Общая морфофункциональная характеристика нервной ткани
Нервная ткань — это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздражений, возбуждения, выработки импульса и передачи его. Она является основой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей средой. Нервные клетки — основные структурные компоненты нервной ткани, выполняющие специфическую функцию. Нейроглия обеспечивает существование и функционирование нервных клеток, осуществляя опорную, трофическую, разграничительную, секреторную и защитную функции. Нервная ткань развивается из дорсальной эктодермы. У 18-дневного эмбриона человека эктодерма по средней линии спины дифференцируется и утолщается, формируя нервную пластинку, латеральные края которой приподнимаются, образуя нервные валики, а между валиками формируется нервный желобок. Латеральные края – нервную трубку. Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из вентрикулярных или нейроэпителиальных клеток. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны: вентрикулярная, субвентрикулярная, промежуточная и краевая. Нейроциты – специализированные клетки нервной системы, ответственные за рецепцию обработку стимулов, проведение импульсов, влияние на другие нейроны, мышечные или секреторные клетки. Они выделяют нейромедиаторы, передающие информацию. Нейрон состоит из тела и отростков: аксона и ветвящихся дендритов. По количеству отростков различают: униполярные нейроны, биполярные и мультиполярные. Среди биполярных встречаются псевдоуниполярные.
Морфофункциональная характеристика нервной ткани. Источники развития. Нервные волокна: определение, строение и функциональные особенности миелиновых и безмиелиновых нервных волокон. Регенерация нервных волокон.
Нервная ткань — это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздражений, возбуждения, выработки импульса и передачи его. Она является основой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей средой. Нервные клетки — основные структурные компоненты нервной ткани, выполняющие специфическую функцию. Нейроглия обеспечивает существование и функционирование нервных клеток, осуществляя опорную, трофическую, разграничительную, секреторную и защитную функции. Нервная ткань развивается из дорсальной эктодермы. У 18-дневного эмбриона человека эктодерма по средней линии спины дифференцируется и утолщается, формируя нервную пластинку, латеральные края которой приподнимаются, образуя нервные валики, а между валиками формируется нервный желобок. Латеральные края – нервную трубку. Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из вентрикулярных или нейроэпителиальных клеток. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны: вентрикулярная, субвентрикулярная, промежуточная и краевая. Отростки нервных клеток, покрытые оболочками называются нервными волокнами. По строению оболочек различают: миелиновые и безмиелиновые. Отросток нервной клетки называют осевым цилиндром или аксоном. 1) Безмиелиновые нервные волокна находятся в составе вегетативной нервной системы. Они располагаются плотно, образуя тяжи, в которых на определенном расстоянии друг от друга видны овальные ядра. 2) Миелиновые нервные волокна, встречаются в центральной и периферической нервной системе. Они толще предыдущих. Они состоят из осевого цилиндра. В миелиновом волокне два слоя оболочек: 1) Миелиновые, 2) нейролемма. Регенерация зависит от места травмы. Погибшие нейроны не восстанавливаются. Нервные волокна в составе периферических нервов обычно хорошо регенерируют (головной и спинной мозг).
Нервная ткань — это ткань эктодермального происхождения, является основой строения нервной системы. Состоит из двух типов клеток - нейроцитов (нейронов) и глиоцитов (нейроглии). Практически не имеет межклеточного вещества. Для нейронов характерно наличие возбудимой клеточной оболочки - нейролеммы, обеспечивающей получение, преобразование и передачу нервного возбуждения. Основным видом межклеточных контактов в нервной ткани является синапс. Нервная ткань обеспечивает взаимодействие тканей, органов и систем организма и их регуляцию. Выполняет восприятие раздражения, генерацию и проведение нервного импульса. Регенерация возможна при неповрежденном теле нейрона, сближении отростка, возобновленном кровоснабжении.
Нейроны. Морфологическая и функциональная характеристики, классификации. Роль плазмолеммы в рецепции, генерации и проведении нервного импульса.
Нейроны – СФЕ нервной ткани. Они воспринимают раздражение, генерируют и проводят нервные импульсы. Нейроны – отросчатые клетки, в которых выделяют: тело (перикарион) и отростки. В теле располагаются сферической формы светлое ядро, ЭПС, рибосомы, КГ, Мх, нейрофибриллы (элементы цитоскелета). В цитоплазме имеются базофильные глыбки – тельца Ниссаля. Нейрофибриллы выполняют опорную, сократительную и транспортную функции. Выделяют: микротрубочки (из белка тубулина), нейрофиламенты (из специфических белков), микрофиламенты (сократительная ф-ия).
Отростки делят на аксона (импульс идет к клетки) и дендриты (импульс идет от клетки).
Классификация: 1) морфологическая – а) по кол-ву отростков: униполярные (1 отр), псевдоуниполярные (от тела отходит 1 отр, который позже делится), биполярные (2 отр), мультиполярные (1 аксон, много дендритов); б) по размеру – малые, средние, крупные, гигантские; в) по форме – веретеновидные, звездчатые, корзинчатые, пирамидные и т.д. 2) функциональная – а) по положению в рефлекторной дуге - афферентные (воспринимают), эфферентные (передают), ассоциативные (воспринимают); б) по типу медиаторов – норадреналин, ацетилхолин, сератонин, ГАМК, дофамин и т.д.; в) по электронно-физиологическому значению – тормозные и возбуждающие.
Нейроглия. Общая характеристика, классификация. Строение макроглии и микроглии. Роль глии в функционировании нервной ткани.
Нейроны — это высокоспециализированные клетки, существующие и функционирующие в строго определенной среде. Такую среду им обеспечивает нейроглия. Нейроглия выполняет следующие функции: опорную, трофическую, разграничительную, поддержание постоянства среды вокруг нейронов, защитную, секреторную. Различают глию центральной и периферической нервной системы. Клетки глии центральной нервной системы делятся на макроглию и микроглию.
Микроглия – это макрофаги нервной ткани. Клетки мелкие, неправильной формы, имеют отростки и хорошо развитые лизосомы. Микроглия имеет костно-мозговое происхождение.
Макроглия включает в себя эпендимоглиоциты, астроциты, олигодендроциты.
Эпедимоглиоциты – выстилают спинномозговой канал, желудочки мозга. Клетки кубической формы, на поверхности имеются микроворсинки, реснички, от основания отходит длинный отросток. Выполняют барьерную (отграничивают) функцию, участвуют в образовании ликвора.
Астроциты – выделяют 2 группы: 1) волокнистые – имеют длинные самоветвящиеся отростки, располагаются в белом веществе мозга; 2) протоплазматические – имеет короткие ветвящиеся отростки, преобладают в сером веществе мозга. Выполняют опорную, барьерную, трофическую, фагоцитарную и секреторную функции.
Олигодендроциты – входят в состав ЦНС и ПНС; образуют оболочки вокруг тел и отростков нейронов. Выполняют трофическую, барьерную, изоляционную функции.
Нервные волокна. Классификация. Образование, строение и функции миелиновых и безмиелиновых нервных волокон. Регенерация нервных волокон.
Нервные волокна – отростки нервных клеток, покрыты оболочкой, при этом сам отросток является осевым цилиндром. Оболочку образуют олигодендроциты (Шванновские клетки). В зависимости от строения миелиновой оболочки выделяют: 1) безмиелиновые волокна – встречаются в ВНС, в качестве отростков – аксонов. Отросток нервной клетки прогибает плазмаллему леммацита, погружается внутрь, мембрана над отростком смыкается – мезоаксон. В одну клетку одновременно погружается несколько отростков – волокна кабельного типа. Снаружи покрыты базальной мембраной. Скорость передачи нервного импульса – 1-20 м/с. Нервный импульс проходит по плазмолемме. 2) миелиновые волокна – при образовании в леммоцит погружается только 1 отросток, мембрана смыкается, мезаксон. мезаксон накручивается на отросток, так образуется миелиновый слой. При накручивании мезаксона цитоплазма и ядро смещаются на периферию, образуя нейролемму. На поперечном срезе: в центре – осевой цилиндр, вокруг – слой миелина. На протяжении отростков выстраиваются много леммоцитов, после образования волокна границы м/у леммоцитами – узловые перехваты (перехваты Ранвье) – здесь отсутсвует миелин, происходит деполяризация, а по межузловому сегменту идет ток, поэтому скорость проведения нервного импульса = 5-120 м/с, т.к. миелин является изолятором.
Клетки способны восстанавливать отростки и контакты. При повреждении нервного волокна образуется 2 отрезка: центральный (связан с телом) и периферический. Периферический отрезок полностью дегенерирует, разрушается осевой цилиндр, распадается миелин, но леммоциты остаются. Восстанавливается белковый синтез внутри клетки, сохранившиеся леммоциты быстро делятся и выстраиваются вдоль погибшего отростка, образую тяжи. Дальше идут от центра отрезка, вдоль них начинает расти отросток, при образовании рубца может формироваться неврома (разрастание центрального отростка).
Нервные окончания. Общая характеристика и классификация. Строение и функции рецепторных и эффекторных нервных окончаний.
Нервные волокна заканчиваются концевыми аппаратами – нервными окончаниями. Различают 3 группы: 1) концевые аппараты, образующие межнейронные синапсы и осуществляющие связь нейронов м/у собой;
2) эффекторные окончания (эффекторы), передающие нервный импульс на ткани рабочего органа; 3) рецепторные (аффекторные/чувствительные).
Функциональная классификация (в зависимости от происхождения раздражения): 1. Экстерорецепторы; 2. Интерорецепторы. Классификация в зависимости от природы сигнала:1. Механорецепторы; 2. Барорецепторы; 3. Хеморецепторы; 4. Терморецепторы и др.
Эффекторные нервные окончания бывают 2 видов: двигательные и секреторные. Двигательные нервные окончания – концевые аппараты аксонов двигательных клеток ВНС, при их участие нервный импульс передается на ткани рабочих органов. Эти окончания состоят из концевого ветвления осевого цилиндра нервного волокна и специализированного участка мышечного волокна. Миелиновое нервное волокно, подойдя к мышечному, теряет миелиновый слой и погружается в него, вовлекая за собой его плазмолемму и базальную мембрану. Нейролеммоциты, покрывающие нервные терминали, кроме их поверхности, непосредственно контактирующей с мышечным волокном, превращаются в специализированные уплощенные тела глиальных клеток. Их базальная мембрана продолжается в базальную мембрану мышечного волокна. Соединительнотканные элементы при этом переходят в наружный слой оболочки мышечного волокна. Плазмолеммы терминальных ветвей аксона и мышечного волокна разделены синаптической щелью. Секреторные нервные окончания представляют собой концевые утолщения терминалей/утолщения по ходу нервного волокна, содержащие пресинаптические пузырьки.
Рецепторные нервные окончания (рецепторы) – рассеяны по всему организму и воспринимают различные раздражения из внешней среды и внутренних органов. В связи с чем выделяют 2 группы: экстерорецепторы и интерорецепторы. По особенностям строения окончания разделяют на свободные (состоящие только из конечных ветвлений осевого цилиндра) и несвободные (содержащие в составе все компоненты нервного волокна: ветвления осевого цилиндра, клетки глии) нервные окончания. Несвободные окончания могут быть покрыты соединительнотканной капсулой – инкапсулированные, неинкапсулированные – несвободные нервные окончание не покрытые соединительнотканной капсулой.
Межнейрональные связи. Классификация синапсов. Ультраструктура химических синапсов и механизм передачи нервного импульса.
Синапсы – это структуры, предназначенные для передачи импульса с одного нейрона на другой/мышечные и железистые структуры. В зависимости от способа передачи импульса синапсы могут быть химическим/электрическими.
В зависимости от локализации окончаний терминальных веточек аксоны первого нейрона различают аксодендрические, аксосоматические и аксоаксональные синапсы.
Химические синапсы передают импульс на др клетку с помощью специальных биологически активных веществ – нейромедиаторов, находящихся в синаптических пузырьках. Терминаль аксона – пресинаптическая часть, а область др иннервируемой клетки – постсинаптическую часть. В пренсинаптической части находятся синаптические пузырьки. Форма и содержание синаптических пузырьков связанны с функцией синапса.
Область синаптического контакта м/у двумя нейронами состоит из пресинаптической мембраны, синаптической щели и постсинаптической мембраны. Пресинаптическая мембрана – мембрана клетки, передающая импульсы. Здесь локализованы кальциевые каналы, способствующие слиянию синаптических пузырьков с пресинаптической мембраной и выделению медиатора в синаптическую щель. Синаптическая щель располагается м/у пре- и постсинаптической мембранами. Постсинаптическая мембрана – участок плазмоллемы клетки, воспринимающий медиаторы генерирующие импульс. Она снабжена рецепторными зонами для восприятия соответствующего нейромедиатора.
Процессы, проходящие в синапсе: 1) волна деполяризации доходит до пресинаптической мембраны; 2) открываются кальциевые каналы, и ионы кальция входят в Терминаль; 3) вхождение ионов кальция в Терминаль вызывает экзоцитоз нейромедиатора, при этом мембрана синаптических пузырьков входит в состав пресинаптической мембраны, а медиатор попадает в синаптическую щель; в дальнейшем мембраны синаптических пузырьков, вошедшие в состав пресинаптической мембраны, и часть медиатора подвергаются эндоцитозу происходит рециркуляция синаптических пузырьков, а часть мембран и нейромедиатора с помощью ретроградного транспорта поступает в перикарион и разрушается лизасомами; 4) нейромедиатор диффундирует ч/з синаптическую щель и связывается с рецепторными участками на постсинаптической мембране, что вызывает 5) молекулярные изменения в постсинаптической мембране, приводящие к 6) открытию ионных каналов и 7) созданию постсинаптических потенциалов, обуславливающих реакции возбуждения/торможения.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Нейрон (от греч. néuron — нерв) — это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более ста миллиардов нейронов.
Дендриты и аксоны Аксон — обычно длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.
(дальше по рисунку)
5. Морфофункциональная характеристика ненервных элементов нервной ткани и нейросекреторного комплекса ЦНС.
Астроциты — клетки отростчатой формы, бедные органеллами. Они выполняют в основном опорную и трофическую функции. Различают два типа астроцитов - протоплазматические и волокнистые. Протоплазматические астроциты локализуются в сером веществе центральной нервной системы, а волокнистые астроциты - преимущественно в белом веществе.
Эпендима - днослойная выстилка центральных полостей головного и спинного мозга, состоящая из клеток, снабженных на своей периферии длинными отростками. У зародышей эти отростки достигают до поверхности спинного мозга, а у взрослого они сохраняют такое протяжением лишь местами (в области septum medianum posterius), a вообще же делаются относительно короче. В молодости клетки Э. снабжены на внутренней поверхности мерцательными волосками.
Шванновские клетки (леммоциты) — вспомогательные клетки нервной ткани, которые формируются вдоль аксонов периферических нервных волокон. Создают, а иногда и разрушают, электроизолирующую миелиновую оболочку нейронов. Выполняют опорную (поддерживают аксон) и трофическую (питают тело нейрона) функции. Описаны немецким физиологом Теодором Шванном в 1838 году и названы в его честь.
Морфофункциональная организация защитных структур ЦНС (а- строение черепа; б- мозговые оболочки и их производные; в- желудочковая система мозга и циркуляция ликвора; г- ГЭБ д- особенности кровообращения).
Строение черепа. костный каркас головы, совокупность костей. Череп человека состоит из 23 костей.
Череп состоит из двух отделов: лицевого и мозгового (черепная коробка), мозговой череп значительно преобладает над лицевым. Все кости черепа, кроме нижней челюсти, соединены неподвижными соединениями
Кости лицевого отдела: верхняя челюсть, нёбная кость, нижняя носовая раковина, сошник, носовая кость, слёзная кость, скуловая кость, нижняя челюсть (подвижное соединение), подъязычная кость.
Кости мозгового отдела (черепная коробка): лобная кость, клиновидная кость, затылочная кость, теменная кость, решётчатая кость, височная кость.[сердцевина ]
Кости черепа соединяются при помощи швов. Кости лица, прилегая друг к другу ровными краями, образуют плоские швы. К зубчатым швам относят венечный, сагиттальный и лямбдовидный швы
Твёрдая мозговая оболочка (лат. dura mater, греч. pachymeninx) — одна из трёх оболочек, покрывающих головной и спинной мозг. Находится наиболее поверхностно, над мягкой и паутинной мозговыми оболочками. Наружная ее поверхность непосредственно прилежит к черепным костям, для которых твердая оболочка служит надкостницей, в чем состоит ее отличие от такой же оболочки спинного мозга. Внутренняя поверхность, обращенная к мозгу, покрыта эндотелием и вследствие этого гладкая и блестящая.
Паутинная (арахноидальная) мозговая оболочка — одна из трёх оболочек, покрывающих головной и спинной мозг. Находится между двумя остальными оболочками — наиболее поверхностной твёрдой мозговой оболочкой и самой глубокой мягкой мозговой оболочкой, отделяясь от последней субарахноидальным (подпаутинным) пространством, заполненным 120—140 мл спинномозговой жидкости
Мягкая оболочка состоит из двух пластинок, между которыми располагаются мозговые артерии и вены. Эта оболочка сращена с тканью мозга, она принимает участие в образовании сосудистых сплетений желудочков головного мозга, продуцирующих цереброспинальную жидкость мозга. Содержит кровеносные сосуды.
Желудочки головного мозга — полости в головном мозге, заполненные спинномозговой жидкостью.
К желудочкам головного мозга относятся:
Боковые желудочки — ventriculi laterales (telencephalon);
Третий желудочек — ventriculus tertius (diencephalon);
Четвёртый желудочек — ventriculus quartus (mesencephalon).
Спинномозгова́я жидкость (цереброспина́льная жидкость, ли́квор)
жидкость, постоянно циркулирующая в желудочках головного мозга,
ликворопроводящих путях, субарахноидальном (подпаутинном) пространстве
головного и спинного мозга.
Функции ликвора
• Предохраняет головной и спинной мозг от механических воздействий.
• обеспечивает поддержание постоянного внутричерепного давления и
• Поддерживает трофические и обменные процессы между кровью и мозгом.
Главная функция ГЭБ— поддержание гомеостаза мозга. Онзащищает нервную тканьот циркулирующих в крови микроорганизмов, токсинов, клеточных и гуморальных факторов иммунной системы, которые воспринимают ткань мозга как чужеродную. ГЭБ выполняет функцию высокоселективного фильтра, через который из кровеносного русла в мозг поступают питательные вещества, а в обратном направлении выводятся продукты жизнедеятельности нервной ткани.
Вместе с тем, наличие ГЭБ затрудняет лечение многих заболеваний центральной нервной системы, так как он не пропускает целый ряд лекарственных препаратов.
Функционирование нейронов мозга требует значительных затрат энергии, которую мозг получает через сеть кровоснабжения. Головной мозг снабжается кровью из бассейна трёх крупных артерий — двух внутренних сонных артерий (лат. a. carotis interna) и основной артерии (лат. a. basilaris). В полости черепа внутренняя сонная артерия имеет продолжение в виде передней и средней мозговых артерий (лат. aa. cerebri anterior et media). Основная артерия находится на вентральной поверхности ствола мозга и образована слиянием правой и левой позвоночных артерий. Её ветвями являются задние мозговые артерии. Перечисленные три пары артерий (передняя, средняя, задняя), анастомозируя между собой, образуют артериальный (виллизиев) круг.
Эволюция нервной системы и онтогенез ЦНС человека.
Нервная ткань – это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздражений, возбуждения, выработки импульса и его передачи. Она является основой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей средой.
Нервная ткань является функционально ведущей тканью НС и состоит из нейроцитов (нервных клеток) и нейроглии.
Нейроны (нейроциты) обладают 4 свойствами:
1) способны воспринимать раздражение;
2) способны возбуждаться;
3) способны вырабатывать импульс;
4) способны передавать вырабатываемый импульс другим нейронам или на рабочие органы.
Нейроглия создает условия, в которых развиваются и функционируют нейроны, и выполняет следующие функции:
7) участвуют в обмене медиаторов;
8) участвуют в водно-солевом обмене;
9) выделяют фактор роста нейроцитов.
77.Гистогенез и регенерация нервной ткани.
Развитие нервной ткани.
Источник развития - дорсальная эктодерма. Нервная ткань развивается из нервного гребня, нейральных плакод и нервной трубки.
Нервный гребень образуется в процессе замыкания нервного желобка в нервную трубку. Часть клеток желобка и кожной эктодермы, не вошедших ни в нервную трубку, ни в эктодерму, образуют нервный гребень, расположенный между нервной трубкой и кожной эктодермой. Из нервного гребня развиваются спинномозговые узлы, нервные узлы периферической вегетативной системы, часть нервных узлов головы.
Нейральные плакоды — это утолщение кожной эктодермы вблизи головного конца нервной трубки. Нейральные плакоды принимают участие в развитии 4 нервных узлов головы: V, VII, IX, X пар черепно-мозговых нервов.
Из нервной трубки развиваются головной и спинной мозг, нейроны и нейроглия сетчатки глаза. Клетки, входящие в состав нервной трубки, представляют собой многорядный эпителий, в котором различают нейроэпителиальные призматические клетки, называемые вентрикулярными, и кубические, называемые субвентрикулярными и экстравентрикулярными. Все эти клетки дифференцируются на 2 разновидности:
нейробласты, из которых развиваются нервные клетки,
2) глиобласты, являющиеся источником глиальных клеток (глиоцитов).
В процессе дифференцировки нейробласты утрачивают способность к делению, у них появляется 1-й отросток (аксон), потом дендриты. Достоверным признаком дифференцировки считается появление нейрофибрилл.
После повреждения нервные клетки не могут регенерировать, однако после повреждения отростков нервных клеток в составе нервных волокон восстановление происходит. При повреждении нерва разрываются проходящие в нем нервные волокна. После разрыва волокна в нем образуются 2 конца — конец, который связан с телом нейрона, называется центральным; конец, не связанный с нервной клеткой, называется периферическим.
В периферическом конце происходят 2 процесса: 1) дегенерация и 2) регенерация. Вначале идет процесс дегенерации, заключающийся в том, что начинается набухание нейролеммоцитов, растворяется миелиНовый слой, осевой цилиндр фрагментируется, образуются капли (овоиды), состоящие из миелина и фрагмента осевого цилиндра. К концу 2-й недели происходит рассасывание овоидов, остается только неврилемма оболочки волокна. Нейролеммоциты продолжают размножаться, из них образуются ленты (тяжи).
После рассасывания овоидов осевой цилиндр центрального конца утолщается и образуется колба роста, которая начинает расти, скользя по лентам нейролеммоцитов. К этому времени между разорванными концами нервных волокон образуется нейроглиально-соединительнотканный рубец, являющийся препятствием для продвижения колбы роста. Поэтому не все осевые цилиндры могут пройти на противоположную сторону образовавшегося рубца. Следовательно, после повреждения нервов иннервация органов или тканей полностью не восстанавливается. Между тем часть осевых цилиндров, оснащенных колбами роста, пробивается на противоположную сторону нейроглиального рубца, погружается в тяжи нейролеммоцитов. Затем мезаксон навертывается на эти осевые цилиндры, образуется миелиновый слой оболочки нервного волокна. В том месте, где находится нервное окончание, рост осевого цилиндра приостанавливается, формируются терминали окончания и все его компоненты.
Нервная ткань — это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздражений, возбуждения, выработки импульса и передачи его. Она является основой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей средой.
Нервные клетки (нейроны, нейроциты) — основные структурные компоненты нервной ткани, выполняющие специфическую функцию.
Развитие. Нервная ткань развивается из дорсальной эктодермы. У 18-дневного эмбриона человека эктодерма формирует нервную пластинку, латеральные края которой образуют нервные валики, а между валиками формируется нервный желобок. Передний конец нервной пластинки образует головной мозг. Латеральные края образуют нервную трубку. Полость нервной трубки сохраняется у взрослых в виде системы желудочков головного мозга и центрального канала спинного мозга. Часть клеток нервной пластинки образует нервный гребень (ганглиозная пластинка). В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны: вентрикулярная (эпендимная), субвентрикулярная, промежуточная (плащевая) и краевая (маргинальная).
Нейроны. Специализированные клетки нервной системы, ответственные за рецепцию, обработку стимулов, проведение импульса и влияние на другие нейроны, мышечные или секреторные клетки. Нейроны выделяют нейромедиаторы и другие вещества, передающие информацию. Нейрон является морфологически и функционально самостоятельной единицей, но с помощью своих отростков осуществляет синаптический контакт с другими нейронами, образуя рефлекторные дуги — звенья цепи, из которой построена нервная система. В зависимости от функции в рефлекторной дуге различают рецепторные (чувствительные, афферентные), ассоциативные и эфферентные (эффекторные) нейроны. Афферентные нейроны воспринимают импульс, эфферентные передают его на ткани рабочих органов, побуждая их к действию, а ассоциативные осуществляют связь между нейронами.
Нейроны состоят из тела и отростков: аксона и различного числа ветвящихся дендритов. По количеству отростков различают униполярные нейроны, имеющие только аксон, биполярные, имеющие аксон и один дендрит, и мультиполярные, имеющие аксон и много дендритов. Иногда среди биполярных нейронов встречается псевдоуниполярный, от тела которого отходит один общий вырост — отросток, разделяющийся затем на дендрит и аксон. Псевдоуниполярные нейроны присутствуют в спинальных ганглиях, биполярные — в органах чувств. Большинство нейронов мультиполярные. Их формы чрезвычайно разнообразны.
Морфофункциональная характеристика мужской половой системы. Яичко: функции, эмбриональное и постэмбриональное развитие. Сперматогенез. Строение и роль гематотестикулярного барьера. Эндокринная функция яичка. Гормональная регуляция деятельности яичка
Органы, образующие мужскую половую систему, условно можно поделить на 3 группы: Яички и семявыносящие пути - придатки яичек, семявыносящие протоки; добавочные железы - семенные пузырьки, предстательная железа, бульбоуретральные, или куперовы, железы; мужской половой член. Гонады представлены яичками. Мужская половая система функционирует непрерывно с момента достижения половой зрелости до старческого увядания.
Развитие половой системы:Закладка гонад становится заметна у 4- недельного зародыша в виде половых валиков — утолщений целомического эпителия на поверхностях первичных почек. Однако первичные половые клетки у зародышей обоего пола — гоноциты появляются раньше. Из эпителия половых валиков образуются фолликулярные клетки в яичниках или поддерживающие эпителиоциты (сустентоциты) в семенниках, которые обеспечивают питание созревающих половых клеток. Эпителиоциты при участии интерстициальных (мезенхимных) клеток, или эндокриноцитов, осуществляют выработку половых гормонов. От половых валиков в строму первичной почки, основа которой образована мезенхимой, врастают половые шнуры — тяжи эпителия, в которых располагаются гоноциты. Одновременно из мезонефрального протока первичной почки, тянущегося от ее тела к клоаке, отщепляется параллельно идущий парамезонефральный проток. Дифференциация индифферентной половой железы по полу у зародыша человека начинается на 6-й неделе эмбриогенеза
Яи́чки— парные мужские гонады, в которых образуются мужские половые клетки — (сперматозоиды) и стероидные гормоны, в основном тестостерон.
Яичко является паренхиматозным дольчатым органом, сочетающим в себе признаки строения сложной трубчатой экзокринной и эндокринной желез. При этом секретом экзокринной части яичка является семенная жидкость — сперма, а мужские половые гормоны и ряд других гормонов и биологически активных веществпродукт эндокринной части.Строма яичка представлена белочной оболочкой, которая с поверхности покрыта серозной оболочкой и отходящими от нее трабекулами, а также интерстициальной рыхлой волокнистой неоформленной соединительной тканью, заполняющей пространства между белочной оболочкой и трабекулами. От средостения яичка радиально отходят соединительнотканные трабекулы, которые делят яичко на дольки.Паренхима яичка образована совокупностью извитых, прямых семенных канальцев и канальцев сети. Число долек в одном яичке примерно равно 200. В каждой дольке находится 1—4 извитых семенных канальца длинной до 80 см. В вершине дольки, обращенной к средостению, извитые семенные канальцы переходят в прямые, которые сливаясь, образуют сеть яичка.
Структурно-функциональной единицей яичка является извитой семенной каналец. Снаружи он покрыт собственной оболочкой, состоящий из трех слоев: базального или внутреннего волокнистого, миодного и наружного волокнистого.К внутреннему слою изнутри прилежит базальная мембрана эпителиоспермального слоя. В состав которого входят сустентоциты или клетки Сертоли, лежащие непосредственно на базальной мембране, и развивающиеся половые клетки, из которых с базальной мембраной соприкасаются только сперматогонии. Сустентоциты имеют треугольную форму, они лежат на базальной мембране. Острые вершины клеток Сертоли с отходящими отростками выступают в просвет извитого канальца. Отростки соседних клеток Сертоли соединяются друг с другом десмосомами. В результате просвет канальца делится на два этажа. В нижнем этаже находятся сперматогонии, остальные развивающиеся мужские половые клетки лежат во втором этаже.
Функции клеток Сертоли:
трофика развивающихся половых клеток;
фагоцитоз частей сперматид при формировании сперматозоидов, а также погибших, аномально измененных клеток;
гормональная и секреторная;
участие в образовании гематотестикулярного барьера;
Функции гематотестикулярного барьера:
предотвращение аутоиммунных реакций, так как клетки половой системы на ранних стадиях эмбриогенеза отделяются от крови и иммунной системы барьером, и в результате их антигены недоступны для собственных иммунокомпетентных клеток организма, то есть являются антигенами;
предотвращение или уменьшение поступления к развивающимся половым клеткам повреждающих химических и биологических агентов;
обеспечение транспорта питательных и регуляторных веществ;
создание различного микроокружения для половых клеток разной степени зрелости.
В состав гематотестикулярного барьера входят следующие структуры:
эндотелий капилляров (непрерывный тип);
непрерывная базальная мембрана эндотелия;
находящиеся в расслоении базальной мембраны перициты, обладающие выраженной фагоцитарной активностью;
прослойки интерстициальной рыхлой волокнистой соединительной ткани с макрофагами, способными разрушать ксенобиотики и токсические вещества;
оболочка извитого семенного канальца;
базальная мембрана эпителиоспермального слоя;
плотные контакты между клетками Сертоли и сами клетки Сертоли, способные к фагоцитозу.
В извитых канальцах яичек вырабатываются мужские половые клетки — сперматозоиды. Выработка клеток происходит из специализированного эпителия, причем одна клетка этого эпителия дает от четырёх до восьми сперматозоидов.
эндокринная — выработка мужских и женских половых гормонов, а также ряда других гормонов и биологически активных веществ.
Сперматогенез. Процесс развития мужских половых клеток, заканчивающийся формированием сперматозоидов. Протекает внутри извитых семенных канальцев, составляющих более 90% объёма яичка взрослого половозрелого мужчины.
На внутренней стенке канальцев располагаются клетки 2 типов — сперматогонии самые ранние, первые клетки сперматогенеза, из которых в результате последовательных клеточных делений через ряд стадий постепенно образуются зрелые сперматозоиды и питающие клетки Сертоли. Сперматогенез начинается одновременно с деятельностью яичка под влиянием половых гормонов в период полового созревания подростка и далее протекает непрерывно у большинства мужчин практически до конца жизни, имеет чёткий ритм и равномерную интенсивность.
Время, необходимое для превращения сперматогония в спермий, занимает у человека около 74 — 75 суток. При этом сперматогонии, которые встречаются в яичках мальчиков ещё до наступления периода полового созревания, бывают двух типов: А и В, или тёмные и светлые; часть из них сохраняется в качестве запасных, а другие начинают расти и делиться. Сперматогонии, содержащие удвоенный набор хромосом, делятся путём митоза, приводя к возникновению последующих клеток — сперматоцитов 1-го порядка. Далее в результате двух последовательных делений мейотические деления образуются сперматоциты 2-го порядка, а затем сперматиды клетки сперматогенеза, непосредственно предшествующие сперматозоиду. При этих делениях происходит уменьшение редукция числа хромосом вдвое.
Сперматиды не делятся, вступают в заключительный период сперматогенеза период формирования спермиев и после длительной фазы дифференцировки превращаются в сперматозоиды. Происходит это путём постепенного вытяжения клетки, изменения, удлинения её формы, в результате чего клеточное ядро сперматида образует головку сперматозоида, а оболочка и цитоплазма — шейку и хвост. В последней фазе развития головки сперматозоидов тесно примыкают к клеткам Сертоли, получая от них питание до полного созревания. После этого сперматозоиды, уже зрелые, попадают в просвет канальца яичка и далее в придаток, где происходит их накопление.
Читайте также: