Оболочка в которой происходит преобразование энергии света в нервные импульсы
Строение глаза
Глаз построен по камерному типу. Он имеет форму шара, который иногда называется глазным яблоком.
Плотная волокнистая оболочка, которая, как мешок, содержит в себе все внутренние элементы, называется склерой. Спереди склера имеет прозрачный участок, который называется роговицей.
Рис. 1. Строение глаза.
Под склерой расположена сосудистая оболочка. Она содержит кровеносные сосуды, питающие глаз. В передней части глаза сосудистая оболочка переходит в радужную, которая посередине имеет отверстие с меняющимся диаметром – зрачок.
Третья, внутренняя оболочка называется сетчаткой, в ней находятся рецепторные клетки.
К оптическому аппарату глаза относятся все прозрачные элементы:
- роговица;
- жидкость передней камеры;
- хрусталик;
- стекловидное тело.
Хрусталик делит глаз на переднюю и заднюю камеры. Он имеет форму двояковыпуклой линзы. По функции он и является линзой, которая может менять свою кривизну за счёт сокращения ресничных мышц.
видеть одновременно близкие и далёкие предметы невозможно. При рассматривании близких предметов хрусталик становится выпуклым, а далёких – более плоским.
Рис. 2. Внешний вид глаза.
Снаружи глаз периодически закрывается двумя веками, которые смачивают роговицу слезой, выделяемой слёзной железой.
После прохождения стекловидного тела свет попадает на сетчатку. Она состоит из нескольких слоёв клеток.
Рис. 3. Слои сетчатки.
В сетчатке находятся палочки и колбочки – 2 типа фоторецепторов.
Палочки:
- воспринимают сумеречный свет;
- более многочисленны;
- дают ночное, чёрно- белое зрение.
Колбочки:
- активны при дневном свете;
- менее многочисленны;
- дают дневное, цветное зрение.
В соседних слоях сетчатки расположены нейроны, которые воспринимают нервный импульс от рецепторов. Отростки нейронов сетчатки образуют зрительный нерв, передающий импульсы в мозг.
Мы смотрим двумя глазами, но получаем одно изображение потому, что задействуем идентичные участки сетчатки обоих глаз. Если пальцем сместить глазное яблоко, изображение сразу раздваивается.
Элемент
Строение
Функция
Прозрачная тонкая оболочка
Преломление лучей света
Форма линзы, эластичный
Фокусирует лучи света
Мышечные волокна вокруг хрусталика
Изменение кривизны хрусталика
Прозрачное студенистое вещество
Поддерживает внутриглазное давление, проводит свет
Плотная, белая волокнистая ткань
Создаёт форму глаза
Сеть кровеносных сосудов
Несколько слоёв нейронов и слой фоторецепторов
Восприятие светового сигнала и превращение его в нервный импульс
Формирование изображения
Что мы узнали?
Мы кратко рассмотрели строение глаза и функции его частей. Сетчатка глаза содержит фоторецепторы – периферическую часть зрительного анализатора. В рецепторных клетках энергия света превращается в электрическую энергию нервного импульса. Из отростков нейронов сетчатки формируется зрительный нерв. Оптический аппарат пропускает и преломляет лучи света, проецируя изображение на сетчатке.
Тест по теме
Средняя оценка: 4 . Всего получено оценок: 1026.
Не понравилось? - Напиши в комментариях, чего не хватает.
Содержание
- Тест по теме
- Анализаторы человека (таблица)
- Зрительный анализатор Строение и функции глаза
- Обоняние
- Вкус
- Анализаторы человека
По многочисленным просьбам теперь можно: сохранять все свои результаты, получать баллы и участвовать в общем рейтинге.
- 1.
Анастасия Алёхина 133 - 2.
София Архангельская 132 - 3.
Николь Пак 131 - 4.
Sladkiy ded 128 - 5.
Игорь Проскуренко 121 - 6.
Ефим Евлеев 110 - 7.
Анастасия Давыдова 105 - 8.
Ренат Шерифов 98 - 9.
Даниил Юраков 89 - 10.
Полина Зубкова 86
- 1.
Кристина Волосочева 19,120 - 2.
Ekaterina 18,721 - 3.
Юлия Бронникова 18,580 - 4.
Darth Vader 17,856 - 5.
Алина Сайбель 16,787 - 6.
Мария Николаевна 15,775 - 7.
Лариса Самодурова 15,735 - 8.
Liza 15,165 - 9.
TorkMen 14,876 - 10.
Влад Лубенков 13,530
Самые активные участники недели:
- 1. Виктория Нойманн - подарочная карта книжного магазина на 500 рублей.
- 2. Bulat Sadykov - подарочная карта книжного магазина на 500 рублей.
- 3. Дарья Волкова - подарочная карта книжного магазина на 500 рублей.
Три счастливчика, которые прошли хотя бы 1 тест:
- 1. Наталья Старостина - подарочная карта книжного магазина на 500 рублей.
- 2. Николай З - подарочная карта книжного магазина на 500 рублей.
- 3. Давид Мельников - подарочная карта книжного магазина на 500 рублей.
Карты электронные(код), они будут отправлены в ближайшие дни сообщением Вконтакте или электронным письмом.
Что и как мы видим ?
Данная тема и название её выбраны из того , что предположение является гипотезой но с возможностью реализации уже на современной базе технических разработок .
Итак , начнем с того , что ? Зрение и органы зрения хорошо изучены и описаны во многих трудах . Общие ссылки я привожу в начале темы . Но все изучение нашего зрения и его органов (смотрите строение глаза вставка ниже) начинается с хрусталика . Я же отъеду немного назад - к предмету который мы видим .
Строение глаз человека
Рис. 1. Глаз человека (разрез глазного яблока в горизонтальной плоскости; полусхематично): 1 — роговая оболочка; 2 — передняя камера; 3 — цилиарная мышца; 4 — стекловидное тело; 5 — сетчатая оболочка; 6 — собственно сосудистая оболочка; 7 — склера; 8 — зрительный нерв; 9 — продырявленная пластинка склеры; 10 — зубчатая линия; 11 — цилиарное тело; 12 — задняя камера; 13 — конъюнктива глазного яблока; 14 — радужная оболочка; 15 — хрусталик.
Глаз человека состоит из глазного яблока (собственно глаза), соединённого зрительным нервом с головным мозгом, и вспомогательного аппарата (веки, слёзные органы и мышцы, двигающие глазное яблоко). По форме глазное яблоко (рис. 1) имеет не совсем правильную шаровидную форму: передне-задний размер у взрослого в среднем 24,3 мм, вертикальный — 23,4 мм и горизонтальный — 23,6 мм; размеры глазного яблока могут быть больше или меньше, что имеет значение для формирования преломляющей способности глаза — его рефракции (см. Близорукость, Дальнозоркость).
Стенки глаза состоят из трёх концентрически расположенных оболочек — наружной, средней и внутренней. Они окружают содержимое глазного яблока — хрусталик, стекловидное тело, внутриглазную жидкость (водянистую влагу). Наружная оболочка глаза — непрозрачная склера, или белочная оболочка, занимающая 5 / 6 его поверхности; в своём переднем отделе соединяется с прозрачной роговицей. Вместе они образуют роговично-склеральную капсулу глаза, которая, являясь наиболее плотной и упругой наружной частью глаза, выполняет защитную функцию, составляя как бы скелет глаза. Склера сформирована из плотных соединительнотканных волокон, толщина её, в среднем около 1 мм.
Склера сильно истончена в области заднего полюса глаза, где она превращается в решётчатую пластинку, через которую проходят волокна, образующие зрительный нерв глаза. В передней части склеры, почти на границе перехода её в роговую оболочку, заложен круговой синус, т. н. шлеммов канал (по имени немецкого анатома Ф. Шлемма, впервые описавшего его), который участвует в оттоке внутриглазной жидкости. Спереди склера покрыта тонкой слизистой оболочкой — конъюнктивой, которая кзади переходит на внутреннюю поверхность верхнего и нижнего век.
Роговица имеет переднюю выпуклую и заднюю вогнутую поверхность; толщина её в центре около 0,6 мм, на периферии — до 1 мм. По оптическим свойствам роговица — наиболее сильная преломляющая среда глаза. Она также является как бы окном, через которое в глаза проходят лучи света. В роговице нет кровеносных сосудов, её питание осуществляется за счёт диффузии из сосудистой сети, расположенной на границе между роговицей и склерой. Благодаря многочисленным нервным окончаниям, расположенным в поверхностных слоях роговицы, она самая чувствительная наружная часть тела. Даже лёгкое касание вызывает рефлекторное мгновенное смыкание век, что предупреждает попадание на роговицу инородных тел и ограждает её от холодных и тепловых повреждений.
Непосредственно за роговицей находится передняя камера глаза — пространство, заполненное прозрачной жидкостью, т. н. камерной влагой, которая по химическому составу близка к спинномозговой жидкости (См. Спинномозговая жидкость). Передняя камера имеет центральный (глубиной в среднем 2,5 мм) и периферические отделы — угол передней камеры глаза. В этом отделе заложено образование, состоящее из переплетающихся фиброзных волокон с мельчайшими отверстиями, через которые происходит фильтрация камерной влаги в шлеммов канал, а оттуда — в венозные сплетения, расположенные в толще и на поверхности склеры. Благодаря оттоку камерной влаги поддерживается на нормальном уровне внутриглазное давление. Задней стенкой передней камеры является радужка; в центре её расположен зрачок — круглое отверстие диаметром около 3,5 мм.
Радужка имеет губчатую структуру и содержит пигмент, в зависимости от количества которого и толщины оболочки цвет глаз может быть тёмным (чёрный, коричневый) или светлым (серый, голубой). В радужке находятся также две мышцы, расширяющие и сужающие зрачок, который выполняет роль диафрагмы оптической системы глаз, — на свету он сужается (прямая реакция на свет), ограждая глаза от сильного светового раздражения, в темноте расширяется (обратная реакция на свет), позволяя улавливать очень слабые по яркости световые лучи.
Радужка переходит в цилиарное тело, состоящее из складчатой передней части, называемой короной цилиарного тела, и плоской задней части и вырабатывающее внутриглазную жидкость. В складчатой части находятся отростки, к которым прикрепляются тонкие связки, идущие затем к хрусталику и образующие его подвешивающий аппарат. В цилиарном теле заложена мышца непроизвольного действия, участвующая в аккомодации глаза. Плоская часть цилиарного тела переходит в собственно сосудистую оболочку, прилежащую почти ко всей внутренней поверхности склеры и состоящую из сосудов разного калибра, в которых находится около 80% крови, попадающей в глаз. Радужная оболочка, цилиарное тело и сосудистая оболочка составляют вместе среднюю оболочку глаза, называют сосудистым трактом. Внутренняя оболочка глаза — сетчатка — воспринимающий (рецепторный) аппарат глаз.
По анатомическому строению сетчатка состоит из десяти слоев, наиболее важным из которых является слой зрительных клеток, состоящий из световоспринимающих клеток — палочковых и колбочковых, осуществляющих также и восприятие цвета. В них происходит преобразование физической энергии лучей света, попадающих в глаза, в нервный импульс, который по зрительно-нервному пути передаётся в затылочную долю головного мозга, где и формируется зрительный образ.
В центре сетчатки расположена область жёлтого пятна, которая осуществляет наиболее тонкое и дифференцированное зрение. В носовой половине сетчатой оболочки, примерно в 4 мм от жёлтого пятна, находится место выхода зрительного нерва, образующее диск диаметром в 1,5 мм. Из центра диска зрительного нерва выходят сосуды — артерия и вена, которые делятся на ветви, распределяющиеся почти по всей поверхности сетчатой оболочки. Полость глаза выполнена хрусталиком и стекловидным телом.
Чечевицеобразный хрусталик — одна из частей диоптрического аппарата глаза — расположен непосредственно за радужной оболочкой; между его передней поверхностью и задней поверхностью радужной оболочки имеется щелевидное пространство — задняя камера глаза; так же как и передняя, она заполнена водянистой влагой. Хрусталик состоит из сумки, образованной передней и задней капсулами, внутри которой заключены волокна, наслаивающиеся одно на другое. Сосудов и нервов в хрусталике нет. Стекловидное тело — бесцветная студенистая масса — занимает большую часть полости глаза. Спереди оно прилежит к хрусталику, сбоку и сзади — к сетчатой оболочке.
Движения глазных яблок возможны благодаря аппарату, состоящему из 4 прямых и 2 косых мышц; все они начинаются от фиброзного кольца у вершины орбиты (См. Орбита) и, веерообразно расширяясь, вплетаются в склеру. Сокращения отдельных мышц глаза или же их групп обеспечивают координированные движения глаз.
Различные цвета нормальной радужной оболочки
Мышцы глаза: 1 — мышца, поднимающая верхнее веко; 2 — верхняя косая мышца; 3 — верхняя прямая мышца; 4 — наружная прямая мышца; 5 — внутренняя прямая мышца; 6 — зрительный нерв; 7 — нижняя прямая мышца; 8 — нижняя косая мышца.
Глазное дно при осмотре офтальмоскопом
Глазное дно при осмотре офтальмоскопом: 1 — жёлтое пятно; 2 — диск зрительного нерва; 3 — вены сетчатки; 4 — артерии сетчатки.
Вертикальный разрез через глазницу, глазное яблоко и веки
КРАТКИЕ СВЕДЕНИЯ О РАБОТЕ ГЛАЗА
Зрительный анализатор состоит из глазного яблока, строение которого схематично представлено на рис. 1, проводящих путей и зрительной коры головного мозга.
Рис.1. Схема строения глаза
1 - склера,
2 - сосудистая оболочка,
3 - сетчатка,
4 - роговица,
5 - радужка,
6 - ресничная мышца,
7 - хрусталик,
8 - стекловидное тело,
9 - диск зрительного нерва,
10 - зрительный нерв,
11 - желтое пятно.
Вокруг глаза расположены три пары глазодвигательных мышц. Одна пара поворачивает глаз влево и вправо, другая - вверх и вниз, а третья вращает его относительно оптической оси. Сами глазодвигательные мышцы управляются сигналами, поступающими из мозга. Эти три пары мышц служат исполнительными органами, обеспечивающими автоматическое слежение, благодаря чему глаз может легко сопровождать взором всякий движущийся вблизи и вдали объект (рис. 2).
Рис.2. Мышцы глаза
1 - наружная прямая;
2 - внутренняя прямая;
3 - верхняя прямая;
4 - мышца, поднимающая верхнее веко;
5 - нижняя косая мышца;
6 - нижняя прямая мышца.
Глаз, глазное яблоко имеет почти шаровидную форму примерно 2,5 см в диаметре. Он состоит из нескольких оболочек, из них три - основные:
склера - внешняя оболочка,
сосудистая оболочка - средняя,
сетчатка - внутренняя.
Склера имеет белый цвет с молочным отливом, кроме передней ее части, которая прозрачна и называется роговицей. Через роговицу свет поступает в глаз. Сосудистая оболочка, средний слой, содержит кровеносные сосуды, по которым кровь поступает для питания глаза. Прямо под роговицей сосудистая оболочка переходит в радужную оболочку, которая и определяет цвет глаз. В центре ее находится зрачок. Функция этой оболочки - ограничивать поступление света в глаз при его высокой яркости. Это достигается сужением зрачка при высокой освещенности и расширением - при низкой. За радужной оболочкой расположен хрусталик, похожий на двояковыпуклую линзу, который улавливает свет, когда он проходит через зрачок и фокусирует его на сетчатке. Вокруг хрусталика сосудистая оболочка образует ресничное тело, в котором заложена мышца, регулирующая кривизну хрусталика, что обеспечивает ясное и четкое видение разноудаленных предметов. Достигается это следующим образом (рис.3).
Рис.3. Схематическое представление механизма аккомодации
слева - фокусировка вдаль;
справа - фокусировка на близкие предметы.
Хрусталик в глазу "подвешен" на тонких радиальных нитях, которые охватывают его круговым поясом. Наружные концы этих нитей прикрепляются к ресничной мышце. Когда эта мышца расслаблена (в случае фокусировки взора на удаленном предмете), то кольцо, образуемое ее телом, имеет большой диаметр, нити, держащие хрусталик, натянуты, и его кривизна, а следовательно и преломляющая сила, минимальна. Когда же ресничная мышца напрягается (при рассматривании близко расположенного объекта), ее кольцо сужается, нити расслабляются, и хрусталик становится более выпуклым и, следовательно, более сильно преломляющим. Это свойство хрусталика менять свою преломляющую силу, а вместе с этим и фокусную точку всего глаза, называется аккомодацией.
Лучи света фокусируются оптической системой глаза на особом рецепторном (воспринимающем) аппарате - сетчатой оболочке. Сетчатка глаза - передний край мозга, исключительно сложное как по своей структуре, так и по функциям образование. В сетчатке позвоночных обычно различают 10 слоев нервных элементов, связанных между собой не только структурно-морфологически, но и функционально. Главным слоем сетчатки является тонкий слой светочувствительных клеток - фоторецепторов. Они бывают двух видов: отвечающие на слабый засвет (палочки) и отвечающие на сильный засвет (колбочки). Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке, кроме самого центра. Благодаря им обнаруживаются предметы на периферии поля зрения, в том числе при низкой освещенности. Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом "желтом пятне". Сетчатка здесь максимально утончается, отсутствуют все слои, кроме слоя колбочек. "Желтым пятном" человек видит лучше всего: вся световая информация, попадающая на эту область сетчатки, передается наиболее полно и без искажений. В этой области возможно лишь дневное, цветное зрение, при помощи которого воспринимаются цвета окружающего нас мира.
От каждой светочувствительной клетки отходит нервное волокно, соединяющее рецепторы с центральной нервной системой. При этом каждую колбочку соединяет свое отдельное волокно, тогда как точно такое же волокно "обслуживает" целую группу палочек.
Под воздействием световых лучей в фоторецепторах происходит фотохимическая реакция (распад зрительных пигментов), в результате которой выделяется энергия (электрический потенциал), несущая зрительную информацию. Эта энергия в виде нервного возбуждения передается в другие слои сетчатки - на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных "помех" в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы. Нервные волокна со всей сетчатки собираются в зрительный нерв в особой области сетчатки - "слепом пятне". Оно расположено в том месте, где зрительный нерв выходит из глаза, и все, что попадает на эту область, исчезает из поля зрения человека. Зрительные нервы правой и левой стороны перекрещиваются, причем у человека и высших обезьян перекрещиваются лишь половина волокон каждого зрительного нерва. В конечном счете вся зрительная информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва в головной мозг, его высшую инстанцию - кору, где и происходит формирование зрительного образа (рис. 4).
Рис.4. Схема строения зрительного анализатора
1 - сетчатка,
2 - неперекрещенные волокна зрительного нерва,
3 - перекрещенные волокна зрительного нерва,
4 - зрительный тракт,
5 - наружнее коленчатое тело,
6 - radiatio optici,
7 - lobus opticus,
Окружающий нас мир мы видим ясно, когда все отделы зрительного анализатора "работают" гармонично и без помех. Для того, чтобы изображение было резким, сетчатка, очевидно, должна находиться в заднем фокусе оптической системы глаза. Различные нарушения преломления световых лучей в оптической системе глаза, приводящие к расфокусировке изображения на сетчатке, называются аномалиями рефракции (аметропиями). К ним относятся близорукость (миопия), дальнозоркость (гиперметропия), возрастная дальнозоркость (пресбиопия) и астигматизм
Вертикальный разрез через глазницу, глазное яблоко и веки: 1 — верхняя прямая мышца глаза; 2 — мышца, поднимающая верхнее веко; 3 — лобная пазуха (лобная кость); 4 — хрусталик; 5 — передняя камера глаза; 6 — роговица; 7 — верхнее и нижнее веки; 8 — зрачок; 9 — радужная оболочка; 10 — циннова связка; 11 — реснитчатое тело; 12 — склера; 13 — сосудистая оболочка; 14 — сетчатка; 15 — стекловидное тело; 16 — зрительный нерв;
При разложении белого света призмой в непрерывный спектр цвета в нем постепенно переходят один в другой. Принято считать, что в некоторых границах длин волн (нм) излучения имеют следующие цвета:
390—440 – фиолетовый
440—480 - синий
480—510 – голубой
510—550 – зеленый
550—575 - желто-зеленый
575—585 - желтый
585—620 – оранжевый
630—770 – красный
Глаз человека обладает наибольшей чувствительностью к желто-зеленому излучению с длиной волны около 555 нм.
Различают три зоны излучения: сине-фиолетовая (длина волн 400—490 нм), зеленая (длина 490—570 нм) и красная (длина 580—720 нм). Эти зоны спектра являются также зонами преимущественной спектральной чувствительности приемников глаза и трех слоев цветной фотопленки. Свет, излучаемый обычными источниками, а также свет, отраженный от несветящихся тел, всегда имеет сложный спектральный состав, т. е. - состоит из суммы различных монохроматических излучений. Спектральный состав света — важнейшая характеристика освещения. Он непосредственно влияет на светопередачу при съемке на цветные фотографические материалы.
Длина световой волны
Для красного света измерения дают lкр=8;10-7 м, а для фиолетового - lф =4;10-7 м. Длины волн, соответствующие другим цветам спектра, принимают промежуточные значения. Для любого цвета длина световой волны очень мала. Представьте себе среднюю морскую волну длиной в несколько метров, которая увеличилась настолько, что заняла весь Атлантический океан от берегов Америки до Европы. Длина световой волны в том же увеличении лишь ненамного превысила бы ширину этой страницы.
Явление интерференции не только доказывает наличие у света волновых свойств, но и позволяет измерить длину волны. Подобно тому, как высота звука определяется его частотой, цвет света определяется частотой колебаний или длиной волны.
Вне нас в природе нет никаких красок, есть лишь волны разной длины. Глаз – сложный физический прибор, способный обнаруживать различие в цвете, которому соответствует весьма незначительная (около 10-6 см) разница в длине световых волн. Интересно, что большинство животных неспособны различать цвета. Они всегда видят черно-белую картину. Не различают цвета также дальтоники — люди, страдающие цветовой слепотой.
При переходе света из одной среды в другую длина волны изменяется. Это можно обнаружить так. Заполним водой или другой прозрачной жидкостью с показателем преломления n воздушную прослойку между линзой и пластиной. Радиусы интерференционных колец уменьшатся.
Почему это происходит? Мы знаем, что при переходе света из вакуума в какую-нибудь среду скорость света уменьшается в n раз. Так как u = nl, то при этом должна уменьшиться в n раз либо частота, либо длина волны. Но радиусы колец зависит от длины волны. Следовательно, когда свет входит в среду, изменяется в n раз именно длина волны, а не частота.
С помощью зрительной функции человек способен увидеть происходящие рядом с ним явления, может анализировать разные события, находить отличия одного предмета от другого, а также замечать надвигающуюся угрозу.
Органы зрения устроены таким образом, что различают не только сами объекты, но ещё и цветовое разнообразие живой и неживой природы. Ответственность за это лежит на особых микроскопических клетках — палочках и колбочках, присутствующих в сетчатке глаза. Именно они являются начальным звеном в цепочке по передаче информации об увиденном объекте в затылочную часть головного мозга.
Рецепторы глаз
На сетчатке человека находится приблизительно 115—120 миллионов рецепторов. Это рецепторы в глазу человека, которые помогают воспринимать окружающую реальность. Внешне напоминают продолговатый цилиндр. Они крайне чувствительны к свету, но не могут обеспечить цветовое зрение. Отличаются от колбочек сетчатки глаза, палочки. Они плохо различают цвета и медленно реагируют на передвижения предметов. Состояние этих рецепторов не сказывается на качестве зрения человека. Они находятся на периферии зрения и отвечают за видение в ночное время суток.
Другие зрительные рецепторы в глазах человека называются колбочки. Их приблизительно 7 миллионов, а форма соответствует названию. Как и палочки, колбочки помогают глазу воспринять изображения окружающей среды. Они вместе с палочками преобразовывают нейронные импульсы из лучей света и отправляют их по зрительному нерву в мозг. Колбочки в сетчатке отвечают за восприятие окружающей реальности днем. Именно к цветам чувствительны колбочки сетчатки. Это связано с пигментами, которые находятся в их составе. Расположены колбочки в глазу у человека в области макулы.
Разделяются на 3 типа:
- коротковолновые;
- средневолновые;
- длинноволновые.
Открываясь, чтобы впустить больше света
Ваши зрачки — это черные области перед глазами, которые пропускают свет. Они выглядят черными, потому что свет, который достигает их, поглощается внутри глазного яблока. Затем он преобразуется вашим мозгом в ваше восприятие мира.
Вы, наверное, заметили, что зрачки могут изменить размер в ответ на свет. Снаружи в яркий солнечный день ваши зрачки становятся очень маленькими. Это дает меньше света в глаза, так как есть много доступных.
Когда вы переходите в темное место, ваши зрачки открываются, чтобы стать как можно больше. Это расширение позволяет вашему глазу собирать больше света, чем там есть.
Но от самого маленького размера до самого широкого зрачка ваш зрачок может увеличить свою площадь всего лишь в 16 раз. Вы можете хорошо видеть поперечные изменения уровня освещенности гораздо больше, чем в миллион раз. Так что здесь должно быть что-то еще происходит.
Строение рецепторов
- наружное поле (диск);
- связующую зону;
- внутреннюю;
- базальная зона.
В длину одна палка 0,06 миллиметров, а диаметр — 0,002 мм. Эти фоторецепторы глаза крайне светочувствительны. Они воспринимают максимальное количество волн света, что предоставляет человеку возможность различать предметы в темное время суток. В рецепторах присутствует родопсин или зрительный пурпур, который содержится на мембранных дисках. В желтом пятне палочек практически нет. Под воздействием лучей он раздражается и помогает улавливать свет в ночное время.
Колбочки по строению схожи с палочками:
- наружная зона;
- связующая (перетяжка);
- внутренняя;
- базальная.
Длина рецепторов — 0,05 мм, а диаметр в широкой зоне составляет 0,004 мм. В дисках колбочек содержится йодопсин. Благодаря ему светочувствительные рецепторы обрабатывают поступающее изображение и изменяют его в нейронный импульс. Такая работа обеспечивает дневное видение и более точное изображение реальности. Колбочки улавливают красный и зеленый оттенков. Различают 3 вида йодопсина: эритролаб, хлоролаб цианолаб. Каждый из них отвечает за различие одного из 3-х основных оттенков: синего, красного и зеленого. Но если первые 2 вида были официально найдены учеными, то цианолаб еще не открыт, но уже имеет название.
Существует теория о двухкомпонентном восприятии цветов. Так как цианолаб еще не был найден, то приверженцы этой теории считают, что эритролаб и хлоролаб дают возможность глазу различать красный и зеленый спектры, а синий оттенок глаз улавливает с помощью выцветших родопсин (пигмента палочек). Эту гипотезу подтверждают исследования людей, что не различают синие цвета и плохо ориентируются в темноте.
Сколько времени это займет?
Когда вы находитесь в ярком свете, ваши стержни полностью перегружены и не работают. Если вы выключите свет, ваш зрачок сразу же откроется. Ваши фоторецепторы начинают улучшать свою чувствительность, чтобы впитывать любой свет, который они могут в новых тусклых условиях.
Колбочки делают это быстро – примерно через пять минут их чувствительность повышается. Примерно через 10 минут в темном месте, ваши стержни наконец-то нагоняют и вступают во владение. Вы начнете видеть намного лучше. Примерно через 20 минут ваши удилища сделают все возможное, и вы будете видеть как можно лучше “в темноте.”
Найдите очень темное место, может быть, вашу спальню ночью. Включите любой имеющийся у вас свет и соберите несколько красочных предметов. Потратьте некоторое время, замечая, как красочные, острые и полные контрастные вещи выглядят.
Затем выключите свет и посмотрите, как со временем меняется внешний вид вашей комнаты и предметов. Сначала это будет казаться очень темным; тогда вы быстро увидите лучше благодаря зрачкам и колбочкам, которые делают свою работу. Затем, если он достаточно темный, вы заметите еще одно довольно внезапное улучшение примерно через 10 минут, когда стержни начнут показывать свои вещи. Это называется темная адаптация.
Как насчет полной темноты? Если вы можете найти место, где нет абсолютно никакого света, например, шкаф, ванная или подвал, вы можете попробовать эксперимент снова. На этот раз даже через 20 минут вы не увидите никаких предметов в комнате. Но вы также не увидите полной черноты. Попробуйте и понаблюдайте, что происходит.
Функции рецепторов
Зрительные рецепторы отвечают за качество изображения и за цветное зрение. Светочувствительность у палочек рецепторов сетчатки намного выше, чем у колбочек. При сильном воздействии яркий лучей единственный пигмент родопсин выцветает и воспринимает только короткие волны синего света. Но в темноте он восстанавливается, что дает возможность человеку видеть.
Чувствительность глаз, к предметам, лежащим вне полей зрения, что еще называется конвергенция, выше у тех, у кого наблюдается объединение палочек в группы и соединением с интернейроном, собирающим сигналы c сетчатки.
Следовательно, к функциям палочек и колбочек относится:
- цветовосприятие;
- одновременное распознание нескольких объектов;
- расширение периферического зрения;
- видимость в темноте и сумерках.
География сетчатки
Строение и функции этой оболочки разные в зависимости от местонахождения. В центре расположена круглая зона диаметром около 2 мм, где находится оптический нерв. В этом месте нет светочувствительных рецепторов, это зона слепого пятна.
Левее слепого пятна на 4,5-5 мм находится фовеа или макула – центральная ямка сетчатки или желтое пятно. На самом деле это пятно диаметром до 5 мм, где нет кровеносных сосудов, но расположено максимальное количество световоспринимающих клеток. Центральная ямка – это всего 5 % оптической сетчатки, но именно она отвечает за наибольшую остроту зрения.
Нарушения рецепторов
Дополнительные слои
За слоем с фоторецепторами идут слои, без которых работа всего световоспринимающего аппарата невозможна:
- Наружная пограничная, или мембрана Везхова, разделяет слои друг от друга и необходима для обеспечения трансформации энергии химических связей в нервный импульс.
- Наружный ядерный слой содержит ядра колбочек и палочек.
- Наружный сетчатый слой (плексиформный) образован отростками фоторецепторов и биполярных нейронов.
- Внутренний слой сетчатки содержит ядра биполярных нейронов.
- Во внутреннем ретикулярном слое располагаются клетки, которые ограничивают светочувствительность сетчатки. Именно тут проходит граница между частями сетчатки, где есть сосуды и где их нет. И это последняя ступенька в обработке информации перед направлением ее в мозг.
- Ганглиозный многополярный слой. Наибольшая его толщина в пять рядов клеток в районе центральной ямки сетчатки.
- Волокнистый слой с волокнами зрительного нерва.
- Последний слой – внутренняя мембрана, которая образована нейроглиальными (соединительными) клетками Мюллера и непосредственно прилегает к стекловидному телу.
Механизм восприятия
Палочки работают в изумрудно-зеленой спектральной зоне с длиной волны до 498 нм. Остальные участки воспринимают колбочки, но они чувствительны не только к своим цветам. Длинноволновые и средневолновые рецепторы также реагируют и на другие, просто менее активно. Так как ночью фотонный поток минимален, то распознают его лишь палочки, поэтому человек видит в монохроме и цвета не различает.
При попадании на сетчатку лучей разрушается под действием йодопсина и родопсина. Зрительные пигменты раздражаются и преобразовывают свет в нейронный импульс. Палочки образуют слой нервных волокон. По ним передается импульс от рецепторов в зрительный нерв. Под влиянием света происходит распад пигментов в рецепторах. Их восстановление происходит благодаря белку, который в них содержится. Возобновление белка занимает около 30 минут. Этого времени хватает для полного отображение окружающей среды.
Главные в пироге
Итак, самый наружный слой сетчатки, который непосредственно соприкасается с сосудистой оболочкой глазного яблока и отделен от нее мембраной Бруха, – это пигментный эпителий. Как любой тип эпителия, тут имеются плотно упакованные клетки, шестигранные и организованные в линию. Их особенность – наличие зрительного пурпура. Именно этот пигмент играет важную роль в предохранении фоторецепторов от рассеивания и потерь, бликов и переотражения света. Пигментный слой сетчатки выполняет функции ввода питательных веществ и отвода продуктов метаболизма от всех остальных частей этого пирога, и обеспечивает гемато-ретинальный барьер.
К клеткам пигментного эпителия прилегают светочувствительные клетки – колбочки и палочки. На их строении остановимся чуть подробнее, а главная функция этого слоя сетчатки – преобразование фотонов света в нервные импульсы. Или преобразование энергии световых волн в электрические сигналы.
Когда стоит начать беспокоиться
Симптоматика патологий сетчатки не специфическая, и часто пациент долгое время не подозревает о существующей проблеме. Записаться к офтальмологу на обследование следует, если:
- Появилось ощущение снижения общей остроты зрения.
- Появляются вспышки, блики или молнии перед глазами.
- Если поле зрения сузилось.
- Появляются круги или темные пятна перед глазами.
Офтальмолог после осмотра назначит дополнительное обследование, которое включает офтальмоскопию, УЗИ глаз, флуоресцентную ангиографию, оптическую когерентную томографию. После чего может быть поставлен диагноз и начато лечение.
Читайте также: