончания аксона нервные импульсы вызывают опорожнение синаптических пузырьков и выведение медиатора в синаптическую щель.
По характеру воздействия на последующую нервную клетку различают возбуждающие и тормозящие синапсы.
А: 1 – тело аксона; 2 — митохондрия; 3 — синаптические пузырьки,
4 — пресинаптическая мембрана, 5 — синаптическая щель,
6 — постсинаптическая мембрана, 7 — рецепторы и поры дендрита следующего нейрона.
Б: направление проведения возбуждения
Рисунок 9.1 – Схема строения синапса и проведения возбуждения
В возбуждающих синапсах медиаторы (например, ацетилхолин) связываются со специфическими макромолекулами постсинаптической мембраны и вызывают ее деполяризацию. При этом регистрируется небольшое и кратковременное (около 1мс) колебание мембранного потенциала в сторону делоляризации ил и возбуждающий постсинаптический потенциал (ВПСП). Для возбуждения нейрона необходимо, чтобы ВПСП достиг порогового уровня. Для этого величина деполяризационного сдвига мембранного потенциала должна составлять не менее 10 мВ. Действие медиатора очень кратковременно (1-2 мс), после чего он расщепляется на неэффективные компоненты (например, ацетилхолин расщепляется ферментом холинэстеразой на холин и уксусную кислоту) или поглощается обратно пресинаптическими окончаниями.
В тормозящих синапсах содержатся тормозные медиаторы (например, гамма-аминомасляная кислота). Их действие на постсинаптическую мембрану вызывает усиление выхода ионов калия из клетки и увеличение поляризации мембраны. При этом регистрируется кратковременное колебание мембранного потенциала в сторону гиперполяризации — тормозящий постсинаптический потенциал (ТПСП). В результате нервная клетка оказывается заторможенной. Возбудить ее труднее, чем в исходном состоянии. Для этого понадобится более сильное раздражение, чтобы достичь критического уровня деполяризации.
Рассмотрим, как происходит возникновение импульсного ответа нейрона.
На мембране тела и дендритов нервной клетки находятся как возбуждающие, так и тормозящие синапсы. В отдельные моменты времени часть их может быть неактивной, а другая часть оказывает активное влияние на прилегающие к ним участки мембраны. Общее изменение мембранного потенциала нейрона является результатом сложного взаимодействия (интеграции) местных ВПСП и ТПСП всех многочисленных активированных синапсов. При одновременном влиянии как возбуждающих, так и тормозящих синапсов происходит алгебраическое суммирование (т.е. взаимное вычитание) их эффектов. При этом возбуждение нейрона возникнет лишь в том случае, если сумма возбуждающих постсинаптических потенциалов окажется больше суммы тормозящих. Это превышение должно составлять определенную пороговую величину (около 10 мВ). Только в этом случае появляется потенциал действия клетки. Следует отметить, что в целом возбудимость нейрона зависит от его размеров: чем меньше клетка, тем выше ее возбудимость.
С появлением потенциала действия начинается процесс проведения нервного импульса по аксону и передача его на следующий нейрон или рабочий орган, т.е. осуществляется эффекторная функция нейрона. Нервный импульс является основным средством связи между нейронами.
Таким образом, передача информации в нервной систем происходит с помощью двух механизмов — электрического механизма (ВПСП; ТПСП; потенциал действия) и химического механизма (медиаторы).
Дата добавления: 2016-09-06 ; просмотров: 6177 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Мозг человека содержит большое количество нервных клеток (нейронов), их число сопоставимо с количеством звезд в галактике. В среднем каждый из 10 12 нейронов имеет до 10 000 контактов с другими, поэтому мозг представляет собой огромную сеть взаимосвязей. Функционирование мозга изучают с различных точек зрения: как орган психической деятельности, как информационную сеть, как систему управления жизнедеятельностью человека. При этом используют как физические методы исследования (например томографию, термографию, энцефалографию), так и методы биохимии. Если первая группа методов дает сравнительно интегральную картину тепловых или электромагнитных полей, генерируемых мозгом, то вторая группа методов направлена на изучение внутриклеточных и межклеточных процессов. В частности, в последние годы были предприняты попытки сранения энцефалограмм ребенка, еще не умеющего как следует управлять своими эмоциями, и далай-ламы, способного мысленными усилиями влиять на жизнедеятельность своего организма (рис. 127).
Рис. 127. Исследование электромагнитной активности мозга
На рис. 128 показана форма отдельного нейрона и его партнеров - глиальных клеток: астроцита и олигодендроцита. Это основные типы клеток, в разных количественных пропорциях составляющие все отделы
Рис. 128. Три основных типа клеток мозга
головного мозга человека. Считают, что олигодендроциты выполняют в основном конструкционную функцию, скрепляя и поддерживая форму того или другого отдела мозга. Астроциты нс только создают имунный барьер между плазмой крови и нейронами, но и участвуют в управлении передачей сигналов. Основными элементами нейрона являются цитозоль клетки с ядром и аппаратом синтеза белков- нейромедиаторов, аксоны и дендриты. Ветвистые дендриты собирают входные сигналы от соседей, аксон проводит выходной сигнал к другим клеткам, с которыми он соединяется контактами-синапсами. По аксону (его длина от 1 мм до 1 м и более) распространяется электрический сигнал, скорость которого зависит от толщины слоя миелина на аксоне.
Рис. 129. Распространение электрического потенциала по аксону
Вдоль аксона, внутри его, движутся также везикулы с нейромедиаторами (синтезированными в цитозоле), но их скорость составляет всего 6-7 см/ч.Синапс, место контакта разветвлений аксона с мембраной других нейронов, является местом передачи и усиления сигнала. При этом определенную управляющую роль, как оказалось, играют и астроциты. Характерной чертой синаптической связи является ее односторонняя проводимость.
Рассмотрим последовательность процессов, которые происходят в синаптической щели, т. е. в промежутке между пресинагггическим нейроном и постсинаптическим нейроном. На рис. 130 щель охватывается еще и отростком астроцита. На поверхности мембран всех клеток имеются рецепторы и управляемые ионные каналы, в пресинаптическом нейроне имеется запас везикул с нейромедиатором.
Рис. 130. Процессы в синаптической щели
Когда по аксону к синаптической щели поступит сигнал (потенциал действия), он будет уловлен отростком астроцита (см. стрелку в правой части рис. 130). Под действием этого сигнала из астроцита выходят ионы двухвалентного кальция Са 2+ , проходящие через ионные каналы в прссинапти- ческое окончание. Было установлено, что четыре иона Са стимулируют выход везикулы на поверхность мембраны, где происходит экзоцитоз, т. е. выброс молекул нейромедиатора в синаптическую щель.
Следует сказать, что дофамин является предшественником норадреналина и адренолина. Эти нейромедиаторы образуются из тирозина, - аминокислоты, которая поступает в организм человека только с пищей. Это одна из так называемых незаменимых аминокислот. Названные вещества участвуют:
- • в активации бодрствования центральной нервной системы;
- • регуляции центров биологических потребностей;
- • регуляции эмоций (азарта, любопытства, удовольствия и т. д.).
Не случайно, что через них проявляется действие на человека психотропных препаратов или наркотиков. Так, например, под действием героина происходит обильный неконтролируемый выброс дофамина в синаптическую щель. Это приводит к усиленному возбуждению лимбической системы, и наблюдается кратковременная эйфория измененного сознания, причем превалирует активация биологических, подсознательных реакций, тех, что остались в человеке от животного.
Механизм влияния кокаина несколько другой: он блокирует работу обратных переносчиков дофамина, тем самым увеличивая во много раз время присутствия дофамина в синаптической щели.
В результате многократного приема психотропных веществ нейроны мозга человека погибают (рис. 131, правая часть).
Рис. 131. Нормальный нейрон (слева) и погибший (справа)
В нормальном нейроне хорошо различим аппарат синтеза необходимых нейрону белков, под действием наркотиков эти структуры в цитозоле оказываются полностью разрушенными. А ведь нервные клетки не делятся и не восстанавливаются.
Здравствуйте, уважаемое сообщество Geektimes! Идея взаимодействия нейронов не только через физические связи (синапсы, эфапсы), но и посредством электрических полей, давно не нова, но какой характер и значение этих взаимодействий?
Прямых исследований на указанную тему немного, это связанно с тем, что требуется трудоемкая работа по регистрации изменений в нейронах под действием внешних электрических полей. К примеру, эксперимент, проведенный нейрофизиологами из Калифорнийского Технологического института (C.A. Anastassiou, R. Perin, H. Markram, C. Koch (2011) Ephaptic communication in cortical neurons. — Nature Neuroscience [Abstract], [PDF]), показал, что внеклеточные электрические поля, генерируемые нейронами, изменяют характеристики потенциалов действия других нейронов.
Не смотря на то, что нейрон имеет множество контактов с клетками соседями, радиус его действия ограничен в сравнении с масштабами нервной системы в целом. Становится не ясным, как происходит коммутация нейронов при формировании простых условных рефлексов, поскольку расстояния между различными представительствами тех или иных рефлексов можно насчитывать до сотни миллиметров.
Если следовать Павловским идеям, то каждый активированный нейрон должен определять, в каком направлении существует наиболее сильный очаг возбуждения и, в последствии, передать в нужном направлении возбуждение. Нейрон может запомнить данное направление и использовать его в дальнейшем. Здесь нейрон представлен в виде некоторого коммутатора. Сеть таких коммутаторов формирует рефлекторную дугу, подобно электрической цепи которая может формироваться, укрепляться, перестраиваться и разрушаться. Конечно, функции сумматора сохраняются за нейроном, что расширяет возможности такой самоорганизованной системы.
Для проверки гипотезы мной разработана модель, в которой нейрон подобно клеточному автомату, проводит свои внутренние вычисления независимо от системы, только на основе собранной информации. Во-первых, при получении возбуждения нейроном его переменная q (заряд) начинает сменятся с частотой 0,01с в зависимости от заданного массива чисел характеризующих закон изменения заряда на поверхности его мембраны. Всего шестнадцать значений, после чего нейрон на некоторый короткий промежуток времени не реагирует на раздражение.
Для демонстрации представим четыре варианта закона изменения заряда, главным образом отличающиеся значением отрицательного следового потенциала. Считается, что следовые потенциалы являются лишь следствием реполяризации нейрона. В своих работах над моделями я пришел к выводу, что следовый потенциал имеет важное значения для коммуникации нейронов.
Во-вторых, через 0,05с после активации нейрон определяет направление передачи возбуждения и передает его. Для определения вектора направления логичней всего применить закон Кулона, но микромир клеток не так прост и никто не исключает наличие органоида у нейрона способного усиливать сигналы других активных нейронов. Поэтому в демонстрации представим три правила определения вектора направления:
Первое правило — это воплощение закона Кулона, вектор направления определятся, как сумма векторов взаимодействия с каждым другим активным нейроном. Вектора взаимодействия — это произведение заряда нейрона на единичный вектор, поделенное на квадрат расстояния между нейронами. Второе правило аналогичное, но с учетом обратной пропорциональности расстояния. И третий закон без учёта расстояния между нейронами.
Далее, осуществляется передача сигнала всем нейронам в направлении определенного вектора направления с учётом радиуса действия нейрона, его фокуса, который равен 90 градусов.
Если в направлении вектора не окажется нейронов, то создастся новый нейрон и ему будет передаваться возбуждение. Динамическое создание нейронов имеет здесь техническое значение, это делает работу модели более наглядной, упрощает просчет её работы.
Буду признателен за помощь в сборе информации подтверждающей идеи, изложенных в указанной статье и конструктивной критике.
Строение нейрона
Каждая структура в организме человека состоит из специфических тканей, присущих органу или системе. В нервной ткани – нейрон (нейроцит, нерв, неврон, нервное волокно). Что такое нейроны головного мозга? Это структурно-функциональная единица нервной ткани, входящая в состав головного мозга. Кроме анатомического определения нейрона, существует также функциональное – это возбуждающаяся электрическими импульсами клетка, способная к обработке, хранению и передаче на другие нейроны информации с помощью химических и электрических сигналов.
Строение нервной клетки не так сложно, в сравнении со специфическими клетками прочих тканей, также оно определяет её функцию. Нейроцит состоит из тела (другое название – сома), и отростков – аксон и дендрит. Каждый элемент неврона выполняет свою функцию. Сома окружена слоем жирной ткани, пропускающая лишь жирорастворимые вещества. Внутри тела располагается ядро и прочие органеллы: рибосомы, эндоплазматическая сеть и другие.
Кроме собственно нейронов, в головном мозге преобладают следующие клетки, а именно: глиальные клетки. Их часто называют мозговым клеем за их функцию: глия выполняет вспомогательную функцию для нейронов, обеспечивая окружение для них. Глиальная ткань предоставляет возможность нервной ткани регенерации, питания и помогает при создании нервного импульса.
Количество нейронов в головном мозге всегда интересовало исследователей в области нейрофизиологии. Так, численность нервных клеток варьировалось от 14 миллиардов до 100. Последними исследованиями бразильских специалистов выяснилось, что число нейронов составляет в среднем 86 миллиардов клеток.
Инструментом в руках нейрона являются отростки, благодаря которым нейрон способен выполнять свою функцию передатчика и хранителя информации. Именно отростки формируют широкую нервную сеть, что позволяет человеческой психике раскрываться во всей ее красе. Бытует миф, будто умственные способности человека зависят от количества нейронов или от веса головного мозга, но это не так: гениями становятся те люди, у которых поля и подполя мозга сильно развиты (больше в несколько раз). За счет этого поля, отвечающие за определенные функции, смогут выполнять эти функции креативнее и быстрее.
Аксон – это длинный отросток нейрона, передающий нервные импульсы от сомы нерва к другим таким же клеткам или органам, иннервируемым определенным участком нервного столба. Природа наделила позвоночных животных бонусом – миелиновым волокном, в структуре которого находятся шванновские клетки, между которыми располагаются небольшие пустые участки – перехваты Ранвье. По ним, как по лесенке, нервные импульсы перескакивают от одного участка к другому. Такая структура позволяет в разы ускорить передачу информации (примерно до 100 метров в секунду). Скорость передвижения электрического импульса по волокну, не обладающего миелином, составляет в среднем 2-3 метра в секунду.
Иной вид отростков нервной клетки – дендриты. В отличие от длинного и цельного аксона, дендрит является короткой и разветвленной структурой. Этот отросток не участвует в передачи информации, а только в ее получении. Так, к телу нейрона возбуждение поступает с помощью коротких веток дендритов. Сложность информации, которую дендрит способен получит, определяется его синапсами (специфические нервные рецепторы), а именно его диаметром поверхности. Дендриты, благодаря огромному количеству своих шипиков, способны устанавливать сотни тысяч контактов с другими клетками.
Отличительной особенностью нервных клеток является их обмен веществ. Метаболизм в нейроците выделяется своей высокой скоростью и преобладанием аэробных (основанных на кислороде) процессов. Такая черта клетки объясняется тем, что работа головного мозга чрезвычайно энергоемкая, и его потребность в кислороде велика. Несмотря на то, что вес мозга составляет всего 2% от веса всего тела, его потребление кислорода составляет примерно 46 мл/мин, а это – 25% от общего потребления организма.
Главным источником энергии для ткани мозга, кроме кислорода, является глюкоза, где она проходит сложные биохимические преобразования. В конечном итоге из сахарных соединений высвобождается большое количество энергии. Таким образом, на вопрос о том, как улучшить нейронные связи головного мозга, можно ответить: употреблять продукты, содержащие соединения глюкозы.
Функции нейрона
Несмотря на относительно не сложное строение, нейрон обладает множеством функций, главные из которых следующие:
- восприятие раздражения;
- обработка стимула;
- передача импульса;
- формирование ответной реакции.
Функционально нейроны подразделяются на три группы:
Кроме этого в нервной системе функционально выделяют еще одну группу – тормозящие (отвечают за торможения возбуждения клеток) нервы. Такие клетки противодействуют распространению электрического потенциала.
Классификация нейронов
Нервные клетки разнообразны как таковые, поэтому нейроны можно классифицировать, отталкиваясь от разных их параметров и атрибутов, а именно:
- Форма тела. В разных отделах мозга располагаются нейроциты разной формы сомы:
- звездчатые;
- веретеновидные;
- пирамидные (клетки Беца).
- По количеству отростков:
- униполярные: имеют один отросток;
- биполярные: на теле располагаются два отростка;
- мультиполярные: на соме подобных клеток располагаются три или более отростков.
- Контактные особенности поверхности нейрона:
- аксо-соматический. В таком случае аксон контактирует с сомой соседней клетки нервной ткани;
- аксо-дендритический. Данный тип контакта предполагает соединение аксона и дендрита;
- аксо-аксональный. Аксон одного нейрона имеет связи с аксоном другой нервной клетки.
Для того чтоб осуществлять осознанные движения нужно, чтобы импульс, образовавшийся в двигательных извилинах головного мозга смог достичь необходимых мышц. Таким образом, выделяют следующие виды нейронов: центральный мотонейрон и таковой периферический.
Первый вид нервных клеток берет свое начало у передней центральной извилины, расположенной спереди от самой большой борозды мозга – борозды Роланда, а именно от пирамидных клеток Беца. Далее аксоны центрального нейрона углубляются в полушария и проходят сквозь внутреннюю капсулу мозга.
Периферические же двигательные нейроциты образованы двигательными нейронами передних рогов спинного мозга. Их аксоны достигают различных образований, таких как сплетения, спинномозговые нервные скопления, и, главное – мышц-исполнителей.
Развитие и рост нейронов
Нервная клетка берет свое начало от клетки-предшественницы. Развиваясь, первые начинают отрастать аксоны, дендриты дозревают несколько позже. Под конец эволюции отростка нейроцита у сомы клетки образуется маленькое уплотнение неправильной формы. Такое образование называется конусом роста. В нем содержатся митохондрии, нейрофиламенты и трубочки. Постепенно созревают рецепторные системы клетки и расширяются синаптические области нейроцита.
Проводящие пути
Нервная система имеет свои сферы влияния по всему организму. С помощью проводящих волокон осуществляется нервная регуляция систем, органов и тканей. Мозг, благодаря широкой системе проводящих путей, полностью контролирует анатомическое и функциональное состояние всякой структуры организма. Почки, печень, желудок, мышцы и другие – все это инспектирует головной мозг, тщательно и кропотливо координируя и регулируя каждый миллиметр ткани. А в случае сбоя – корректирует и подбирает подходящую модель поведения. Таким образом, благодаря проводящим путям организм человека отличается автономностью, саморегуляцией и адаптивностью к внешней среде.
Проводящий путь – это скопление нервных клеток, функция которых заключается в обмене информации между различными участками тела.
- Ассоциативные нервные волокна. Эти клетки соединяют между собой различные нервные центры, что располагаются в одном полушарии.
- Комиссуриальные волокна. Эта группа отвечает за обмен информацией между аналогичными центрами головного мозга.
- Проекционные нервные волокна. Данная категория волокон сочленяет головной мозг со спинным.
- Экстероцептивные пути. Они несут электрические импульсы от кожи и других органов чувств к спинному мозгу.
- Проприоцептивные. Такая группа путей проводят сигналы от сухожилий, мышц, связок и суставов.
- Интероцептивные проводящие пути. Волокна этого тракта берут начало из внутренних органов, сосудов и кишечных брыжеек.
Взаимодействие с нейромедиаторами
Нейроны разного местонахождения общаются между собой с помощью электрических импульсов химической природы. Так, что же лежит в основе их образования? Существуют так называемые нейромедиаторы (нейротрансмиттеры) – сложные химические соединения. На поверхности аксона располагается нервный синапс – контактная поверхность. С одной стороны находится пресинаптическая щель, а с другой – постсинаптическая. Между ними находится щель – это и есть синапс. На пресинаптической части рецептора располагаются мешочки (везикулы), содержащие определенное количество нейромедиаторов (квант).
Когда импульс подходит к первой части синапса, инициируется сложный биохимический каскадный механизм, в результате которого мешочки с медиаторами вскрываются, и кванты веществ-посредников плавно вытекают в щель. На этом этапе импульс исчезает, и появляется вновь только тогда, когда нейромедиаторы достигают постсинаптической щели. Тогда снова активируются биохимические процессы с открытиями ворот для медиаторов и те, действуя на мельчайшие рецепторы, преобразуются в электрический импульс, идущий далее в глубины нервных волокон.
Между тем выделяют разные группы этих самых нейромедиаторов, а именно:
- Тормозные нейромедиаторы – группа веществ, осуществляющие тормозное действие на возбуждение. К ним относят:
- гамма-аминомасляную кислоту (ГАМК);
- глицин.
- Возбуждающие медиаторы:
- ацетилхолин;
- дофамин;
- серотонин;
- норадреналин;
- адреналин.
Восстанавливаются ли нервные клетки
Долгое время считалось, что нейроны не способны к делению. Однако такое утверждение, согласно современным исследованиям, оказалось ложным: в некоторых отделах мозга происходит процесс нейрогенеза предшественников нейроцитов. Кроме того, мозговая ткань обладает выдающимися способностями к нейропластичности. Известно множество случаев, когда здоровый участок мозга берет на себя функцию поврежденного.
Многие специалисты в области нейрофизиологии задавались вопросом о том, как восстановить нейроны головного мозга. Свежими исследованиями американских ученых выяснилось: для своевременной и правильной регенерации нейроцитов не нужно употреблять дорогие препараты. Для этого необходимо лишь составить верный режим сна и правильно питаться с включением в диету витаминов группы В и низкокалорийной пищи.
В случае если произойдет нарушение нейронных связей головного мозга, те способны восстановиться. Однако существуют серьезные патологии нервных связей и путей, такие как болезнь двигательного нейрона. Тогда необходимо обращаться к специализированной клинической помощи, где врачи-неврологи смогут выяснить причину патологии и составить правильное лечение.
Люди, ранее употреблявшие или употребляющие алкоголь, часто задают вопрос о том, как восстановить нейроны головного мозга после алкоголя. Специалист бы ответил, что для этого необходимо систематично работать над своим здоровьем. В комплекс мероприятий входит сбалансированное питание, регулярное занятие спортом, умственная деятельность, прогулки и путешествия. Доказано: нейронные связи головного мозга развиваются через изучение и созерцание категорически новой для человека информации.
В условиях перенасыщения лишней информацией, существования рынка фаст-фуда и сидящего образа жизни мозг качественно поддаётся различным повреждениям. Атеросклероз, тромботические образование на сосудах, хронические стрессы, инфекции, – все это – прямая дорога к засорению мозга. Несмотря на это существуют лекарства, восстанавливающие клетки головного мозга. Основная и популярная группа – ноотропы. Препараты данной категории стимулируют обмен веществ в нейроцитах, увеличивают стойкость к кислородной недостаточности и оказывают позитивный эффект на различные психические процессы (память, внимание, мышление). Кроме ноотропов, фармацевтический рынок предлагает препараты, содержащие никотиновую кислоту, укрепляющие стенки сосудов средства и другие. Следует помнить, что восстановление нейронных связей головного мозга при приеме различных препаратов является долгим процессом.
Читайте также: