Нервные токи что это такое
Постоянный ток распространяется в тканях по пути наименьшего сопротивления, по межклеточным пространствам, кровеносным и лимфатическим сосудам.
В действии постоянного тока на организм большое значение имеет электропроводность тканей, зависящая от их влажности. Сухая кожа обладает сопротивлением в десятки тысяч ом; тонкая, нежная, особенно влажная, а также поврежденная кожа лучше проводит постоянный ток. Электропроводность других сред и тканей организма гораздо больше.
Наибольшей электропроводностью обладают спинномозговая жидкость, меньшей - мышцы и цельная кровь. Значительная величина сопротивления кожи приводит к тому, что во время действия постоянного тока на организм почти все напряжение, подводимое к электродам, приходится на кожу, на внутренние же ткани приходится относительно малый потенциал.
Электропроводность тела - величина непостоянная; она может меняться в широких пределах. Усиление кожного кровообращения и потливость усиливают электропроводность. Функциональное состояние организма влияет на электропроводность; она увеличивается при переутомлении, переживаниях, опьянении. У одного и того же человека электропроводность в течение дня и в различные сезоны года колеблется; на разных участках кожи она неодинакова. Силовые линии тока, пройдя через поверхностные слои кожи, встречают дальше меньшее сопротивление и направляются вглубь в основном по кровеносным и лимфатическим сосудам, мышцам и , что важно отметить , по оболочкам нервных стволов.
Постоянный ток оказывает раздражающее действие на организм не только при его замыкании и размыкании, но и во время прохождения тока. При раздражении кожи силой тока, превышающей пороговую величину, человек ощущает боль в виде покалывания. Если электрод расположен на коже вблизи нервного ствола, ощущение раздражения сильнее. В момент замыкания тока раздражение происходит на катоде, в момент размыкания - на аноде. Установлено, что на катоде во время замыкания возбудимость и проводимость повышаются, а на аноде, наоборот, понижаются. Эти изменения на катоде называют катэлектротоном, на аноде - анэлектротоном. Функциональные изменения происходят не только на месте локализации электродов, но и на расстоянии от них. В момент размыкания возбудимость и проводимость на каждом полюсе меняются в обратном направлении.
Напомним, что каждая клетка является генератором электричества. Между клеткой и окружающей ее средой существует разность потенциалов из-за неравномерного распределения ионов между клеточными мембранами. В покое внутренняя поверхность оболочки клетки заряжена отрицательно, наружная – положительно.
Мембраны клеток имеют большое сопротивление, поэтому через них постоянный ток не проходит. Свободные заряды (в основном ионы K+, Na+) могут перемещаться только от мембраны к мембране.
При воздействии на ткани постоянного электрического тока распределение ионов изменяется. Наружная поверхность мембраны клетки заряжается отрицательно, что согласно ионной теории возбуждения П.П. Лазарева приводит к возбуждению данного участка клетки. Между возбуждёнными и невозбуждёнными участками мембраны возникают локальные токи, что ведёт к изменению концентрации ионов, а это, в свою очередь, - к возбуждению всей клетки. Такое возбуждение клетки вызывает раздражение нервных рецепторов и возникновение рефлекторных реакций местного и общего характера.
Местные реакции заключаются в улучшении проницаемости клеточных мембран, расширении кровеносных сосудов, ускорении кровотока, улучшении обмена веществ между клеткой и межклеточным пространством. В месте воздействия тока образуются биологически активные вещества.
Нервные импульсы, возникающие при раздражении рецепторов, передаются в центральную нервную систему и вызывают сложные ответные реакции органов и систем организма.
Непроизвольное подёргивание века или уголков губ может быть симптомом очень неприятных вещей. Удостоверьтесь, что это не о вас.
В первую очередь успокойтесь: чаще всего нервный тик абсолютно безобиден. Если вы не можете точно вспомнить, когда он был у вас в последний или предпоследний раз, скорее всего, с вами всё в порядке.
Другое дело, если подёргивание той или иной части тела преследует вас регулярно. Тут уже стоит разобраться, что к чему, и, возможно, обратиться за медицинской помощью.
Что такое нервный тик
Нервным тиком принято The Management of Tics называть неконтролируемое, нежелательное и повторяющееся движение мышц любой части тела.
Нервные тики чаще бывают у детей, чем у взрослых.
Регулярные нервные тики переживают около 25% детей. Причём мальчики страдают от них чаще девочек. К счастью, многие дети перерастают это состояние.
Тиковые расстройства бывают двух видов:
Откуда берётся нервный тик
Однозначного ответа на этот вопрос у современной науки нет Tic Disorders and Twitches . Считается, что тики провоцируют случайные электрические импульсы в головном мозге. Но откуда они берутся и почему повторяются, точно не установлено.
Учёные предполагают, что возникновение тиков может быть связано Transient Tic Disorder (Provisional Tic Disorder) с химическими реакциями в мозге. На химию активно и негативно влияют:
- Стрессы разного происхождения, в том числе связанные с перепадом температур и разницей освещения;
- Инфекции.
- Яды.
- Травмы головы.
- Инсульт.
- Повреждения серого вещества, вызванные серьёзными заболеваниями: опухолями, болезнями Хантингтона, Крейтцфельдта — Якоба и так далее.
Когда нужно показать нервный тик врачу
Повторим: на разовый тик можно не обращать внимания. Скорее всего, он связан с усталостью или, положим, температурными перепадами.
Однако случается, что тики становятся навязчивыми: возникают регулярно и всерьёз ухудшают качество жизни. Если это так, обратитесь к терапевту или невропатологу, чтобы установить, что происходит и как с этим бороться.
Врач задаст вам несколько вопросов:
- В каком возрасте у вас начались тики?
- Как долго продолжаются приступы?
- Насколько выражены симптомы?
Ответы помогут выяснить, какое у вас расстройство: кратковременное или хроническое (такая форма потребует более серьёзного лечения). Хронические тики более заметные и продолжительные. Они появляются до 18 лет и регулярно возвращаются.
Если же нервный тик у вас недавно (менее года) и повторяется до нескольких раз в месяц, врач отнесёт его к кратковременным.
Если при первичном обследовании специалист заподозрит более серьёзные причины тика, вам назначат дополнительные обследования: анализы крови и, возможно, компьютерное сканирование мозга. Это поможет исключить опасные заболевания и повреждения серого вещества. Если же недуг будет найден, лечение начнут с него.
Как избавиться от нервного тика
Чаще всего кратковременная форма не требует лечения. Врач порекомендует вам лишь скорректировать образ жизни:
- Снизить стресс.
- Полноценно питаться.
- Избегать резких перепадов температур.
- Высыпаться.
К счастью, прогноз благоприятен. Если вы будете соблюдать рекомендации врача, кратковременные тики уйдут в прошлое за несколько месяцев. И даже в серьёзных, хронических случаях терапия значительно облегчит симптомы.
Кандидат биологических наук Л. Чайлахян, научный сотрудник Института биофизики АН СССР
Велика и заманчива цель, но неимоверно сложен объект исследования. Шутка сказать, этот килограмм ткани представляет собой сложнейшую систему связи десятков миллиардов нервных клеток.
Однако первый существенный шаг к познанию работы мозга уже сделан. Может быть, он один из самых легких, но он чрезвычайно важен для всего дальнейшего.
Я имею в виду исследование механизма передачи нервных импульсов — сигналов, бегущих по нервам, как по проводам. Именно эти сигналы являются той азбукой мозга, с помощью которой органы чувств посылают в центральную нервную систему сведения-депеши о событиях во внешнем мире. Нервными импульсами зашифровывает мозг свои приказы мышцам и различным внутренним органам. Наконец, на языке этих сигналов говорят между собой отдельные нервные клетки и нервные центры.
В проблеме изучения механизма нервного импульса и его распространения можно выделить два основных вопроса: природа проведения нервного импульса или возбуждения в пределах одной клетки — по волокну и механизм передачи нервного импульса от клетки к клетке — через синапсы.
Какова природа сигналов, передающихся от клетки к клетка по нервным волокнам?
Этой проблемой человек интересовался уже давно, Декарт предполагал, что распространение сигнала связано с переливанием жидкости по нервам, как по трубкам. Ньютон думал, что это чисто механический процесс. Когда появилась электромагнитная теория, ученые решили, что нервный импульс аналогичен движению тока по проводнику со скоростью, близкой к скорости распространения электромагнитных колебаний. Наконец, с развитием биохимии появилась точка зрения, что движение нервного импульса — это распространение вдоль по нервному волокну особой биохимической реакции.
И всё же ни одно из этих представлений не оправдалось.
В настоящее время природа нервного импульса раскрыта: это удивительно тонкий электрохимический процесс, в основе которого лежит перемещение ионов через оболочку клетки.
Большой вклад в раскрытие этой природы внесли работы трех ученых: Алана Ходжкина, профессора биофизики Кембриджского университета; Эндрью Хаксли, профессора физиологии Лондонского университета, и Джона Экклса, профессора физиологии австралийского университета в Канберре. Им присуждена Нобелевская премия в области медицины за 1963 год,
Впервые предположение об электрохимической природе нервного импульса высказал известный немецкий физиолог Бернштейн в начале нашего столетия.
К началу двадцатого века было довольно многое известно о нервном возбуждении. Ученые уже знали, что нервное волокно можно возбудить электрическим током, причем возбуждение всегда возникает под катодом — под минусом. Было известно, что возбужденная область нерва заряжается отрицательно по отношению к невозбужденному участку. Было установлено, что нервный импульс в каждой точке длится всего 0,001—0,002 секунды, что величина возбуждения не зависит от силы раздражения, как громкость звонка в нашей квартире не зависит от того, как сильно мы нажимаем на кнопку. Наконец, ученые установили, что носителями электрического тока в живых тканях являются ионы; причем внутри клетки основной электролит — соли калия, а в тканевой жидкости — соли натрия. Внутри большинства клеток концентрация ионов калия в 30—50 раз больше, чем в крови и в межклеточной жидкости, омывающей клетки.
И вот на основании всех этих данных Бернштейн предположил, что оболочка нервных и мышечных клеток представляет собой особую полупроницаемую мембрану. Она проницаема только для ионов К + ; для всех остальных ионов, в том числе и для находящихся внутри клетки отрицательно заряженных анионов, путь закрыт. Ясно, что калий по законам диффузии будет стремиться выйти из клетки, в клетке возникает избыток анионов, и по обе стороны мембраны появится разность потенциалов: снаружи — плюс (избыток катионов), внутри — минус (избыток анионов). Эта разность потенциалов получила название потенциала покоя. Таким образом, в покое, в невозбужденном состоянии внутренняя часть клетки всегда заряжена отрицательно по сравнению с наружным раствором.
Бернштейн предположил, что в момент возбуждения нервного волокна происходят структурные изменения поверхностной мембраны, ее поры как бы увеличиваются, и она становится проницаемой для всех ионов. При этом, естественно, разность потенциалов исчезает. Это и вызывает нервный сигнал.
Мембранная теория Бернштейма быстро завоевала признание и просуществовала свыше 40 лет, вплоть до середины нашего столетия.
Но уже в конце 30-х годов теория Бернштейна встретилась с непреодолимыми противоречиями. Сильный удар ей был нанесен в 1939 году тонкими экспериментами Ходжкина и Хаксли. Эти ученые впервые измерили абсолютные величины мембранного потенциала нервного волокна в покое и при возбуждении. Оказалось, что при возбуждении мембранный потенциал не просто уменьшался до нуля, а переходил через ноль на несколько десятков милливольт. То есть внутренняя часть волокна из отрицательной становилась положительной.
Но мало ниспровергнуть теорию, надо заменить ее другой: наука не терпит вакуума. И Ходжкин, Хаксли, Катц в 1949—1953 годах предлагают новую теорию. Она получает название натриевой.
Здесь читатель вправе удивиться: до сих пор о натрии не было речи. В этом все и дело. Ученые установили с помощью меченых атомов, что в передаче нервного импульса замешаны не только ионы калия и анионы, но и ионы натрия и хлора.
В организме достаточно ионов натрия и хлора, все знают, что кровь соленая на вкус. Причем натрия в межклеточной жидкости в 5—10 раз больше, чем внутри нервного волокна.
Что же это может означать? Ученые предположили, что при возбуждении в первый момент резко увеличивается проницаемость мембраны только для натрия. Проницаемость становится в десятки раз больше, чем для ионов калия. А так как натрия снаружи в 5—10 рез больше, чем внутри, то он будет стремиться войти в нервное волокно. И тогда внутренняя часть волокна станет положительной.
А через какое-то время — после возбуждения — равновесие восстанавливается: мембрана начинает пропускать и ионы калия. И они выходят наружу. Тем самым они компенсируют тот положительный заряд, который был внесен внутрь волокна ионами натрия.
Совсем нелегко было прийти к таким представлениям. И вот почему: диаметр иона натрия в растворе раза в полтора больше диаметра ионов калия и хлора. И совершенно непонятно, каким образом больший по размеру ион проходит там, где не может пройти меньший.
Нужно было решительно изменить взгляд на механизм перехода ионов через мембраны. Ясно, что только рассуждениями о порах в мембране здесь не обойтись. И тогда была высказана идея, что ионы могут пересекать мембрану совершенно другим способом, с помощью тайных до поры до времени союзников — особых органических молекул-переносчиков, спрятанных в самой мембране. С помощью такой молекулы ионы могут пересекать мембрану в любом месте, а не только через поры. Причем эти молекулы-такси хорошо различают своих пассажиров, они не путают ионы натрия с ионами калия.
Интересно, что нервные волокна тратят на свою основную работу — проведение нервных импульсов — всего около 15 минут в сутки. Однако готовы к этому волокна в любую секунду: все элементы нервного волокна работают без перерыва — 24 часа в сутки. Нервные волокна в этом смысле подобны самолетам-перехватчикам, у которых непрерывно работают моторы для мгновенного вылета, однако сам вылет может состояться лишь раз в несколько месяцев.
Мы познакомились сейчас с первой половиной таинственного акта прохождения нервного импульса — вдоль одного волокна. А как же передается возбуждение от клетки к клетке, через места стыков — синапсы. Этот вопрос был исследован в блестящих опытах третьего нобелевского лауреата, Джона Экклса.
Возбуждение не может непосредственно перейти с нервных окончаний одной клетки на тело или дендриты другой клетки. Практически весь ток вытекает через синаптическую щель в наружную жидкость, и в соседнюю клетку через синапс попадает ничтожная его доля, неспособная вызвать возбуждение. Таким образом, в области синапсов электрическая непрерывность в распространении нервного импульса нарушается. Здесь, на стыке двух клеток, в силу вступает совершенно другой механизм.
Когда возбуждение подходит к окончанию клетки, к месту синапса, в межклеточную жидкость выделяются физиологически активные вещества — медиаторы, или посредники. Они становятся связующим звеном в передаче информации от клетки к клетке. Медиатор химически взаимодействует со второй нервной клеткой, изменяет ионную проницаемость ее мембраны — как бы пробивает брешь, в которую устремляются многие ионы, в том числе и ионы натрия.
Итак, благодаря работам Ходжкина, Хаксли и Экклса важнейшие состояния нервной клетки — возбуждение и торможение — можно описать в терминах ионных процессов, в терминах структурно-химических перестроек поверхностных мембран. На основании этих работ уже можно делать предположения о возможных механизмах кратковременной и долговременной памяти, о пластических свойствах нервной ткани. Однако это разговор о механизмах в пределах одной или нескольких клеток. Это лишь, азбука мозга. По-видимому, следующий этап, возможно, гораздо более трудный, — вскрытие законов, по которым строится координирующая деятельность тысяч нервных клеток, распознание языка, на котором говорят между собой нервные центры.
Мы сейчас в познании работы мозга находимся на уровне ребенка, который узнал буквы алфавита, но не умеет связывать их в слова. Однако недалеко время, когда ученые с помощью кода — элементарных биохимических актов, происходящих в нервной клетке, прочтут увлекательнейший диалог между нервными центрами мозга.
Детальное описание иллюстраций
Причины нервного тика у взрослых
Нервные тики разделяют на первичные, вторичные и наследственные.
Первичная форма тика. Ее могут вызвать:
- психологические травмы;
- неврозы;
- синдром дефицита внимания и геперактивности (СДВГ);
- фобии;
- усталость;
- депрессии;
- увлечение алкоголем и психостимуляторами.
Считается, что первичным тикам чаще всего склонны холерики по темпераменту. Заболевание исчезает если выявить и устранить провоцирующие причины.
Вторичная форма. Она является следствием заболевания на фоне, которого развился тот или иной тик. Это могут быть:
- инфекционные болезни (энцефалит, менингит);
- заболевания внутренних органов (сахарный диабет, болезни почек, печени);
- психические заболевания (шизофрения);
- опухоль головного мозга;
- неинфекционные болезни головного мозга;
- родовые травмы;
- закрепленные подсознательно движения, например, при болезнях верхних дыхательных путей больные вынуждены постоянно сглатывать слюну, что может продолжиться и после выздоровления.
Нервный тик могут вызывать некоторые лекарственные препараты или отравление угарным газом.
Наследственная форма тика. Возникает на фоне генетических отклонений, в половине случаев это болезнь Туретта, при которой наблюдаются множественные мышечные тики и повторение одних и тех же звуков или слов. Недуг проявляется в любом возрасте и проходит в течение жизни.
К возможным причинам относят:
- плохую экологическую обстановку;
- недостаток витамина В6 и магния;
- частые стрессы или бактериальные инфекции.
Симптомы нервного тика у взрослых
Симптомы нервных тиков многообразны и разделяются на несколько групп:
-
мимические – подергивание глаз, бровей или губ;
моторные – дерганье и щелканье пальцев, непроизвольное сгибание конечностей в суставах, махи руками, притопывания или даже подпрыгивания;
вокальные – распространяются на голосовые связки и проявляются бессвязными криками, выкрикиванием слов и различных звуков, громкими вздохами, покашливаниями или даже похрюкиваниями;
По степени вовлеченности мышц нервные тики разделяют на:
-
тики, при которых затрагивается определенная мышца, участок мышцы и реже небольшая группа мышц, их называют локальными;
тики, затрагивающие обширные участки тела или почти все тело, их называют генерализованными – такой тик может начаться с подергивания лица, затем перейти на шею, потом на плечи, руки, туловище и ноги;
тики из однотипных и простых движений встречаются чаще всего, медики относят их к простым;
Лечение нервного тика у взрослых
При простом нервном тике, в первую очередь, рекомендуется устранить провоцирующую его причину. Это могут быть проблемы на работе или в семье. Для нормализации работы нервной системы применяют успокаивающие чаи и компрессы, которые прикладываются к месту мышечного сокращения или хвойные ванны.
Если нервный тик вызван психологическим состоянием человека, можно использовать психотерапию. Это не уменьшит тики, но меняют отношение пациента к проблеме и к тикам в целом. С помощью методов психотерапии можно снять внутреннее напряжение и облегчить переносимость тиков. Имеются специальные методики, которые позволяют больным контролировать тики.
Врачи рекомендуют не оставлять нервные тики без внимания, так как заболевание может привести к серьезным проблемам.
Всё и ничто
Киборги - они заполонили всю планету.
Генератор электричества создает избыток электронов в одном месте, а потребители электричества играют роль непрерывных поглотителей электронов. Если бы потребители электричества не поглощали электроны, а постепенно их накапливали, то с течением времени их потенциал сравнялся бы с электрическим потенциалом генератора, и тогда движение электричества в цепи прекратилось бы. Поэтому первый закон электрофизики можно сформулировать следующим образом: для движения электрических токов в цепи обязательно необходимо присутствие трёх составных частей
- в виде генератора (электрического плюса), который вырабатывает электроны,
- проводника тока, который передает электроны с одного места в другое,
- и потребителя электричества (электрического минуса), который поглощает электроны.
2. О генераторах электричества человеческого организма. Животные организмы имеют два вида генераторов электричества: внутренние и наружные. К внутренним относятся мозг и сердце, к наружным пять органов чувств (зрения, слуха, вкуса, обоняния и осязания).
В головном мозге биотоки вырабатываются в том месте, где располагается ретикуло-эндотелиальная формация. От головного мозга биотоки поступают в спинной мозг, а оттуда по нервным сплетениям направляются ко всем органам и тканям. Далее очень мелкие нервы проникают во все органы грудной и брюшной полости, в кости, мышцы, сосуды, связки туловища и конечностей. Нервные ткани являются специфическими проводниками биотоков. В виде тончайшей сеточки они пронизывают все органы и ткани организма. В конце своего пути биотоки покидают нервные окончания и переходят в межклеточное пространство неспецифических проводников электричества внутренних органов, мышц, сосудов, кожи и т. д. Все ткани человеческого тела состоят на 95 % из воды с растворенными в ней солями. Поэтому живые ткани являются прекрасными проводниками электричества.
Внутри глаза также имеется специфический генератор биотоков в виде сетчатки. Когда свет попадает на сетчатку глаза, возникает поток электронов, который дальше распространяется по зрительному нерву и передается в кору головного мозга. Благодаря выработке биотоков сетчаткой глаза, человек получает возможность видеть окружающий мир. Зрение дает более 80 % информации для человека.
Внутреннее ухо является генератором электроимпульсов, которые возникают при воздействии звуковых волн. Чувствительные слуховые клетки кортиева органа расположены на основной мембране внутреннего уха (улитка) и приходят в возбуждение при колебаниях основной мембраны. Из улитки биотоки проходят по слуховому нерву в продолговатый мозг, а дальше в кору головного мозга.
Кожные рецепторы воспринимают прикосновение, давление, болевое раздражение, холодовое и тепловое воздействие. При гистологическом исследовании в коже обнаружено большое количество нервных окончаний в виде кисточек, корзинок, розеток, окруженных капсулой. Тактильную чувствительность воспринимают клетки Меркеля, Фатера-Пачини и тельца Мейснера. Свободные окончания осевых цилиндров в виде заострений и пуговчатых утолщений воспринимают болевую чувствительность. Колбы Краузе, тельца Мейснера и Руффини воспринимают чувство холода и тепла. На 1 квадратном сантиметре кожи находится 200 болевых рецепторов, 20 тактильных, 12 холодовых и 2 тепловых. Воздействие давления, тепла, холода, укола и других видов травмы на эти кожные рецепторы приводит к возникновению биоимпульсов, которые по мелким и крупным нервным стволам передаются в спинной мозг, далее в продолговатый мозг и кору полушарий. Кожные рецепторы относятся к самым мелким генераторам электричества в организме человека.
Рисунок 1. Полый металлический шар.
Она не дает объяснения на вопрос: почему все биотоки можно регистрировать на поверхности кожи?
Ведь по Павловской теории биотоки не должны покидать нервные волокна, имеющие прекрасные жировые изоляторы вокруг своего электропроводящего волокна. Но почему тогда электрические приборы определяют наличие электрических потенциалов на поверхности кожи, исходящих от сердца (электрокардиограмма, ЭКГ) и от мозга (электроэнцефалограмма, ЭЭГ)?
В электрической физике каждая батарейка имеет плюсовой потенциал с избытком электронов и минусовой потенциал, где электроны поглощаются. В человеческом организме избыток электронов создают биологические генераторы тока.
Человек имеет далеко не идеальную электротехническую систему, несмотря на 3 миллиарда лет ее непрерывной эволюции. Такую расточительность и несовершенство живых тканей можно объяснить (а точнее - оправдать) следующими причинами.
Во-первых, неадекватно высокий электрический потенциал вырабатывают электростанции организма с целью быстрого прохождения биотока от начального нервного волокна через десятки синаптических щелей и вторичных нервных волокон к иннервируемому органу.
Из сказанного можно сформулировать пятый закон биоэлектрофизики: в животном организме произошло разделение процесса потребления биотоков органами от процесса их уничтожения на поверхности кожи. Избыток электрической энергии возникает внутри электрических генераторов (сердца, мозга, 5 органов чувств), потребляют биотоки все органы и ткани человека, а поглощение электронов осуществляется внутри акупунктурных точек на поверхности кожных покровов.
ВЫВОД. Теперь сделаем общий вывод из сказанного. Человек является замкнутой электрической системой. Внутри него вырабатываются электрические токи различных частот в 7 биологических электростанциях: в сердце, в мозге и в пяти органах чувств. Сначала биотоки по нервным клеткам несут информацию к специфическим для них клеткам человеческого тела, к органам и тканям. Организм человека поглощает только 5 % общей энергии. На заключительном этапе судьба 95 % электричества состоит в следующем. После передачи информации клеткам соответствующих органов, электричество устремляется по межклеточному пространству к кожным покровам, где аннигилируется акупунктурными точками. Все электричество, которое вырабатывается внутри человеческого организма (и организма животного) поглощается его же тканями. Ни один электрон, произведенный внутри живого организма, не покидает человеческое тело, и не переходит в окружающую среду, а поглощается кожей. Этим и обусловлена замкнутость электрической системы человека. Организм сам поглощает все электричество, которое ранее он же и произвел, генерировал.
04 октября 2015
- 613
- 0,5
- 1
- 1
Алексей Паевский
- Биомембраны
- Ионные каналы
- Нейробиология
- Нобелевские лауреаты
Рисунок 1. Джозеф Эрлангер (1874–1965). Американский физиолог, занимавшийся преимущественно кардиологией и нейрофизиологией. Вместе с Гассером изучал возбудимость нейронов и идентифицировал разные типы нервных волокон, вместе они и Нобелевскую премию 1944 года получили.
Отец Герберта — Герман Гассер — работал врачом и, видимо, сумел воспитать у маленького сына интерес к тому, как устроен человеческий организм, что не могло не сказаться на его дальнейшей судьбе. Мать, Джейн Грисволд, была обычной учительницей в средней школе небольшого висконсинского города Платтвилла, куда и пошел учиться будущий нобелевский лауреат.
Рисунок 2. Процесс распространения нервного импульса по отростку нервной клетки происходит за счет мгновенного перезаряда внешней и внутренней сторон мембраны клетки [1].
Однако работы пришлось прервать — как и многим другим ученым в мире. В научные эксперименты вмешалась Первая мировая война. Герберт Гассер замораживает эксперимент и приступает к изучению травматического шока, что важно для помощи раненым бойцам с потерей крови [2]. Его вовлекают и во многие другие фармакологические исследования в отделе Химической военной службы в Вашингтоне. Однако сразу после окончания войны Гассер возвращается к своим экспериментам и публикует вместе с Ньюкомером статью об усилении нервных импульсов [3], которые он регистрирует с помощью обычного пружинного гальванометра. Однако ученым сразу становится понятно, что для регистрации амплитуды нервного импульса нужен более современный прибор, чем гальванометр. Этот прибор должен одновременно считывать все параметры изменения электрического сигнала и записывать их на ленту. Говоря современным языком, ученые нуждались в осциллографе.
Гассер выяснил, что одни нервы, которые потом назвали афферентными, передают сигнал только о наших ощущениях, а другие нервы — эфферентные — отвечают только за движение мышц.
Для наглядности классификации Гассер внес все параметры в единую таблицу, которую и сейчас можно найти в современных медицинских справочниках. Эти опыты значительно продвинули ученых в понимании механизма возникновения боли и легли в основу нового направления — нейрофизиологии. Все полученные сведения позднее вошли в теорию нервной проводимости, разработанную нобелевскими лауреатами Аланом Ходжкином и Эндрю Хаксли в 1952 году.
Эти эксперименты дали серьезный толчок научной карьере Герберта Гассера, и в 1921 году его повышают до профессора фармакологии в Вашингтонском университете.
Через два года Гассер уезжает в Европу, получив грант на обучение, где продолжает начатую работу с известными учеными Арчибальдом Хиллом и Генри Дейлом [6], каждый из которых впоследствии получит Нобелевскую премию по физиологии и медицине — в 1922 и 1936 годах соответственно. По возвращении в 1931 году Герберт Гассер становится профессором психологии и главой медицинского департамента в Корнелльском университете в Нью-Йорке, а спустя четыре года уже возглавляет Рокфеллеровский институт медицинских исследований (сейчас Рокфеллеровский университет), позже пополнив список его почетных членов. Впрочем, в 1930-х годах Гассеру стало особо не до собственных занятий наукой: руководить институтом в период после Великой депрессии — не самая спокойная работа. А в 1936 году у Гассера появилась еще одна важнейшая должность — главный редактор The Journal of Experimental Medicine, — которую он исполнял по 1957 год.
В 1953 году Гассер уходит с поста директора Рокфеллеровского института и продолжает заниматься изучением типов нервных волокон; впервые применяет электронный микроскоп для неврологических изысканий. Но, увы, работать ему оставалось недолго. По иронии судьбы, именно нервные центры и пострадали: ученого поразил инсульт. Последние годы жизни он провел прикованным к постели. Впрочем, титулы и звания продолжали сыпаться на Гассера: наш герой заслужил почетные степени четырех университетов и огромный список титулов. Он был членом Национальной академии наук, Американской ассоциации по развитию науки, Американского физиологического общества, Американского общества фармакологии и экспериментальной терапии, Ассоциации американских врачей, Американского философского общества и Гарвеевского общества. Впрочем, что более важно — его до сих пор вспоминают не только как ученого, но и как обаятельного и очень гостеприимного человека, на первом месте у которого всё же была наука.
Ну и последнее: автор рубрики — человек не жадный. И я стараюсь вовлекать в мир нобелевских лауреатов новых и новых авторов. Бόльшая часть этого текста написана моей коллегой, Викторией Зюлиной, а я лишь добавил несколько завершающих штрихов.
Читайте также: