Особенности энергетического обеспечения нервной ткани и эритроцитов
Особенности энергетического обеспечения нервной ткани
В нервной ткани, составляющей только 2% от массы тела человека, потребляется 20% кислорода, поступающего в организм. При этом энергетические возможности нервной ткани ограничены.
1. Основной путь получения энергии - только аэробный распад глюкозы по ГБФ-пути. Глюкоза является почти единственным энергетическим субстратом, поступающим в нервную ткань, который может быть использован ее клетками для образования АТФ.
2. Проникновение глюкозы в ткань мозга не зависит от действия инсулина, который не проникает через гематоэнцефалический барьер. Влияние инсулина проявляется лишь в периферических нервах.
3. Постоянный и непрерывный приток глюкозы и кислорода из кровеносного русла является необходимым условием энергетического обеспечения нервных клеток. Жесткая зависимость от поступления глюкозы обусловлена тем, что содержание гликогена в нервной ткани ничтожно (0.1% от массы мозга) и не может обеспечить мозг энергией даже на короткое время. С другой стороны, окисления неуглеводных субстратов с целью получения энергии не происходит. Поэтому при гипогликемии и/или даже кратковременной гипоксии в нервной ткани образуется мало АТФ. Следствием этого являются быстрое наступление коматозного состояния и необратимых изменений в ткани мозга.
4. Высокая скорость потребления глюкозы нервными клетками обеспечивается, в первую очередь, работой высокоактивной гексокиназы мозга. В отличие от других тканей, здесь гексокиназа не является ключевым ферментом всех путей метаболизма глюкозы. Гексокиназа мозга отличается низким значением Км и высокой Vmax, обладает в 20 раз большей активностью, чем соответствующий изофермент печени и мышц. Ключевыми ферментами ГБФ-пути в нервной ткани являются фосфофруктокиназа и изоцитратдегидрогеназа. Фосфофруктокиназу ингибируют фруктозо-1,6-бисфосфат, АТФ и цитрат, активируют фруктозо-6-фосфат, АДФ, АМФ и неорганический фосфат. Активность изоцитратДГ даже при нормальном уровне утилизации глюкозы в состоянии покоя максимальна. Поэтому при повышенном энергопотреблении нет возможностей ускорения реакций ЦТК.
5. Образование НАДФН2, который используется в нервной ткани в основном для синтеза жирных кислот и стероидов, обеспечивается сравнительно высокой скоростью протекания ГМФ-пути распада глюкозы.
Энергия АТФ в нервной ткани используется неравномерно во времени.
Так же, как и скелетные мышцы, функционирование нервной ткани сопровождается резкими перепадами в потреблении энергии. Резкое повышение энергозатрат происходит при очень быстром переходе от сна к бодрствованию. Поэтому существует еще одна особенность:
6. Образование креатинфосфата. Он обладает способностью удерживать макроэргические связи:
Эта реакция полностью обратима, ее направление зависит от соотношения АТФ/АДФ в клетках нервной ткани. Во время сна накапливается фосфокреатин. Переход к бодрствованию приводит к резкому уменьшению концентрации АТФ - равновесие реакции сдвигается влево, то есть образуется АТФ.
МЕТАБОЛИЗМ АМИНОКИСЛОТ И БЕЛКОВ
Ткань мозга интенсивно обменивается аминокислотами с кровью. Для этого существует специальные транспортные системы: две для незаряженных и еще несколько - для аминокислот, заряженных положительно и отрицательно.
До 75% от общего количества аминокислот нервной ткани составляют аспартат, глутамат, а также продукты их превращений или вещества, синтезированные с их участием (глутамин, ацетильные производные, глутатион, ГАМК и другие). Их концентрации, и, в первую очередь, концентрация глутамата, в нервной ткани очень высоки. Например, концентрация глутаминовой кислоты может достигать 10ммоль/л.
Функции глутамата в нервной ткани:
1. Энергетическая. Глутаминовая кислота связана большим числом реакций с промежуточными метаболитами ЦТК.
2. Глутамат (вместе с аспартатом) принимает участие в реакциях дезаминирования других аминокислот и временном обезвреживании аммиака.
3. Из глутамата образуется нейромедиатор ГАМК.
4. Глутамат принимает участие в синтезе глутатиона - одного из компонентов антиоксидантной системы организма.
Глутаминовая кислота по праву занимает центральное место в обмене аминокислот мозга. Она используется для образования глутатиона, глутамина и гамма-аминомасляной кислоты. Образуется глутамат из своего кетоаналога - альфа-кетоглутаровой кислоты в ходе реакции трансаминирования. Реакция превращения альфа-КГ в глутамат протекает в ткани мозга с большой скоростью. Образующийся при этом глутамат являетя для ЦТК побочным продуктом. Большое расходование альфа-КГ восполняется за счет превращения аспарагиновой кислоты в метаболит ЦТК - ЩУК (см. рисунок).
Образующаяся из глутамата ГАМК в результате нескольких реакций может быть превращена снова в ЩУК. Так образуется ГАМК-шунт, имеющийся в тканях головного и спинного мозга. Поэтому в этих тканях содержание ГАМК, как промежуточного метаболита циклического процесса, значительно выше, чем в остальных. На образование ГАМК здесь используется до 20% от общего количества глутамата.
Остальные пути метаболизма аминокислот сходны с имеющимися в других тканях.
До сих пор непонятным остается наличие в мозге почти полного набора ферментов орнитинового цикла, не содержащего карбамоилфосфатсинтазы, из-за чего мочевина здесь не образуется.
Ткань мозга способна синтезировать заменимые аминокислоты, как и другие ткани.
По своему соcтаву и процессам метаболизма нервная ткань значительно отличается от других тканей.
Центральная функциональная клетка нервной ткани - нейрон - связана с помощью дендритов и аксонов с такими же клетками и клетками других типов, например, с секреторными и мышечными клетками. Клетки разделены синаптическими щелями. Связь между клетками осуществляется путем передачи сигнала. Сигнал проходит от тела нейрона по аксону до синапса. В синаптическую щель выделяется вещество-медиатор. Медиатор вступает в связь с рецепторами на другой стороне синаптической щели. Это обеспечивает восприятие сигнала и генерацию нового сигнала в клетке-акцепторе.
Функции нервной ткани
1. Генерация электрического сигнала (нервного импульса)
2. Проведение нервного импульса
3. Запоминание и хранение информации.
4. Формирование эмоций и поведения.
Особенности химического состава и метаболизма нервной ткани
Специфику нервной ткани определяет гематоэнцефалический барьер (ГЭБ). ГЭБ имеет избирательную проницаемость для различных метаболитов, а также способствует накоплению некоторых веществ в нервной ткани. Например, в нервной ткани на долю глутамата и аспартата приходится примерно 70-75% от общего количества аминокислот. Таким образом, внутренняя среда нервной ткани намного отличается по химическому составу от других тканей.
Липиды нервной ткани и их функции
Большая часть липидов нервной ткани находится в составе плазматических и субклеточных мембран нейронов и в миелиновых оболочках. В нервной ткани по сравнению с другими тканями организма содержание липидов очень высокое.
Особенность липидного состава нервной ткани: есть фосфолипиды (ФЛ), гликолипиды (ГЛ) и холестерин (ХС), нет нейтральных жиров. Эфиры холестерина можно встретить только в участках активной миелинизации. Сам холестерин синтезируется интенсивно только в развивающемся мозге. В мозге взрослого человека низка активность ГМГ-КоА-редуктазы - ключевого фермента синтеза холестерина. Содержание свободных жирных кислот в мозге очень низкое.
Липиды нервной ткани выполняют следующие функции:
1. Структурная: входят в состав клеточных мембран нейронов.
2. Функция диэлектриков (обеспечивают надежную электрическую изоляцию).
3. Защитная. Ганглиозиды являются очень активными антиоксидантами - ингибиторами перекисного окисления липидов (ПОЛ). При повреждении ткани мозга ганглиозиды способствуют ее заживлению.
4. Регуляторная. Фосфатидилинозиты являются предшественниками биологически активных веществ.
Метаболизм углеводов и особенности энергетического обеспечения нервной ткани.
В нервной ткани, составляющей только 2% от массы тела человека, потребляется 20% кислорода, поступающего в организм. При этом энергетические возможности нервной ткани ограничены.
1. Основной путь получения энергии - только аэробный распад глюкозы. Глюкоза является почти единственным энергетическим субстратом, поступающим в нервную ткань, который может быть использован ее клетками для образования АТФ.
2. Проникновение глюкозы в ткань мозга не зависит от действия инсулина, который не проникает через гематоэнцефалический барьер. Влияние инсулина проявляется лишь в периферических нервах.
3. Постоянный и непрерывный притокглюкозы и кислорода из кровеносного русла является необходимым условием энергетического обеспечения нервных клеток. Жесткая зависимость от поступления глюкозы обусловлена тем, что содержание гликогена в нервной ткани очень мало (0,1% от массы мозга) и не может обеспечить мозг энергией даже на короткое время. С другой стороны, окисления неуглеводных субстратов с целью получения энергии не происходит. Поэтому при гипогликемии и/или даже кратковременной гипоксии в нервной ткани образуется мало АТФ. Следствием этого являются быстрое наступление коматозного состояния и необратимых изменений в ткани мозга.
4. Высокая скорость потребления глюкозы нервными клетками обеспечивается, в первую очередь, работой высокоактивной гексокиназы мозга. Она обладает в 20 раз большей активностью, чем соответствующий изофермент печени и мышц.
5. Образование НАДФН2, который используется в нервной ткани в основном для синтеза жирных кислот и стероидов, обеспечивается сравнительно высокой скоростью протекания ПФЦ.
Энергия АТФ в нервной ткани используется неравномерно во времени. Так же, как и скелетные мышцы, функционирование нервной ткани сопровождается резкими перепадами в потреблении энергии. Резкое повышение энергозатрат происходит при очень быстром переходе от сна к бодрствованию. Поэтому существует еще одна особенность:
6. Образование креатинфосфата. Он обладает способностью удерживать макроэргические связи:
Эта реакция полностью обратима, ее направление зависит от соотношения АТФ/АДФ в клетках нервной ткани. Во время сна накапливается фосфокреатин. Переход к бодрствованию приводит к резкому уменьшению концентрации АТФ - равновесие реакции сдвигается влево, то есть образуется АТФ.
Рецепторы
Деградация
Синтез
Функции глицина
Глицин
Глицин — протеиногенная аминокислота.
Глицин ингибиторный нейротрансмиттер в центральной нервной системе, особенно в спин-
ном мозге, стволе и сетчатке.
Глицин синтезируется из аминокислоты серина с участием тетрагидрофолата и фермента се-
Из CO2 + NH4 с участием тетрагидрофолата и NAD+ посредством глицинсинтазы.
Глицин разрушается глицин-расщепляющим ферментом с образованием CO2 + NH4 с участи-
ем тетрагидрофолата и NADH+.
Превращение глицина в серин посредством серингидроксиметилтрансферазы. Затем серин
посредством сериндегидратазы превращается в пируват.
Стимуляция ионотропных рецепторов глицина GlyR вызывает открытие Cl−-каналов, что вы-
зывает развитие ингибиторного постсинаптического потенциала (IPSP), гиперполяризацию.
В нервной ткани, составляющей только 2% от массы тела человека, потребляется 20% кислорода, поступающего в организм. При этом энергетические возможности нервной ткани ограничены.
1. Основной путь получения энергии - только аэробный распад глюкозы по ГБФ-пути. Глюкоза является почти единственным энергетическим субстратом, поступающим в нервную ткань, который может быть использован ее клетками для образования АТФ.
2. Проникновение глюкозы в ткань мозга не зависит от действия инсулина, который не проникает через гематоэнцефалический барьер. Влияние инсулина проявляется лишь в периферических нервах.
3. Постоянный и непрерывный притокглюкозы и кислорода из кровеносного русла является необходимым условием энергетического обеспечения нервных клеток. Жесткая зависимость от поступления глюкозы обусловлена тем, что содержание гликогена в нервной ткани ничтожно (0.1% от массы мозга) и не может обеспечить мозг энергией даже на короткое время. С другой стороны, окисления неуглеводных субстратов с целью получения энергии не происходит. Поэтому при гипогликемии и/или даже кратковременной гипоксии в нервной ткани образуется мало АТФ. Следствием этого являются быстрое наступление коматозного состояния и необратимых изменений в ткани мозга.
4. Высокая скорость потребления глюкозы нервными клетками обеспечивается, в первую очередь, работой высокоактивной гексокиназы мозга. В отличие от других тканей, здесь гексокиназа не является ключевым ферментом всех путей метаболизма глюкозы. Гексокиназамохга отличается низким значением Км и высокой Vmax, обладает в 20 раз большей активностью, чем соответствующий изофермент печени и мышц. Ключевыми ферментами ГБФ-пути в нервной ткани являются фосфофруктокиназа и изоцитратдегидрогеназа. Фосфофруктокиназу ингибируют фруктозо-1,6-бисфосфат, АТФ и цитрат, активируют фруктозо-6-фосфат, АДФ, АМФ и неорганический фосфат. Активность изоцитратДГ даже при нормальном уровне утилизации глюкозы в состоянии покоя максимальна. Поэтому при повышенном энергопотреблении нет возможностей ускорения реакций ЦТК.
5. Образование НАДФН2, который используется в нервной ткани в основном для синтеза жирных кислот и стероидов, обеспечивается сравнительно высокой скоростью протекания ГМФ-пути распада глюкозы.
Энергия АТФ в нервной ткани используется неравномерно во времени.
Так же, как и скелетные мышцы, функционирование нервной ткани сопровождается резкими перепадами в потреблении энергии. Резкое повышение энергозатрат происходит при очень быстром переходе от сна к бодрствованию. Поэтому существует еще одна особенность:
6. Образование креатинфосфата. Он обладает способностью удерживать макроэргические связи:
Эта реакция полностью обратима, ее направление зависит от соотношения АТФ/АДФ в клетках нервной ткани. Во время сна накапливается фосфокреатин. Переход к бодрствованию приводит к резкому уменьшению концентрации АТФ - равновесие реакции сдвигается влево, то есть образуется АТФ.
28. Гематоэнцефалический барьер (ГЭБ): анатомические особенности, функция, механизм функционирования. Проницаемость ГЭБ для компонентов плазмы крови в норме и при повреждении.
Гематоэнцефалический барьер (ГЭБ) образован церебральнымиэндотелиоцитами
и глией. ГЭБ обеспечивает гомеостаз центральной нервной системы, которая отделена от
Морфология и функция ГЭБ
ГЭБ образован сложной клеточной системой эндотелиоцитов, астроглии,
перицитов, периваскулярных макрофагов и базальной пластинки. Отростки астроцитов
контактируют с эндотелием и погружены в базальную пластинку в месте с перицитами
и периваскулярными макрофагами. Перициты являются сократительными клетками и
окружают церебральные капилляры отростками. Перициты могут влиять на целостность
капилляров и подавлять фагоцитоз эндотелиоциами, ограничивая проницаемость ГЭБ для
Церебральный эндотелий содержит узкие межклеточные плотные структуры,
образуемые пояски типа zonulaoccludens. Межклеточные структуры могут
парацеллюлярно транспортировать гидрофильные вещества через церебральный
В эндотелии ГЭБ экспрессируется P-гликопротеин (P-glycoprotein, Pgp) и протеины
множественной лекарственной резистентности (multipledrugresistance, multidrug
resistance, MDR). MDR1 и Pgp локализуются на люминальной поверхности церебрального
эндотелия и удаляют в кровь ксенобиотики.
Помимо анатомического барьера, церебральный эндотелий формируют
метаболический барьер посредством моноаминооксидазы A и B, катехол-O-
метилтрансферазы и псевдохолинэстеразы. Эти энзимы осуществляют деградацию
Дополнительным барьером служит система нейтрализации лекарств
в микрососудах, сосудистого сплетения, лептоменингеальной оболочке и
околожелудочковоморгане (circumventricularorgan). К этой системе относятся
гемопротеины P-450, P-450-зависимые монооксигеназы, НАДH-цитохром
P-450-редуктазы, УДФ-глюкуронозилтрансферазы, щелочные фосфатазы,
глутатионпероксидазы, эпоксидгидролазы, моноаминооксидазы, катехол-O-
метилтрансферазы и псевдохолинэстеразы. Продукты деградации или биотрансформации
удаляются из мозга специфическими транспортными системами ГЭБ или пассивно из
паренхимы в цереброспинальную жидкость.
ГЭБ имеется в 99 % церебральных капиллярах за исключением областей
гематоцереброспинального барьера. К этим областям относятся срединная
возвышенность, гипофиз, паутинное сплетение, сосудистое тело, субфорникальный орган
и терминальная пластинка.
Механизмы транспорта веществ через гематоэнцефалический барьер
Крупные гидрофильные питательные вещества пересекают ГЭБ посредством
селективных транспортеров с затратой энергии.
Диффузия веществ через плазматическую мембрану эндотелиоцитов ГЭБ зависит
от их гидрофобности, молекулярной массы и заряда. Липофильные вещества быстро
диффундируют в нервную ткань.
Специфичный транспортер глюкозы ГЛЮТ-1 переносит галактозу и глюкозу и
асимметрично экспрессируется в люминальной и базальной мембранах церебрального
эндотелия. Идентифицированы транспортеры нейтральных аминокислот (LNAA-система),
основных кислот, пуринов, нуклеозидов, тиамина, монокарбоновых кислот и тироидных
Повреждение гематоэнцефалического барьера
При многих заболеваниях, сопровождающихся нарушением целостности ГЭБ,
развивается периваскулярное воспаление, усиливается продукция провоспалительных
цитокинов и адгезивных молекул в эндотелии, что усиливает привлечение миграции
воспалительных клеток в ЦНС и нарушает транспорт питательных веществ. Это
обусловливает гибель клеток нервной ткани.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Основной путь получения энергии — аэробный распад глюкозы по ГБФ-пути. Глюкоза — почти единственный энергетический субстрат, поступающим в нервную ткань, который может быть использован ее клетками для образования АТФ.
Проникновение глюкозы в ткань мозга не зависит от действия инсулина, который не проникает через гематоэнцефалический барьер. Влияние инсулина проявляется лишь в периферических нервах.
Постоянный и непрерывный приток глюкозы и кислорода из кровеносного русла — необходимое условие энергетического обеспечения нервных клеток, так как содержание гликогена в нервной ткани ничтожно (0,1% от массы мозга) и не может обеспечить мозг энергией даже на короткое время.
Глюкоза — основной источник энергии, так как через ГЭБ в нервные клетки поступает только глюкоза, которая, расщепляясь в аэробном гликолизе, образует ПВК, превращающуюся с помощью пируватдегидрогеназного комплекса в ацетил-КоА, который вступает в ЦТК, давая восстановленные эквиваленты для окислительного фосфорилирования, приводящего к образованию АТФ. В отличие от других тканей организма человека ВЖК не проникают через ГЭБ и не могут быть использованы в качестве энергетического материала. В пируватдегидрогеназный и -кетоглутаратдегидрогеназный комплексы входит витамин В1 в виде тиаминпирофосфата, поэтому недостаток витамина В1 в первую очередь сказывается на функции нервной системы, в клетках которой будет нарушено образование АТФ. Это приводит к возникновению полиневритов. При голодании, сахарном диабете нервная ткань использует кетоновые тела в качестве энергетического материала.
Высокая скорость потребления глюкозы нервными клетками обеспечивается работой высокоактивной гексокиназы мозга. Здесь гексокиназа не является ключевым ферментом всех путей метаболизма глюкозы. Ключевые ферменты ГБФ-пути в нервной ткани — фосфофруктокиназа и изоцитратдегидрогеназа.
Фосфофруктокиназу ингибируют фруктозо-1,6-бифосфат, АТФ и цитрат, активируют фруктозо-6-фосфат, АДФ, АМФ и неорганический фосфат. Активность изоцитрат ДГ даже при нормальном уровне утилизации глюкозы в состоянии покоя максимальна. Поэтому при повышенном энергопотреблении нет возможностей ускорения реакций цикла трикарбоновых кислот.
Образование НАДФН2, используемого в основном для синтеза жирных кислот и стероидов, обеспечивается сравнительно высокой скоростью протекания ГМФ-пути распада глюкозы.
Энергия АТФ в нервной ткани используется неравномерно во времени. Резкое повышение энергозатрат происходит при очень быстром переходе от сна к бодрствованию.
Образование креатинфосфата способно удерживать макроэргические связи. Реакция полностью обратима, ее направление зависит от соотношения АТФ/АДФ в клетках нервной ткани. Во время сна накапливается фосфокреатин. Переход к бодрствованию приводит к резкому уменьшению концентрации АТФ — равновесие реакции сдвигается влево, т.е. образуется АТФ.
Метаболизм аминокислот и белков
Ткань мозга интенсивно обменивается аминокислотами с кровью. Для этого существуют специальные транспортные системы: две для незаряженных и еще несколько — для аминокислот, заряженных положительно и отрицательно. Концентрация свободных аминокислот в нервной ткани в 8 раз больше, чем в крови. Белки в головном мозге находятся в динамическом состоянии. Велика активность АсТ и АлТ, переводящих аминокислоты в кето-, для получения субстратов ЦТК. Белки серого вещества и мозжечка характеризуются высокой скоростью обновления особенно возбуждающих агентов (электрический ток, фармсредства), однако под влиянием наркоза, эти процессы затухают.
До 75% от общего количества аминокислот нервной ткани составляют аспартат, глутамат, а также продукты их превращений или вещества, синтезированные с их участием (глутамин, ацетильные производные, ГАМК (гамма-аминомасляная кислота) глутатион).
Для мозга характерна высокая интенсивность энергетического обмена с преобладанием аэробных процессов. При массе 1400 г (2% массы тела), он получает около 20% крови, выбрасываемой сердцем и приблизительно 30% всего кислорода, находящегося в артериальной крови. В отличие от других органов, головной мозг практически не располагает запасами кислорода. Резервный кислород мозга расходуется в течение 10-12 секунд, что объясняет высокую чувствительность нервной системы к гипоксии.
Максимальная скорость дыхания обнаружена в коре больших полушарий, минимальная – в спинном мозге и периферических нервах. Нейронам свойственен аэробный обмен, тогда как метаболизм нейроглии адаптирован и к анаэробным условиям. Интенсивность дыхания серого вещества в 4 раза выше, чем белого.
Максимальный энергетический обмен в мозге наблюдается к периоду окончания миелинизации и завершения процессов дифференцировки у детей в возрасте 4 лет, быстро растущая нервная ткань потребляет около 50% всего кислорода поступающего в организм.
Основным энергетическим субстратом нервной ткани является глюкоза, окисления которой обеспечивается ее энергией на 85-90%. Нервная ткань потребляет до 70% свободной глюкозы артериальной крови. В физиологических условиях 85-90% глюкозы метаболизирует аэробным путем, а 10-15% - анаэробным.
В качестве дополнительных энергетических субстратов нейроны и глиальные клетки могут использовать аминокислоты, в первую очередь глутамат и аспартат. В ранний постнатальный период в мозге также окисляются свободные жирные кислоты и кетоновые тела.
В экстремальных состояниях нервная ткань переключается на кетоновые тела (до 50% всей энергии).
Полученная энергия тратится в первую очередь:
1. на создание мембранного потенциала, который используется для проведения нервных импульсов и активного транспорта;
2. для работы цитоскелета, обеспечивающего аксональный транспорт, выделение нейромедиаторов, пространственной ориентации структурных единиц нейрона;
3. для синтеза новых веществ, в первую очередь нейромедиаторов, нейропептидов, а также нуклеиновых кислот, белков, липидов;
4. для обезвреживания аммиака.
На сегодняшний день основными нейромедиаторами являются:
1. Холинэргическая система.
2. Моноаминергические системы.
a. Дофаминовые рецепторы
b. Норадреналин и адреновые рецепторы
c. Серотонинергическая система
3. Глютаматергическая система
4. ГАМК--‐эргическая система.
5. Пептидергические системы
6. Пуринергические системы
104. Значение воды для жизнедеятельности организма. Распределение воды в тканях, понятие о внутриклеточной и внеклеточной жидкостях. Водный баланс, регуляция водного обмена. Особенности водно-солевого обмена у детей.
Вода и растворенные в ней вещества, числе минеральные соли, создают внутреннюю среду организма, свойства к-й сохраняются постоянными или изменяются закономерным образом при изменении функционального состояния органов и клеток.
Вода тканей является не просто растворителем или инертным компонентом: она выполняет структурную и функциональную роль. Например, взаимодействие белков с водой обеспечивает их конформацию с преимущественным расположением гидрофильных групп на поверхности белковой глобулы, а гидрофобных — внутри. Еще большее значение имеет вода для структурной организации биологических мембран и их основы - двойного липидного слоя, в котором гидрофильные поверхности каждого монослоя взаимодействуют с водой, отграничивая от нее гидрофобное пространство внутри мембраны, между монослоями.
Вода служит средством транспорта веществ как в пределах клетки и окружающего ее межклеточного вещества, так и между органами (кровеносная и лимфатическая системы). Подавляющая часть химических реакций в организме происходит с веществами, растворенными в воде. Во многих химических превращениях вода служит реагентом: это реакции гидролиза, гидратации, дегидратации, образование воды при тканевом дыхании, гидроксилазных реакциях; у растений происходит фотоокисление воды, и образующийся при этом водород используется для восстановления углекислого газа при фотосинтезе.
Почти 2/ 3 массы тела человека приходится на воду. Суточное потребление воды составляет около 2 л, к этому добавляется 0,3-0,4 л метаболической воды, образующейся при тканевом дыхании. При отсутствии питья человек погибает через несколько суток в результате дегидратации тканей, когда количество воды в организме уменьшается примерно на 12 %.
Примерно 6 % всей воды организма находится в крови, 25 % — в межклеточном матриксе (интерстициальная вода). Воду этих двух бассейнов называют внеклеточной водой. Около 70 % воды организма — внутриклеточная вода. Между тремя основными бассейнами существует интенсивный обмен жидкостью. Например, перемещение жидкости (путем диффузии) через стенки капилляров в теле человека составляет около 1500 л в I мин.
Важнейшие параметры вводно-солевого гомеостаза - осмотическое давление, рН и объём внутриклеточной и внеклеточной жидкости. Изменение этих параметров может привести к изменению АД, ацидозу или алкалозу, дегидратации и отёкам тканей. Основные гормоны, участвующие в тонкой регуляции водно-солевого баланса и действующие на дистальные извитые канальцы и собирательные трубочки почек: антидиуретический гормон (АДГ), альдостерон и предсердный натриуретический фактор (ПНФ).
Антидиуретический гормон, или вазопрессин - пептид с молекулярной массой около 1100 Д, содержащий 9 аминокислот, соединённых одним дисульфидным мостиком. Синтезируется в нейронах гипоталамуса в виде предшественника препрогормона, который поступает в аппарат Гольджи и превращается в прогормон. В составе нейросекреторных гранул прогормон переносится в нервные окончания задней доли гипофиза (нейрогипофиз). Во время транспорта гранул происходит процессинг прогормона, в результате чего он расщепляется на зрелый гормон и транспортный белок - нейрофизин. Гранулы, содержащие зрелый антидиуретический гормон и нейрофизин, хранятся в терминальных расширениях аксонов в задней доле гипофиза, из которых секретируются в кровоток при соответствующей стимуляции.
Стимулом, вызывающим секрецию АДГ, служит повышение концентрации ионов натрия и увеличение осмотического давления внеклеточной жидкости. При недостаточном потреблении воды, сильном потоотделении или после приёма большого количества соли осморецепторы гипоталамуса, чувствительные к колебаниям осмолярности, регистрируют повышение осмотического давления крови. Возникают нервные импульсы, которые передаются в заднюю долю гипофиза и вызывают высвобождение АДГ. Секреция АДГ происходит также в ответ на сигналы от барорецепторов предсердий. Изменение осмолярности всего на 1% приводит к заметным изменениям секреции АДГ.
Механизм действия. Для АДГ существуют 2 типа рецепторов: V1 и V2. Рецепторы V2, опосредующие главный физиологический эффект гормона, обнаружены на базолатеральной мембране клеток собирательных трубочек и дистальных канальцев - наиболее важных клеток-мишеней для АДГ, которые относительно непроницаемы для молекул воды. В отсутствие АДГ моча не концентрируется и может выделяться в количествах, превышающих 20 л в сутки (норма 1,0-1,5 л в сутки). Связывание АДГ с V2 (рис. 11-32) стимулирует аденилатциклазную систему и активацию протеинкиназы А. В свою очередь, протеинкиназа А фосфорилирует белки, стимулирующие экспрессию гена мембранного белка - аквапорина-2. Аквапорин-2 перемещается к апикальной мембране собирательных канальцев и встраивается в неё, образуя водные каналы. Это обеспечивает избирательную проницаемость мембраны клеток для воды, которые свободно диффундируют в клетки почечных канальцев и затем поступают в интерстициальное пространство. Поскольку в результате происходит реабсорбция воды из почечных канальцев и экскреция малого объёма высококонцентрированной мочи (антидиурез), гормон называют антидиуретическим гормоном. Рецепторы типа V1 локализованы в мембранах ГМК сосудов. Взаимодействие АДГ с рецептором V1 приводит к активации фосфолипазы С, которая гидролизует фосфатидилинозитол-4,5-бисфосфат с образованием инозитолтрифосфата и диацилглицерола. Инозитолтрифосфат вызывает высвобождение Са 2+ из ЭР. Результатом действия гормона через рецепторы V1 является сокращение гладкомышечного слоя сосудов. Сосудосуживающий эффект АДГ проявляется при высоких концентрациях гормона. Поскольку сродство АДГ к рецептору V2 выше, чем к рецептору V1, при физиологической концентрации гормона в основном проявляется его антидиуретическое действие.
Альдостерон - наиболее активный минералокортикостероид, синтезирующийся в коре надпочечников из холестерола.
Синтез и секрецияальдостерона клетками клубочковой зоны непосредственно стимулируются низкой концентрацией Na + и высокой концентрацией К + в плазме крови. На секрецию альдостерона влияют также простагландины, АКТГ. Однако наиболее важное влияние на секрецию альдостерона оказывает ренинангиотензиновая система.
Альдостерон не имеет специфических транспортных белков, но за счёт слабых взаимодействий может образовывать комплексы с альбумином. Гормон очень быстро захватывается печенью, где превращается в тетрагидроальдостерон-3-глюкуронид и экскретируется с мочой.
Механизм действия альдостерона.В клетках-мишенях гормон взаимодействует с рецепторами, которые могут быть локализованы как в ядре, так и в цитозоле клетки. Образовавшийся комплекс гормон-рецептор взаимодействует с определённым участком ДНК и изменяет скорость транскрипции специфических генов. Результат действия альдостерона - индукция синтеза: а) белков-транспортёров Na + из просвета канальца в эпителиальную клетку почечного канальца; б) Nа + ,К + ,-АТФ-азы, обеспечивающей удаление ионов натрия из клетки почечного канальца в межклеточное пространство и переносящей ионы калия из межклеточного пространства в клетку почечного канальца; в) белков-транспортёров ионов калия из клеток почечного канальца в первичную мочу; г) митохондриальных ферментов ЦТК, в частности цитратсинтазы, стимулирующих образование молекул АТФ, необходимых для активного транспорта ионов.
Суммарным биологическим эффектом индуцируемых альдостероном белков является увеличение реабсорбции ионов натрия в канальцах нефронов, что вызывает задержку NaCl в организме, и возрастание экскреции калия.
Особенности водно-солевого обмена у детей Рост ребёнка сопровождается относительным уменьшением общего содержания воды в организме, а также изменением в распределении жидкости между внеклеточным и внутриклеточным секторами. Ранний детский возраст характеризуется высокой напряжённостью и неустойчивостью водно-солевого обмена, что определяется интенсивным ростом ребёнка и относительной незрелостью нейро-эндокринной и почечной систем регуляции. Суточная потребность в воде ребёнка первого года жизни составляет 100 - 165 мл/г, что в 2 - 3 раза превышает потребность взрослых. минимальная потребность в электролитах детей первого года жизни составляет: натрий 3,5 - 5,0; калий - 7,0 - 10,0; хлор - 6,0 - 8,0; кальций - 4,0 - 6,0; фосфор - 2,5 - 3,0 мг-экв/день. При естественном вскармливании необходимые количества воды и солей ребёнок первого полугодия жизни получает с молоком матери, однако растущая потребность в солях определяет необходимость введения прикорма уже на 4 - 5 месяц. при искусственном вскармливании, когда ребёнок в избытке получает соли и азотистые вещества, вода, требующаяся для их выведения, должна включаться в рацион дополнительно. Отличительной особенностью водно-солевого обмена в раннем детском возрасте является относительно большее, чем у взрослых, выделение воды через лёгкие и кожу. Оно может достигать половины и более принятой воды (при перегревании, отдышке и тому подобное). Потери воды при дыхании и за счёт испарения с поверхности кожи составляет 1,3 г/кг в час (у взрослых - 0,5 г/кг в час). Это объясняется относительно большей величиной поверхности тела, приходящейся у детей на единицу веса, а также функциональной незрелостью почек. Почечная экскреция воды и солей у детей раннего возраста ограничена низкой величиной гломерулярной фильтрации, составляющей у новорождённых 1/3 - 1/4 почечной экскреции взрослого. Суточный диурез в возрасте 1 месяц составляет 100 - 350, у детей 6 месяцев - 250 - 500, к году - 300 - 600, в 10 лет - 1000 - 1300 мл. При этом относительная величина суточного диуреза в расчёте на стандартную поверхность тела на первом году жизни (1,72 м2) в 2 - 3 раза больше чем у взрослых. Ионный состав внеклеточной жидкости и плазмы крови в процессе роста не подвержен существенным изменениям. Исключение составляет период новорождённости, когда несколько повышенно содержание калия в плазме крови и наблюдается наклонность к метаболическому ацидозу. Моча у новорождённых и детей грудного возраста может быть почти полностью лишена электролитов. |
Несовершенство регуляции водно-солевого обмена у детей раннего возраста служит причиной значительных колебаний осмотического давления внеклеточной жидкости. При этом на ограничение воды или избыточное введение солей дети реагируют солевой лихорадкой.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Читайте также: