Модель человеческой нервной системы
Нервная система
Раздражимость или чувствительность – характерная черта всех живых организмов, означающая их способность реагировать на сигналы или раздражители.
Сигнал воспринимается рецептором и передается с помощью нервов и (или) гормонов к эффектору, который осуществляет специфическую реакцию или ответ.
Животные имеют две взаимосвязанные системы координации функций – нервную и гуморальную (см. таблицу).
Нервная регуляция
Гуморальная регуляция
Электрическое и химическое проведение (нервные импульсы и нейромедиаторы в синапсах)
Химическое проведение (гормоны) по КС
Быстрое проведение и ответ
Более медленное проведение и отстроченный ответ (исключение - адреналин)
В основном кратковременные изменения
В основном долговременные изменения
Специфический путь распространения сигнала
Неспецифический путь сигнала (с кровью по всему телу)к специфической мишени
Ответ часто узко локализован (например, один мускул)
Ответ может быть крайне генерализованным (например, рост)
Нервная система состоит из высокоспециализированных клеток со следующими функциями:
- восприятие сигналов – рецепторы;
- преобразование сигналов в электрические импульсы (трансдукция);
- проведение импульсов к другим специализированным клеткам – эффекторам, которые получив сигнал, дают ответ;
Связь между рецепторами и эффекторами осуществляют нейроны .
Нейрон – это структурно – функциональная единица НС.
Нейрон — электрически возбудимая клетка, которая обрабатывает, хранит и передает информацию с помощью электрических и химических сигналов. Нейрон имеет сложное строение и узкую специализацию. Нервная клетка содержит ядро, тело клетки и отростки (аксоны и дендриты).
В головном мозге человека насчитывается около 90—95 миллиардов нейронов. Нейроны могут соединяться друг с другом, образуя биологические нейронные сети.
Нейроны разделяют на рецепторные, эффекторные и вставочные.
Тело нейрона: ядро (с большим количеством ядерных пор) и органеллы (ЭПС, рибосомы, аппарат Гольджи, микротрубочки), а также из отростков (дендриты и аксоны).
Нейроглия – совокупность вспомогательных клеток НС; составляет 40% общего объема ЦНС.
- Аксон – длинный отросток нейрона; проводит импульс от тела клетки; покрыт миелиновой оболочкой (образует белое вещество мозга)
- Дендриты - короткие и сильно разветвлённые отростки нейрона; проводит импульс к телу клетки; не имеют оболочки
Важно! Нейрон может иметь несколько дендритов и обычно только один аксон.
Важно! Один нейрон может иметь связи со многими (до 20 тысяч) другими нейронами.
- чувствительные – передают возбуждение от органов чувств в спинной и головной мозг
- двигательные – передают возбуждение от головного и спинного мозга к мышцам и внутренним органам
- вставочные – осуществляют связь между чувствительными и двигательным нейронами, в спинном и головном мозге
Нервные отростки образуют нервные волокна.
Пучки нервных волокон образуют нервы.
Нервы – чувствительные (образованы дендритами), двигательные (образованы аксонами), смешанные (большинство нервов).
Синапс – это специализированный функциональный контакт между двумя возбудимыми клетками, служащий для передачи возбуждения
У нейронов синапс находится между аксоном одной клетки и дендритом другой; при этом физического контакта не происходит – они разделены пространством - синаптической щель.
Нервная система:
- периферическая (нервы и нервные узлы) – соматическая и автономная
- центральная (головной и спинной мозг)
В зависимости от характера иннервации НС:
- Соматическая – управляет деятельностью скелетной мускулатуры, подчиняется воле человека
- Вегетативная (автономная) – управляет деятельностью внутренних органов, желез, гладкой мускулатуры, не подчиняется воле человека
Соматическая нервная система – часть нервной системы человека, представляющая собой совокупность чувствительных и двигательных нервных волокон, иннервирующих мышцы (у позвоночных — скелетные), кожу, суставы.
Она представляет часть периферической нервной системы, которая занимается доставкой моторной (двигательной) и сенсорной (чувственной) информации до центральной нервной системы и обратно. Эта система состоит из нервов, прикрепленных к коже, органам чувств и всем мышцам скелета.
- спинномозговые нервы – 31 пара; связаны со спинным мозгом; содержат как двигательные, так и сенсорные нейроны, поэтому смешанные;
- черепномозговые нервы – 12 пар; отходят от головного мозга, иннервируют рецепторы головы (за исключением блуждающего нерва – иннервирует сердце, дыхание, пищеварительный тракт); бывают сенсорными, моторными (двигательными) и смешанными
Рефлекс – это быстрый автоматический ответ на раздражитель, осуществляемый без осознанного контроля головного мозга.
Рефлекторная дуга – путь, проходимый нервными импульсами от рецептора до рабочего органа.
- в ЦНС – по чувствительному пути;
- от ЦНС – к рабочему органу – по двигательному пути
- рецептор (окончание дендрита чувствительного нейрона) – воспринимает раздражение
- чувствительное (центростремительное) нервное волокно – передает возбуждение от рецептора к ЦНС
- нервный центр – группа вставочных нейронов, расположены на разных уровнях ЦНС; передает нервные импульсы с чувствительных нейронов на двигательные
- двигательное (центробежное) нервное волокно – передает возбуждение от ЦНС к исполнительному органу
Простая рефлекторная дуга: два нейрона – чувствительный и двигательный (пример – коленный рефлекс)
Сложная рефлекторная дуга: три нейрона – чувствительный, вставочный, двигательный (благодаря вставочным нейронам происходит обратная связь между рабочим органом и ЦНС, что позволяет вносить изменения в работу исполнительных органов)
Вегетативная (автономная) нервная система – управляет деятельностью внутренних органов, желез, гладкой мускулатуры, не подчиняется воле человека.
Делится на симпатическую и парасимпатическую.
Обе состоят из вегетативных ядер (скопления нейронов, лежащих в спинном и головном мозге), вегетативных узлов (скопления нейронов, нейронов, за пределами НС), нервных окончаний (в стенках рабочих органов)
Путь от центра до иннервируемого органа состоит из двух нейронов (в соматической - один).
Место выхода из ЦНС
От спинного мозга – в шейный, поясничный, грудной отделы
От ствола головного мозга и ствола крестцового отдела спинного мозга
Местоположение нервного узла (ганглия)
По обе стороны спинного мозга, за исключением нервных сплетений (непосредственно в этих сплетениях)
В иннервируемых органах или вблизи них
Медиаторы рефлекторной дуги
В предузловом волокне –
в послеузловом - норадреналин
В обоих волокнах - ацетилхолин
Названия основных узлов или нервов
Солнечное, легочное, сердечное сплетения, брыжеечный узел
Общие эффекты симпатической и парасимпатической НС на органы:
- Симпатическая НС – расширяет зрачки, угнетает слюноотделение, повышает частоту сокращений, расширяет сосуды сердца, расширяет бронхи, усиливает вентиляцию легких, угнетает перистальтику кишечника, угнетает секрецию пищеварительных соков усиливает потоотделение, удаляет с мочой лишний сахар; общий эффект – возбуждающий, повышает интенсивность обмена, снижает порог чувствительности; активизирует во время опасности, стресса, контролирует реакции на стресс
- Парасимпатическая НС – сужает зрачки, стимулирует слезотечение, уменьшает частоту сердечных сокращений, поддерживает тонус артериол кишечника, скелетных мышц, снижает кровяное давление, уменьшает вентиляцию легких, усиливает перистальтику кишечника, расширяет артериолы в коже лица, увеличивает выделение с мочой хлоридов; общий эффект – тормозящий, снижает или не влияет на интенсивность обмена, восстанавливает порог чувствительности; доминирует в состоянии покоя, контролирует функции в повседневных условиях
Центральная нервная система (ЦНС) – обеспечивает взаимосвязь всех частей НС и их координированную работу
У позвоночных ЦНС развивается из эктодермы (наружного зародышевого листка)
ЦНС – 3 оболочки:
- твердая мозговая (dura mater) - снаружи;
- мягкая мозговая оболочка (pia mater) – прилегает непосредственно к мозгу.
Головной мозг расположен в мозговом отделе черепа; содержит
- белое вещество - проводящие пути между головным мозгом и спинным, между отделами головного мозга
- серое вещество - в виде ядер внутри белого вещества; кора покрывающая большие полушария и мозжечок
Масса головного мозга – 1400-1600 грамм.
5 отделов:
- продолговатый мозг– продолжение спинного мозга; центры пищеварения, дыхания, сердечной деятельности, рвота, кашель, чихание, глотание, слюноотделение, проводящая функция
- задний мозг – состоит из варолиевого моста и мозжечка; варолиев мост связывает мозжечок и продолговатый мозг с большими полушариями; мозжечок регулирует двигательные акты (равновесие, координация движений, поддержание позы)
- промежуточный мозг– регуляция сложных двигательных рефлексов; координация работы внутренних органов; осуществление гуморальной регуляции;
- средний мозг – поддержание тонуса мыщц, ориентировочные, сторожевые, оборонительные рефлексы на зрительные и звуковые раздражители;
- передний мозг (большие полушария) – осуществление психической деятельности (память, речь, мышление).
Промежуточный мозг включает таламус, гипоталамус, эпиталамус
Таламус – подкорковый центр всех видов чувствительности (кроме обонятельного), регулирует внешнее проявление эмоций (мимика, жесты, изменение пульса, дыхания)
Гипоталамус – центры вегетативной НС, обеспечивают постоянство внутренней среды, регулируют обмен веществ, температуру тела, чувство жажды, голода, насыщения, сна, бодрствования; гипоталамус контролирует работу гипофиза
Эпиталамус – участие в работе обонятельного анализатора
Передний мозг имеет два больших полушария: левое и правое
- Серое вещество (кора) находится сверху полушарий, белое – внутри
- Белое вещество – это проводящие пути полушарий; среди него – ядра серого вещества (подкорковые структуры)
Кора больших полушарий – слой серого вещества, 2-4 мм в толщину; имеет многочисленные складки, извилины
Каждое полушарие разделено бороздами на доли:
- лобная – вкусовая, обонятельная, двигательная, кожно- мускульная зоны;
- теменная – двигательная, кожно- мускульная зоны;
- височная – слуховая зона;
- затылочная – зрительная зона.
Важно! Каждое полушарие отвечает за противоположную сторону тела.
- Левое полушарие – аналитическое; отвечает за абстрактное мышление, письменную и устную речь;
- Правое полушарие – синтетическое; отвечает за образное мышление.
Спинной мозг расположен в костном позвоночном канале; имеет вид белого шнура, длина 1м; на передней и задней сторонах есть глубокие продольные борозды
В самом центре спинного мозга – центральный канал, заполненный спинномозговой жидкостью.
Канал окружен серым веществом (имеет вид бабочки), который окружен белым веществом.
- В белом веществе – восходящие (аксоны нейронов спинного мозга) и нисходящие пути (аксоны нейронов головного мозга)
- Серое вещество напоминает контур бабочки, имеет три вида рогов.
- передние рога – в них расположены двигательные нейроны (мотонейроны) – их аксоны иннервируют скелетные мышцы
- задние рога – содержат вставочные нейроны – связывают чувствительные и двигательные нейроны
- боковые рога – содержат вегетативные нейроны – их аксоны идут на периферию к вегетативным узлам
Спинной мозг – 31 сегмент; от каждого сегмента отходит 1 пара смешанных спинномозговых нервов, имеющих по паре корешков:
- передний (аксоны двигательных нейронов);
- задний (аксоны чувствительных нейронов.
Функции спинного мозга:
- рефлекторная – осуществление простых рефлексов (сосудодвигательных, дыхательных, дефекации, мочеиспускания, половых);
- проводниковая – проводит нервные импульсы от и к головному мозгу.
Повреждение спинного мозга приводит к нарушению проводниковых функций, вследствие чего – паралич.
- Тип нервной системы и его взаимосвязь с темпераментом;
- Почему тип нервной системы влияет на характер и способности человека;
- Как определить свой тип нервной системы самостоятельно.
Человек управляет эмоциями, или эмоции управляют человеком? Конкретного ответа на этот вопрос не может дать даже современная наука. Ближе всего к разгадке этой тайны подобрались ученые-нейрофизиологи, которые связали типы нервной системы человека с чертами характера личности. Сегодня рассмотрим разновидности нервных систем, а также то, как они влияют на нашу жизнь и характер в целом.
Тип нервной системы и его взаимосвязь с темпераментом
Как и большинство научных открытий в области нейрофизиологии, учение о типах нервной системы основал И.П. Павлов еще в 1927 году. Сегодня под этим понятием подразумевают совокупность всех врожденных и приобретенных в течение жизни уникальных свойств нервной системы человека, которые являются основной причиной различия в поведенческих реакциях при влиянии одних и тех же раздражителей окружающего мира.
Абсолютно все процессы нашей нервной системы заключаются в двух механизмах: возбуждение и торможение. Они в свою очередь имеют свои свойства, которые и определяют тип нервной системы:
- Сила.
- Уравновешенность.
- Подвижность.
На основе этих показателей и уровня их проявления у конкретного человека, выделили четыре типа нервной системы, каждому с которых соответствует определенный тип темперамента.
Первый из них – неуравновешенный сильный тип, ему соответствует холерический тип темперамента. У людей с данным типом наблюдается быстрое реагирование возбуждающих условных рефлексов, тогда как тормозные механизмы формируются с трудом, нередко со значительным подключением волевого компонента. При нарушении нормального функционирования вегетативных функций, их восстановление происходит довольно долго и часто парциально.
Следующая разновидность – сильный уравновешенный инертный тип, которому соответствует флегматичный тип темперамента. Обычно, положительные тормозные условные рефлексы у таких людей формируются в течение длительного периода, но после завершения этого процесса, они становятся устойчивыми и почти неизменными. Процессы восстановления и приспособления вегетативных функций протекают так же медленно.
Третий тип – сильный подвижный уравновешенный, соответствует сангвиническому типу темперамента. Особыми отличиями нервной системы таких людей является способность быстро подстраивать положительные и отрицательные условные рефлексы к разновидности внешнего раздражителя. Кроме того, им свойственно быстрое полное восстановление вегетативных функций сразу после устранения действия раздражителя.
И наконец последний – слабый тип, которому соответствует меланхолический тип темперамента. У людей с этим видом нервной системы, наблюдаются слабые возбуждающие и тормозные механизмы. С большим трудом образуются условные рефлексы и даже имеющиеся могут тормозиться. Вегетативные процессы после нарушения полностью не восстанавливаются, протекают вяло и легко травмируются.
Почему тип нервной системы влияет на характер и способности человека
В классическом понимании характер, как компонент психики человека, – это совокупность специфичных индивидуальных особенностей нервной системы, соотношение деятельности первой и второй сигнальной системы, а также особенностей окружающей среды, в которой формируется личность. Поэтому тип нервной системы является своеобразным базисом для дальнейшего формирования характерологических черт индивидуума. Иногда человек физиологически запрограммирован медленнее мыслить или быть вспыльчивым. Но важно понимать, что любым характеристикам можно найти применение, или пустить их в более мирное русло.
Как ни странно, тип нервной системы влияет не только на характер, но и на склонность к определенным способностям личности. В основе этого явления лежит взаимодействие и соотношение деятельности первой и второй сигнальной системы, формируя три основных типа:
- Художественный тип. Благодаря преобладанию деятельности первой сигнальной системы, у людей такого типа хорошо развито эмоционально-образное мышление, что способствует развитию художественных способностей и творческого потенциала.
- Мыслительный тип, при котором вторая сигнальная система преобладает над первой и характеризуется доминантой абстрактного мышления. Владельцы такого типа обычно имеют развитые математические способности.
- Смешанный тип – это когда у человека нет яркого доминирования какой-либо из сигнальных систем.
Вот почему важно развивать те способности, которые заложены природой. Не может человек с художественным типом стать математиком, а если и получится это сделать, то вряд ли это принесет ему чувство удовлетворенности жизнью.
Как определить свой тип нервной системы самостоятельно
Для определения типа нервной системы существует множество онлайн-тестов и опросников, но не все они одинаково точны. Я проверила на себе некоторые из них и как результат – вот моя личная тройка лидеров:
1. Опросник Стреляу – точный онлайн-тест, который позволяет определить уровень процессов возбуждения и торможения, а также общий уровень уравновешенности. Единственным его недостатком является довольно большое количество вопросов, поэтому прохождение может занять у вас некоторое время.
2. Теппинг-тест – позволяет определить свойства нервной системы через проверку психомоторных навыков. Обычно, для проведения этого теста нужна помощь еще одного человека, но есть и онлайн-версии.
3. Тест на определение типа темперамента. Так как существует прямая взаимосвязь типа темперамента и типа нервной системы, можно воспользоваться любыми тестами на определение темперамента .
Вы можете найти и другие способы, но определить тип нервной системы абсолютно точно и наиболее развернуто может только квалифицированный специалист.
Важно понимать, что от типа нервной системы зависит большинство наших поведенческих реакций, поэтому постарайтесь принимать себя и окружающих такими, какими их создала природа.
Доктор физико-математических наук А. ЖДАНОВ, заведующий Отделом имитационных систем Института системного программирования РАН.
Однако увлекательность проблемы оказала ей дурную услугу. Неоднократно эта тема страдала от некомпетентных или недобросовестных интерпретаторов, претерпевая необоснованные, но весьма захватывающие дух взлеты, обескураживающие и тяжелые своими последствиями спады, периоды забвения. Кажется, лишь в последние десять лет волнение улеглось и исследования в этой области протекают в сравнительно деловой и спокойной обстановке.
В действительности оба подхода дополняют друг друга. Как правило, основные идеи и направления появляются в стане имитаторов, после чего скрупулезные прагматики доводят их до стадии практически полезных разработок.
Разрабатываемую нами имитационную модель нервной системы мы называем системой автономного адаптивного управления (ААУ).
НЕРВНАЯ СИСТЕМА КАК АВТОНОМНАЯ АДАПТИВНАЯ СИСТЕМА УПРАВЛЕНИЯ
Договоримся о терминах. Обычно при моделировании нервных систем в точных науках пользуются следующими синонимами биологических объектов.
Кибернетические объекты | Биологические объекты |
Среда | Объект управления (ОУ) |
Управляющая система (УС) | Датчики |
Исполнители | Окружающая среда |
Организм | Нервная система и мозг |
Рецепторы | Эффекторы |
Прежде чем приступать к конструированию модели нервной системы, необходимо наложить ряд ограничений на нашу будущую модель.
1. Автономность.
Задача нервной системы — управлять организмом. Условие автономности означает то, что нервная система должна самостоятельно, без подсказок извне, находить способ управления. При этом нервная система заключена внутри организма и может взаимодействовать с окружающей средой лишь посредством рецепторов и эффекторов (исполняющих органов).
2. Дискретность.
3. Начальная приспособленность.
4. Минимум исходных знаний.
После рождения организма, обладающего некоторой начальной приспособленностью и избытком нейронов, его нервная система начинает накапливать знания и информацию. Этот процесс продолжается в течение всей жизни организма (хотя одновременно идет и потеря знаний, например вследствие отмирания части нейронов). Накопление информации происходит в нейронах, при этом изменяется смысл сигнала, представленного нервным импульсом. Например, до и после обучения нервная система может совершенно по-разному реагировать на одинаковые с виду нервные импульсы. Здесь мы имеем дело с информационным процессом приспособления (адаптации), который и будем называть адаптивным управлением. Именно ему живые существа обязаны своей способностью распознавать образы, вырабатывать рефлексы, обучаться, принимать решения.
КАК РАБОТАЕТ НЕРВНАЯ СИСТЕМА
Итак, выходим на связь с Демоном.
Заметим, что активность — необходимая стратегия искомого принципа управления. Альтернативную стратегию — пассивное управление, когда система только реагирует на входные воздействия, — мы отвергаем, ибо она не ведет к поиску новых возможностей для улучшения состояния.
По-видимому, именно аппарат эмоций обеспечивает активность нервной системы. Если мы его отключим, Демон не захочет ничего делать, управление прекратится и объект управления погибнет.
Итак, Демон сформулировал еще одну целевую функцию: поиск и накопление знаний. Очевидно, что, чем больше знаний будет накоплено управляющей системой, тем более надежные способы выживания она сможет найти, тем успешнее сможет улучшать свое состояние. С другой стороны, чем дольше будет существовать объект, тем больше знаний он накопит. Поэтому обе целевые функции — выживание и накопление знаний — тесно связаны между собой (по нашему мнению, главная цель существования и есть накопление знаний).
Разумно. Но может ли Демон обнаружить закономерности в беспорядочном мелькании входных сигналов? Может, если он в состоянии заметить в них неслучайные совпадения. Если в какой-то момент ему покажется, что некоторую комбинацию сигналов он видит уже не в первый раз — значит, он сформировал образ.
Ну вот, уже два образа сформированы — номер 1 и номер 2. Это первые составляющие эмпирического знания нашей управляющей системы. Демон может занести их в свою Базу Знаний.
Сформированные образы (иначе их еще называют таксонами, паттернами, классами объектов) управляющая система может распознать в те моменты, когда в поле зрения датчиков появляются их прообразы.
А что еще остается делать, если нет никаких оснований для более разумной тактики. Интересно, что произойдет раньше: Демон найдет какую-либо закономерную связь между нажатием кнопки и реакцией образа либо выявится зависимость образов от эмоционального состояния Демона?
Ну вот, в данном случае первыми сформировались эмоциональные оценки образов. База Знаний пополнилась новой информацией.
Вот управляющая система и получила первое знание: в каких условиях, каким действием и с какой вероятностью вызывается (или вытесняется) определенный образ. Назовем нажатие на кнопку номер 47 действием номер 1.
Демон постепенно расширяет свою Базу Знаний, обнаруживая новые действия и уточняя найденные ранее.
Посмотрим, как он это делает. В некоторый момент времени управляющая система распознает несколько образов из числа ранее сформированных и определяет их среднюю эмоциональную оценку. Затем она выбирает в Базе Знаний действие, которое в данных условиях обещает максимальное улучшение состояния. Если все варианты равнозначны, выбор может пасть на любой из них. Назовем такой способ первым механизмом принятия решений.
Появился второй механизм принятия решений: действия выбираются не на основе анализа текущего состояния, а по аналогии, в соответствии с обнаруженной закономерностью в последовательности ранее принятых решений.
Но это уже третий механизм принятия решений. Для него необходимо, чтобы управляющая система могла у самой себя вызвать распознавание образов — результатов действия, не совершая его.
Теперь мы можем оставить Демона на какое-то время, поскольку сообщения его будут повторять по смыслу предыдущие. Если мы вернемся к нему несколько позже, то увидим, что:
а) в руках у Демона уже довольно пухлая тетрадь, содержащая обширную Базу Знаний,
б) он умеет распознавать множество образов,
в) почти в каждый момент он знает, как ему поступать в соответствии с обстоятельствами,
г) принимая решения, Демон уже учитывает их последствия, но далеко не все, хотя бы потому, что не успевает это сделать,
д) он может пообщаться сам с собой через внешнюю среду, как бы играя в жизнь и моделируя ситуации, а может статься, что Демон даже найдет во внешней среде другой такой же объект с Демоном внутри и вступит с ним во взаимодействие.
УСТРОЙСТВО УПРАВЛЯЮЩЕЙ СИСТЕМЫ
Каждая подсистема решает свою задачу, учитывая результаты работы других подсистем.
Поясним подробнее работу последней подсистемы. Очевидно, что, чем хуже состояние и чем быстрее оно ухудшается, тем скорее требуется принять решение. Если просмотр всей Базы Знаний требует слишком больших затрат времени, управляющая система может просматривать лишь ее часть, учитывая только наиболее важные последствия того или иного решения. Неучтенные факторы будут реализовываться случайным для управляющей системы образом.
Например, увидев быстро наезжающий грузовик, мы принимаем решение отпрыгнуть в сторону, чтобы сохранить себе жизнь, и не учитываем второстепенных последствий: как мы будем выглядеть в глазах проходящей мимо дамы, не уроним ли шляпу, не наступим ли на газон и т. д. Если же мы распознали образ грузовика вдали, то, уходя в сторону, учтем и даму, и шляпу.
МОДЕЛИ ИСКУССТВЕННЫХ НЕЙРОНОВ
На практике обычно строят такие управляющие системы, которые решают лишь часть задач из вышеперечисленных, обычно одну-две. Например, системы распознавания, как правило, не принимают самостоятельных решений: им заранее известно, что следует делать при распознавании того или иного образа. Экспертные системы, напротив, строятся на базе уже готовых знаний, и им требуется только принимать решения. Некоторые системы занимаются решением исключительно поисковых и оптимизационных задач (так называемые генетические алгоритмы и другие подходы).
Гораздо сложнее создать систему управления, в которой решения всех перечисленных задач были бы взаимосвязаны, а исходные знания о свойствах объекта управления и среды допускали бы значительную неопределенность. Трудность построения такой системы объясняется тем, что все ее части — подсистемы — должны учитывать результаты работы других подсистем в качестве своих исходных условий.
Поскольку наша научная группа придерживается имитационного подхода к моделированию нервной деятельности, мы строим модель управляющей системы по аналогии с естественными нервными системами. Подобно нервной системе, представляющей собою сеть нейронов, управляющая система тоже должна состоять из отдельных нейроноподобных элементов.
Оказалось, что на базе таких нейронов можно конструировать сети, выполняющие функции всех перечисленных подсистем. При этом требуется определенный избыток нейронов, и он действительно существует в живых организмах: более 90% нейронов человека остаются незадействованными в течение его жизни. Избыток искусственных нейронов в управляющей системе можно уменьшить и тем значительнее, чем более сложные связи между сигналами они способны обнаруживать, то есть за счет усложнения нейрона.
СИСТЕМА АВТОНОМНОГО АДАПТИВНОГО УПРАВЛЕНИЯ
Система автономного адаптивного управления — саморазвивающаяся система. В ее поведении можно увидеть детерминированную и случайную компоненты. Первая опирается на уже накопленные знания и стремится улучшить состояние системы, наличие второй связано с отсутствием знаний и стремлением их накопить. По мере накопления знаний поведение управляющей системы становится более детерминированным, что и отражает ее развитие. Пример саморазвития ААУ — последовательное появление у Демона трех механизмов принятия решения, каждый из которых вытекает из предыдущих и повышает эффективность управления.
Важно то, что в системе ААУ качество управления неуклонно растет, причем происходит это автоматически.
Как отмечалось выше, современная техника еще удовлетворяется управляющими системами, построенными либо только на основе системы распознавания, либо только на основе оптимизационных подходов и т. п. Каждый из этих частных методов глубоко развит и способен давать результаты, с которыми трудно конкурировать любому новому подходу. Однако решение задачи управления в более общем виде с помощью метода автономного адаптивного управления имеет свои преимущества, которые проявляются со временем. Это и обнадеживает нас в наших исследованиях.
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ — АВТОНОМНЫЙ И ПОДЧИНЕННЫЙ
Есть одно, на первый взгляд, странное обстоятельство. Предположим, сильно размечтавшись, что создана некая замечательная система автономного адаптивного управления, не уступающая по своим функциям пусть не человеку, не кошке, но хотя бы мышке (пока что и эта задача совершенно недостижима). Какую же практическую пользу мы сможем извлечь из такой мышки? Заставим ее копать нору? Она скажет: отпустите меня, я хочу есть, пить, гулять и меньше всего хочу работать на вас. И она будет права, так как цель описанной управляющей системы — улучшение своего (а не нашего) состояния.
Все это убеждает нас в необходимости исследования Автономного Искусственного Интеллекта и поиска возможностей его приложения.
Читайте также: