Какие ионы участвуют в проведении нервного импульса
Возникновение нервного импульса связано с состоянием мембраны нейрона. Биологические мембраны, будучи липидно-белковым комплексом, непроницаемы для заряженных ионов. Перемещение ионов через мембрану осуществляется с помощью специальных транспортных систем: натриевого насоса, работающего с затратой энергии (Na + , К + -АТФ-аза) и ионпроводящих каналов – натриевых и калиевых.
В состоянии физиологического покоя по разные стороны мембраны имеет место разность концентраций ионов, главным образом Na + и К + . Концентрация ионов К + выше в клетке, ионов Na + – в межклеточной жидкости. Это влияет и на распределение других ионов. Разность концентраций ионов поддерживается с помощью натриевого насоса, перекачивающего ионы против градиента концентрации (в противном случае диффузия ионов по градиенту концентрации привела бы к выравниванию концентраций ионов по обе стороны мембраны и гибели клетки) Таким образом, внутри аксона образуется избыток (–) зарядов, снаружи – (+) зарядов, то есть возникает разность электрических потенциалов – потенциал покоя (ПП). Его значение составляет – 60-70 мВ. ПП одинаков по всей длине нервного волокна (рис. 4).
Раздражение нервного волокна приводит сначала к открытию Na + - и К + - каналов. Раньше открываются Na + -каналы, и в клетку устремляется поток ионов натрия. Это изменяет трансмембранный потенциал: сначала он становится равным 0 (деполяризация мембраны), затем происходит перезарядка мембраны, внутренняя сторона мембраны приобретает (+) заряд, наружная (-). Разность потенциалов при этом достигает 40 мВ. Эта величина и есть потенциал действия (ПД)
Натриевые каналы закрываются, открываются калиевые, начинается выход калия из клетки, потенциал изменяется от – 40 мВ до – 70 мВ, то есть идет реполяризация мембраны. После закрытия ионных каналов ионный насос восстанавливает исходное распределение ионов по сторонам мембраны.
Механизмы памяти.
Концепции биохимического кодирования индивидуального опыта в памяти опираются на две группы фактов:
· возможность передачи приобретенной информации необученному мозгу с помощью этих факторов.
Первые гипотезы, связывающие запечатление информации с биохимическими изменениями в нервной ткани родились на основе широко известных в 60-е гг. опытов Г. Хидена, когда было показано, что образование следов памяти сопровождается изменениями свойств РНК и белка в нейронах.
Выяснилось, что раздражение нервной клетки увеличивает в ней содержание РНК и оставляет длительные биохимические следы, сообщающие клетке способность резонировать в ответ на повторные действия одних и тех же раздражителей.
Таким образом, было установлено, что РНК играет важную роль в механизмах формирования и сохранения следов памяти.
Однако в более поздних работах было показано, что в консолидации энграмм памяти ведущую роль играет ДНК, которая может служить хранилищем не только генетической, но и приобретенной информации, а РНК обеспечивает передачу специфического информационного кода.
В настоящее время идея существования биохимических факторов, способных к сохранению и переносу информации, большинством исследователей воспринимается критически. Считается, что гипотеза молекулярного кодирования индивидуального опыта не имеет прямых фактических доказательств.
Медиаторам - химическим посредникам в синаптической передаче информации - придается большое значение в обеспечении механизмов долговременной памяти. Основные медиаторные системы головного мозга принимают самое непосредственное участие в обучении и формировании энграмм памяти. Так, экспериментально установлено, что уменьшение количества норадреналина замедляет обучение, вызывает амнезию и нарушает извлечение следов из памяти.
Р.И. Кругликов (1986) разработал концепцию, в соответствии с которой в основе долговременной памяти лежат сложные структурно-химические преобразования на системном и клеточном уровнях головного мозга. Показано, что под влиянием обучения увеличивается количество холинорецепторов, то есть рецепторов, расположенных на теле нейрона и отвечающих за обнаружение медиатора ацетилхолина. В процессе образования условного рефлекса повышается чувствительность соответствующих нейронов к ацетилхолину, что облегчает обучение, ускоряет запоминание и способствует более быстрому извлечению следа из памяти. В то же время вещества, препятствующие действию ацетилхолина, нарушают обучение и воспроизведение, вызывая амнезию (потерю памяти).
Биохимические методы, которые позволяют проникнуть в последовательность процессов, происходящих в синаптических мембранах с последующим синтезом новых белков, привлекают многих исследователей памяти. На этом пути ожидаются новые яркие открытия. Предполагается, например, что для различных видов памяти в ближайшем будущем будут выявлены различия в биохимических процессах.
Тем не менее следует подчеркнуть, что интенсивные биохимические исследования привели к явной переоценке и автономизации клеточно-молекулярного уровня изучения механизмов памяти. Как указывает С. Роуз, эксперименты, проводимые только на клеточном уровне, слишком ограничены и, по-видимому, не способны ответить на вопрос, как мозг человека запоминает, например, сложные симфонические партитуры или извлекает из памяти данные, необходимые для разгадывания простого кроссворда.
Для более полного знания специфики функционирования процессов памяти необходим переход на уровень сложных мозговых систем, где многие нейроны соединены между собой морфологическими и функциональными связями. При этом психофизиологические исследования на здоровых людях позволяют изучать процессы переработки и хранения информации, а изучение больных с различного рода амнезиями, возникающими после повреждения мозга, позволяет глубже проникать в тайны памяти.
Березов стр. 641-642
Дата добавления: 2019-07-15 ; просмотров: 732 ;
A2. Какие ионы участвуют в проведении нервного импульса?
1) Na+ и Cl–; 3) Fe2+ и K+;
2) Mg2+ и Na+; 4) Na+ и K+.
A3. Какой из нейронов расположен первым в рефлекторной дуге?
1) двигательный; 3) ассоциативный;
2) чувствительный; 4) вставочный.
A4. Белое вещество спинного мозга образовано…
1) ядрами нейронов и нейроглии;
2) телами нейронов и нейроглии;
3) аксонами;
4) дендритами и телами нейронов.
A5. Из какой ткани состоят оболочки, защищающие головной и спинной мозг?
1) нервной; 3) соединительной;
2) эпителиальной; 4) мышечной.
A6. Тела каких нейронов в сером веществе спинного мозга отсутствуют?
1) чувствительных; 3) вегетативных;
2) двигательных; 4) вставочных.
A7. Сколько пар черепно-мозговых нервов отходит от головного мозга?
1) 9; 2) 10; 3) 11; 4) 12.
A8. Какой отдел головного мозга непосредственно переходит в спинной мозг?
1) продолговатый мозг; 3) промежуточный мозг;
2) средний мозг; 4) мост.
A9. Нервный центр какого безусловного рефлекса расположен в среднем мозге?
1) зрачкового; 3) мигательного;
2) чихательного; 4) обонятельного.
A10. Какой отдел головного мозга включает кору?
1) мост; 3) промежуточный мозг;
2) средний мозг; 4) мозжечок.
A11. Назовите долю коры больших полушарий, в которой находится центральный отдел слухового анализатора:
1) лобная; 2) теменная; 3) височная; 4) затылочная.
A12. Через какой участок головного мозга обязательно проходят дуги условных рефлексов?
1) кора больших полушарий;
2) задний мозг;
3) продолговатый мозг;
4) гипоталамус.
A13. Какие отделы головного мозга образуют ствол мозга?
1) средний мозг, мозжечок и продолговатый мозг;
2) мост, средний и продолговатый мозг;
3) мост, мозжечок, средний, промежуточный и продолговатый мозг;
4) промежуточный, средний и продолговатый мозг.
A14. Какой признак характерен для мозга человека и для мозга всех млекопитающих?
1) есть речевой нервный центр;
2) лобная доля коры является самой крупной в больших полушариях;
3) в коре больших полушарий есть чувствительные и двигательные зоны;
4) большие полушария покрыты корой с извилинами и бороздами.
A15. В каком отделе мозга находятся нервные центры сосания и глотания?
1) кора больших полушарий;
2) средний мозг;
3) промежуточный мозг;
4) продолговатый мозг.
A16. Какой из отделов головного мозга координирует произвольные и непроизвольные движения человека?
1) промежуточный мозг; 3) средний мозг;
2) мозжечок; 4) продолговатый мозг.
A17. Какое действие не является рефлексом?
1) учащение сердцебиения при сильном испуге;
2) поворот головы в сторону неожиданного источника звука;
3) сокращение мышц при ходьбе;
4) вдох и выдох.
A18. Какое свойство характерно для большинства нейронов?
1) способность к митозу;
2) выделение ферментов и гормонов;
3) возбудимость;
4) движение.
A19. Какую функцию выполняет белое вещество мозга?
1) двигательную; 3) чувствительную;
2) рефлекторную; 4) проводниковую.
A20. Какая зона находится в затылочной доле коры?
1) кожно-мышечная; 3) слуховая;
2) зрительная; 4) осязательная.
Часть C
C1. Человек не может поднять со стола кружку с молоком, при этом его мышцы работоспособны. Объясните данное явление.
C2. Чем отличается головной мозг человека от мозга других млекопитающих? Приведите не менее трех отличий.
C3. Ладонь руки человека не чувствует боли или температуры окружающей среды, но мышцы работают нормально. Какие нарушения и в каких частях нервной системы могли произойти у этого человека?
Кандидат биологических наук Л. Чайлахян, научный сотрудник Института биофизики АН СССР
Мозг человека, без сомнения, высшее достижение природы.
Велика и заманчива цель, но неимоверно сложен объект исследования. Шутка сказать, этот килограмм ткани представляет собой сложнейшую систему связи десятков миллиардов нервных клеток.
Однако первый существенный шаг к познанию работы мозга уже сделан. Может быть, он один из самых легких, но он чрезвычайно важен для всего дальнейшего.
Я имею в виду исследование механизма передачи нервных импульсов — сигналов, бегущих по нервам, как по проводам. Именно эти сигналы являются той азбукой мозга, с помощью которой органы чувств посылают в центральную нервную систему сведения-депеши о событиях во внешнем мире. Нервными импульсами зашифровывает мозг свои приказы мышцам и различным внутренним органам. Наконец, на языке этих сигналов говорят между собой отдельные нервные клетки и нервные центры.
В проблеме изучения механизма нервного импульса и его распространения можно выделить два основных вопроса: природа проведения нервного импульса или возбуждения в пределах одной клетки — по волокну и механизм передачи нервного импульса от клетки к клетке — через синапсы.
Какова природа сигналов, передающихся от клетки к клетка по нервным волокнам?
Этой проблемой человек интересовался уже давно, Декарт предполагал, что распространение сигнала связано с переливанием жидкости по нервам, как по трубкам. Ньютон думал, что это чисто механический процесс. Когда появилась электромагнитная теория, ученые решили, что нервный импульс аналогичен движению тока по проводнику со скоростью, близкой к скорости распространения электромагнитных колебаний. Наконец, с развитием биохимии появилась точка зрения, что движение нервного импульса — это распространение вдоль по нервному волокну особой биохимической реакции.
И всё же ни одно из этих представлений не оправдалось.
В настоящее время природа нервного импульса раскрыта: это удивительно тонкий электрохимический процесс, в основе которого лежит перемещение ионов через оболочку клетки.
Большой вклад в раскрытие этой природы внесли работы трех ученых: Алана Ходжкина, профессора биофизики Кембриджского университета; Эндрью Хаксли, профессора физиологии Лондонского университета, и Джона Экклса, профессора физиологии австралийского университета в Канберре. Им присуждена Нобелевская премия в области медицины за 1963 год,
Впервые предположение об электрохимической природе нервного импульса высказал известный немецкий физиолог Бернштейн в начале нашего столетия.
К началу двадцатого века было довольно многое известно о нервном возбуждении. Ученые уже знали, что нервное волокно можно возбудить электрическим током, причем возбуждение всегда возникает под катодом — под минусом. Было известно, что возбужденная область нерва заряжается отрицательно по отношению к невозбужденному участку. Было установлено, что нервный импульс в каждой точке длится всего 0,001—0,002 секунды, что величина возбуждения не зависит от силы раздражения, как громкость звонка в нашей квартире не зависит от того, как сильно мы нажимаем на кнопку. Наконец, ученые установили, что носителями электрического тока в живых тканях являются ионы; причем внутри клетки основной электролит — соли калия, а в тканевой жидкости — соли натрия. Внутри большинства клеток концентрация ионов калия в 30—50 раз больше, чем в крови и в межклеточной жидкости, омывающей клетки.
И вот на основании всех этих данных Бернштейн предположил, что оболочка нервных и мышечных клеток представляет собой особую полупроницаемую мембрану. Она проницаема только для ионов К + ; для всех остальных ионов, в том числе и для находящихся внутри клетки отрицательно заряженных анионов, путь закрыт. Ясно, что калий по законам диффузии будет стремиться выйти из клетки, в клетке возникает избыток анионов, и по обе стороны мембраны появится разность потенциалов: снаружи — плюс (избыток катионов), внутри — минус (избыток анионов). Эта разность потенциалов получила название потенциала покоя. Таким образом, в покое, в невозбужденном состоянии внутренняя часть клетки всегда заряжена отрицательно по сравнению с наружным раствором.
Бернштейн предположил, что в момент возбуждения нервного волокна происходят структурные изменения поверхностной мембраны, ее поры как бы увеличиваются, и она становится проницаемой для всех ионов. При этом, естественно, разность потенциалов исчезает. Это и вызывает нервный сигнал.
Мембранная теория Бернштейма быстро завоевала признание и просуществовала свыше 40 лет, вплоть до середины нашего столетия.
Но уже в конце 30-х годов теория Бернштейна встретилась с непреодолимыми противоречиями. Сильный удар ей был нанесен в 1939 году тонкими экспериментами Ходжкина и Хаксли. Эти ученые впервые измерили абсолютные величины мембранного потенциала нервного волокна в покое и при возбуждении. Оказалось, что при возбуждении мембранный потенциал не просто уменьшался до нуля, а переходил через ноль на несколько десятков милливольт. То есть внутренняя часть волокна из отрицательной становилась положительной.
Но мало ниспровергнуть теорию, надо заменить ее другой: наука не терпит вакуума. И Ходжкин, Хаксли, Катц в 1949—1953 годах предлагают новую теорию. Она получает название натриевой.
Здесь читатель вправе удивиться: до сих пор о натрии не было речи. В этом все и дело. Ученые установили с помощью меченых атомов, что в передаче нервного импульса замешаны не только ионы калия и анионы, но и ионы натрия и хлора.
В организме достаточно ионов натрия и хлора, все знают, что кровь соленая на вкус. Причем натрия в межклеточной жидкости в 5—10 раз больше, чем внутри нервного волокна.
Что же это может означать? Ученые предположили, что при возбуждении в первый момент резко увеличивается проницаемость мембраны только для натрия. Проницаемость становится в десятки раз больше, чем для ионов калия. А так как натрия снаружи в 5—10 рез больше, чем внутри, то он будет стремиться войти в нервное волокно. И тогда внутренняя часть волокна станет положительной.
А через какое-то время — после возбуждения — равновесие восстанавливается: мембрана начинает пропускать и ионы калия. И они выходят наружу. Тем самым они компенсируют тот положительный заряд, который был внесен внутрь волокна ионами натрия.
Совсем нелегко было прийти к таким представлениям. И вот почему: диаметр иона натрия в растворе раза в полтора больше диаметра ионов калия и хлора. И совершенно непонятно, каким образом больший по размеру ион проходит там, где не может пройти меньший.
Нужно было решительно изменить взгляд на механизм перехода ионов через мембраны. Ясно, что только рассуждениями о порах в мембране здесь не обойтись. И тогда была высказана идея, что ионы могут пересекать мембрану совершенно другим способом, с помощью тайных до поры до времени союзников — особых органических молекул-переносчиков, спрятанных в самой мембране. С помощью такой молекулы ионы могут пересекать мембрану в любом месте, а не только через поры. Причем эти молекулы-такси хорошо различают своих пассажиров, они не путают ионы натрия с ионами калия.
Интересно, что нервные волокна тратят на свою основную работу — проведение нервных импульсов — всего около 15 минут в сутки. Однако готовы к этому волокна в любую секунду: все элементы нервного волокна работают без перерыва — 24 часа в сутки. Нервные волокна в этом смысле подобны самолетам-перехватчикам, у которых непрерывно работают моторы для мгновенного вылета, однако сам вылет может состояться лишь раз в несколько месяцев.
Мы познакомились сейчас с первой половиной таинственного акта прохождения нервного импульса — вдоль одного волокна. А как же передается возбуждение от клетки к клетке, через места стыков — синапсы. Этот вопрос был исследован в блестящих опытах третьего нобелевского лауреата, Джона Экклса.
Возбуждение не может непосредственно перейти с нервных окончаний одной клетки на тело или дендриты другой клетки. Практически весь ток вытекает через синаптическую щель в наружную жидкость, и в соседнюю клетку через синапс попадает ничтожная его доля, неспособная вызвать возбуждение. Таким образом, в области синапсов электрическая непрерывность в распространении нервного импульса нарушается. Здесь, на стыке двух клеток, в силу вступает совершенно другой механизм.
Когда возбуждение подходит к окончанию клетки, к месту синапса, в межклеточную жидкость выделяются физиологически активные вещества — медиаторы, или посредники. Они становятся связующим звеном в передаче информации от клетки к клетке. Медиатор химически взаимодействует со второй нервной клеткой, изменяет ионную проницаемость ее мембраны — как бы пробивает брешь, в которую устремляются многие ионы, в том числе и ионы натрия.
Итак, благодаря работам Ходжкина, Хаксли и Экклса важнейшие состояния нервной клетки — возбуждение и торможение — можно описать в терминах ионных процессов, в терминах структурно-химических перестроек поверхностных мембран. На основании этих работ уже можно делать предположения о возможных механизмах кратковременной и долговременной памяти, о пластических свойствах нервной ткани. Однако это разговор о механизмах в пределах одной или нескольких клеток. Это лишь, азбука мозга. По-видимому, следующий этап, возможно, гораздо более трудный, — вскрытие законов, по которым строится координирующая деятельность тысяч нервных клеток, распознание языка, на котором говорят между собой нервные центры.
Мы сейчас в познании работы мозга находимся на уровне ребенка, который узнал буквы алфавита, но не умеет связывать их в слова. Однако недалеко время, когда ученые с помощью кода — элементарных биохимических актов, происходящих в нервной клетке, прочтут увлекательнейший диалог между нервными центрами мозга.
Детальное описание иллюстраций
Рассмотрим химические основы возникновения и поддержания биоэлектрических потенциалов (потенциала покоя и потенциала действия). Большинство исследователей придерживаются мнения, что явления электрической поляризации клетки обусловлены неравномерным распределением ионов К + и Na + по обе стороны клеточной мембраны. Мембрана обладает избирательной проницаемостью: большей для ионов К + и значительно меньшей для ионов Na + . Кроме того, в нервных клетках существует механизм, который поддерживает внутриклеточное содержание натрия на низком уровне вопреки градиенту концентрации. Этот механизм получил название натриевого насоса.
При определенных условиях резко повышается проницаемость мембраны для ионов Na + .
В состоянии покоя внутренняя сторона клеточной мембраны заряжена электроотрицательно по отношению к наружной поверхности. Объясняется это тем, что количество ионов Na + , выкачиваемых из клетки с помощью натриевого насоса, не вполне точно уравновешивается поступлением в клетку ионов К + . В связи с этим часть катионов натрия удерживается внутренним слоем противоионов (анионов) на наружной поверхности клеточной мембраны. Таким образом, на мембранах, ограничивающих нервные клетки, поддерживается разность электрических потенциалов (трансмембранная разность электрических потенциалов); эти мембраны электрически возбудимы.
При возбуждении, вызванном тем или иным агентом, селективно изменяется проницаемость мембраны нервной клетки (аксона): увеличивается избирательно для ионов Na + (примерно в 500 раз) и остается без изменения для ионов К + . В результате ионы Na + устремляются внутрь клетки. Компенсирующий поток ионов К + , направляющийся из клетки, несколько запаздывает. Это приводит к возникновению отрицательного заряда на наружной поверхности клеточной мембраны. Внутренняя поверхность мембраны приобретает положительный заряд; происходит перезарядка клеточной мембраны (в частности, мембраны аксона, т.е. нервного волокна), и возникает потенциал действия, или спайк. Продолжительность спайка не превышает 1 мс. Он имеет восходящую фазу, пик и нисходящую фазу. Нисходящая фаза (падение потенциала) связана с нарастающим преобладанием выхода ионов К + над поступлением ионов Na + – мембранный потенциал возвращается к норме. После проведения импульса в клетке восстанавливается состояние покоя. В этот период ионы Na + , вошедшие в нейрон при возбуждении, заменяются на ионы К + . Этот переход происходит против градиента концентрации, так как ионов Na + во внешней среде, окружающей нейроны, намного больше, чем в клетке после момента ее возбуждения. Переход ионов Na + против градиента концентрации, как отмечалось, осуществляется с помощью натриевого насоса, для работы которого необходима энергия АТФ. В конце концов все это приводит к восстановлению исходной концентрации катионов калия и натрия внутри клетки (аксона), и нерв готов для получения следующего импульса возбуждения. Заметим, что миелиновые мембраны, образуемые шванновскими клетками, окутывают нервные волокна и служат электрическим изолятором. Этот изоляционный слой покрывает большинство нервных волокон и сильно ускоряет распространение электрической волны (сигнала); при этом ионы входят в клетку и выходят из нее только в тех местах, где изолятор отсутствует. Как уже отмечалось, миелиновая мембрана состоит из фос-фолипидов, в частности из сфингомиелина, холестерина, а также белков и гликосфинголипидов. Некоторые заболевания, например рассеянный склероз, характеризуются демиелинизацией и нарушением проведения нервного импульса. Другим не менее важным процессом для нервной ткани является передача нервного импульса от одной нервной клетки к другой или воздействие на клетки эффекторного органа.
Некорректности:
1) Спрашивают о взаимосвязи нервной и гуморальной регуляции сердца. Кроме общих слов ("воды") про то, что эта взаимосвязь есть, в школьной программе ничего нет.
2) В критериях этой взаимосвязи тоже нет.
3) Сам механизм проведения нервного импульса в рамках школьной программы разбирается скупо (натрий-калиевый насос, ионы-заряды, электричество - и все, даже понятие "потенциал действия" не всегда вводят сейчас в рамках школьной программы). Разве что нужно знать какие ионы (снаружи от мембраны) способствуют возникновению ПД, а какие препятствуют. Но почему это так- школьная программа не объясняет. (Надо тупо запомнить). А вопрос требует объяснить на основании механизма.
4) Остается не очевидным факт, как парасимпатическое воздействие на сердце дало выделение веществ, замедляющих его работу. Об этом школьная программа вообще молчит, даже "воды" не льет. Может быть хотят что-то про синапс? Это хоть как-то связано с АЦХ (ацетилхолином). Но тут уже за уши- за уши, и можно умудрствоваться лукаво и схлопотать за это. Поэтому нужно аккуратненько.
В рамках школьной программы есть:
- Блуждающий нерв - парасимпатический
- Парасимпатическая НС будет замедлять работу сердца
- И симпатическая и парасимпатическая НС будут воздействовать на синусовый узел автоматии сердца (песмейкер, ритмоводитель).
- Кроме нервной регуляции, на сердце действуют гуморальные факторы.
- Например адреналин (эпинефрин), ионы Са2+ - ускоряют работу сердца, К+ и нейромедиатор ацетилхолин (АЦХ) - замедляют.
- действие нейромедиаторов в ЦНС и в периферической НС может отличаться.
- АЦХ, наравне с другими нейромедиаторами (нейротрансмиттерами) участвует в передаче нервного импульса в синапсе.
- Синапсы бывают разные (механические, электрические, химические). В рамках школьной программы проходят строение простейшего химического синапса. И принципы его работы.
На наш взгляд, ответ должен быть каким-то таким:
Блуждающий нерв принадлежит к парасимпатической нервной системе. При его раздражении сердце будет биться медленнее, т.к. парасимпатическая нервная система урежает сердечный ритм. Тот факт, что перенесенная из сердца кровь каким-то образом замедляла ритм другого изолированного сердца говорит том, что кровь содержала какие-то гуморальные факторы, воздействующие на его работу. В составе сердца как органа есть:
- сердечная мышца,
- проводящая система сердца, сочетающая в себе свойства мышечной и нервной ткани (и сокращается, и проводит импульс)
- нервные узлы- ритмоводители, обеспечивающие автоматию сердца (= его способность сокращаться без импульсов извне).
Несомненно, существуют вещества, воздействующие на работу мышц и в частности, сердечную. Но, с бОльшей вероятностью, в описываемом эксперименте речь идет про вещества, воздействующие на нервные узлы в составе сердца, т.к. именно они задают ритм его работы.
На проведение нервного импульса могут воздействовать разные вещества: меняющие проницаемость мембраны для ионов (натрия и калия), воздействующие на сам мембранный потенциал (разные ионы) или вещества, влияющие на работу синапсов (нейромедиаторы, т.к. с ними связан сам механизм передачи нервного импульса в синапсе).
Не исключено, что по системе обратной связи, при замедлении работы сердца блуждающим нервом, выделялись в кровь вещества, также замедляющие его работу.
Известно, что ионы калия и некоторые нейромедиаторы, например, ацетилхолин, замедляют работу сердца. Перенесенная кровь, вероятно, сдержала их или какие-то еще вещества, замедляющие проведение импульсов в нервной системе.
Нервные импульсы распространяются при перемещении ионов через мембрану нервной клетки и передаются из одной нервной клетки в другую с помощью нейромедиаторов.
В результате эволюции нервной системы человека и других животных возникли сложные информационные сети, процессы в которых основаны на химических реакциях. Важнейшим элементом нервной системы являются специализированные клетки нейроны. Нейроны состоят из компактного тела клетки, содержащего ядро и другие органеллы. От этого тела отходит несколько разветвленных отростков. Большинство таких отростков, называемых дендритами, служат точками контакта для приема сигналов от других нейронов. Один отросток, как правило самый длинный, называется аксоном и передает сигналы на другие нейроны. Конец аксона может многократно ветвиться, и каждая из этих более мелких ветвей способна соединиться со следующим нейроном.
Во внешнем слое аксона находится сложная структура, образованная множеством молекул, выступающих в роли каналов, по которым могут поступать ионы — как внутрь, так и наружу клетки. Один конец этих молекул, отклоняясь, присоединяется к атому-мишени. После этого энергия других частей клетки используется на то, чтобы вытолкнуть этот атом за пределы клетки, тогда как процесс, действующий в обратном направлении, вводит внутрь клетки другую молекулу. Наибольшее значение имеет молекулярный насос, который выводит из клетки ионы натрия и вводит в нее ионы калия (натрий-калиевый насос).
Когда клетка находится в покое и не проводит нервных импульсов, натрий-калиевый насос перемещает ионы калия внутрь клетки и выводит ионы натрия наружу (представьте себе клетку, содержащую пресную воду и окруженную соленой водой). Из-за такого дисбаланса разность потенциалов на мембране аксона достигает 70 милливольт (приблизительно 5% от напряжения обычной батарейки АА).
Однако при изменении состояния клетки и стимуляции аксона электрическим импульсом равновесие на мембране нарушается, и натрий-калиевый насос на короткое время начинает работать в обратном направлении. Положительно заряженные ионы натрия проникают внутрь аксона, а ионы калия откачиваются наружу. На мгновение внутренняя среда аксона приобретает положительный заряд. При этом каналы натрий-калиевого насоса деформируются, блокируя дальнейший приток натрия, а ионы калия продолжают выходить наружу, и исходная разность потенциалов восстанавливается. Тем временем ионы натрия распространяются внутри аксона, изменяя мембрану в нижней части аксона. При этом состояние расположенных ниже насосов меняется, способствуя дальнейшему распространению импульса. Резкое изменение напряжения, вызванное стремительными перемещения ионов натрия и калия, называют потенциалом действия. При прохождении потенциала действия через определенную точку аксона, насосы включаются и восстанавливают состояние покоя.
Когда импульс достигает конца основной части тела аксона, его необходимо передать либо следующему нижележащему нейрону, либо, если речь идет о нейронах головного мозга, по многочисленным ответвлениям многим другим нейронам. Для такой передачи используется абсолютно иной процесс, нежели для передачи импульса вдоль аксона. Каждый нейрон отделен от своего соседа небольшой щелью, называемой синапсом. Потенциал действия не может перескочить через эту щель, поэтому нужно найти какой-то другой способ для передачи импульса следующему нейрону. В конце каждого отростка имеются крошечные мешочки, называющие (пресинаптическими) пузырьками, в каждом из которых находятся особые соединения — нейромедиаторы. При поступлении потенциала действия из этих пузырьков высвобождаются молекулы нейромедиаторов, пересекающие синапс и присоединяющиеся к специфичным молекулярным рецепторам на мембране нижележащих нейронов. При присоединении нейромедиатора равновесие на мембране нейрона нарушается. Сейчас мы рассмотрим, возникает ли при таком нарушении равновесия новый потенциал действия (нейрофизиологи продолжают искать ответ на этот важный вопрос до сих пор).
После того как нейромедиаторы передадут нервный импульс от одного нейрона на следующий, они могут просто диффундировать, или подвергнуться химическому расщеплению, или вернуться обратно в свои пузырьки (этот процесс нескладно называется обратным захватом). В конце XX века было сделано поразительное научное открытие — оказывается, лекарства, влияющие на выброс и обратный захват нейромедиаторов, могут коренным образом изменять психическое состояние человека. Прозак (Prozac*) и сходные с ним антидепрессанты блокируют обратный захват нейромедиатора серотонина. Складывается впечатление, что болезнь Паркинсона взаимосвязана с дефицитом нейромедиатора допамина в головном мозге. Исследователи, изучающие пограничные состояния в психиатрии, пытаются понять, как эти соединения влияют на человеческий рассудок.
Читайте также: