Рефлексометрия как метод оценки функционального состояния цнс
См. вопросы 1,2 +
Рефлексометрия – определение времени рефлекса
Рефлексометрия является одной из основных психофизиологических методик определения функционального состояния организма в норме и патологии. С помощью рефлексометрии изучается широкий спектр реакций организма, вызываемых различными воздействиями.
Сущность рефлексометрии как метода состоит в том, что при раздражении соответствующей рефлекторной зоны, в данном случае ахиллова сухожилия, с силой, равной или превышающей пороговую, возникает рефлекторная реакция, интенсивность и временные характеристики которой могут быть зарегистрированы специальными приборами - рефлексометрами. Основная часть времени рефлекса тратится на проведение возбуждения в нервном центре. Время рефлекса – это время от момента раздражения до начала ответной реакции.
Как показали многочисленные исследования, существует прямая связь между функциональным состоянием щитовидной железы и временем рефлекса: при тиреотоксикозе время рефлекса заметно сокращается, тогда как при гипотиреозе оно значительно увеличивается.
Воздействие на мышцы избытка тироксина и йода при гипертиреозе приводит к нервно-мышечным нарушениям, что сказывается на рефлекторных реакциях организма. Такие же нарушения рефлекторных реакций, но обратного свойства, имеют место при гипотиреозе. Замедление скорости проведения рефлекса пяточного сухожилия, наблюдаемое при гипотиреозе, связано с метаболическими нарушениями в нервной и мышечной тканях, а также тканевой гипоксией.
Методы исследования ЦНС
· Экстирпация – удаление отдельных структур
Используется стереотаксическая техника, проводится регистрация биоэлектрической активности нервных центров, раздражение электрическим током.
· Рефлексометрия – определение времени рефлекса. Основная часть времени рефлекса тратится на проведение возбуждения в нервном центре. Время рефлекса – это время от момента раздражения до начала ответной реакции.
· Исследование кожных и сухожильных рефлексов
· Исследование вегетативных индексов и проведение вегетативных проб.
· Акупунктура – исследование биологически активных точек
· Иридодиагностика – исслед. Радуж. Оболочки глаза
· ЭЭГ- раздел электрофизиологии, изучающий закономерности суммарной электрической активности мозга, отводимой с поверхности кожи головы, а также метод записи таких потенциалов
Торможение в ЦНС
Торможение в ЦНС – активный процесс, проявляющийся в подавлении или в ослаблении процесса возбуждения. Т.е. в норме торможение является производным от возбуждения, ограничивая и препятствуя его чрезмерному распространению. Процесс торможения вместе с процессом возбуждения формируют сложную мозаику активированных и заторможенных зон в центральных нервных структурах.
1) Реципрокноеторможение.Пример:сигнал от мышечного веретена поступает сафферентного нейрона в спинной мозг, где переключается на альфа-мотонейрон сгибателя
и одновременно на тормозной нейрон, который тормозит активность альфа-мотонейрона разгибателя (Ч. Шеррингтон);
2) Возвратное(антидромное)торможение.Угнетение активности нейронавызывается возвратной коллатералью аксона, заканчивающейся на тормозном нейроне, аксон которого оказывает тормозное действие. Пример: альфа-мотонейрон посылает аксон к соответствующим мышечным волокнам. По пути от аксона отходит коллатераль, которая возвращается в ЦНС – она заканчивается на тормозном нейроне (клетка Реншоу)
и активирует ее. Тормозной нейрон вызывает торможение альфа-мотонейрона, который запустил всю эту цепочку. Таким образом, альфа-мотонейрон, активируясь, через систему тормозного нейрона тормозит сам себя;
Механизмы торможения.
Различают несколько видов торможения: постсинаптическое, пресинаптическое, пессимальное (рис. 16).
Постсинаптическоеторможение–развивается на ПСМ аксосоматических иаксодендритических синапсов под влиянием тормозных нейронов, у которых из концевых разветвлений аксонных отростков в синаптическую щель высвобождается тормозной медиатор (например, ГАМК или глицин). Медиатор вызывает на ПСМ эффект гиперполяризации в виде ТПСП, а пространственно-временная суммация ТПСП приводит к урежению или прекращению генерации ПД в результате снижения возбудимости нейрона. Это основной вид торможения.
Пресинаптическоеторможение–развертывается в аксоаксональных синапсах,блокируя распространение возбуждения по аксону. Процесс торможения здесь протекает по типу катодической депрессии: в области контакта выделяется медиатор (ГАМК), который вызывает стойкую деполяризацию, что нарушает проведение волны возбуждения через этот участок. Является наиболее избирательным видом торможения, т.к. выключает отдельные входы к нервной клетке.
Блокатором ГАМК-ергических рецепторов мембраны является бикукулин, а глициновых рецепторов – стрихнин и столбнячный токсин.
Эти два вида торможения, возникающие в результате деятельности тормозных нейронов, относят к первичному торможению (Дж. Экклс).
Пессимальное(вторичное)торможение–вид торможения центральных нейронов,наступает при высокой частоте раздражения. В первый момент возникает высокая частота ответного возбуждения, однако через некоторое время стимулируемый в таком режиме нейрон переходит в состояние торможения.
· В тех же нейронах, где было возбуждение
· Возникает без участия специальных тормозных клеток
Методы исследования функционального состояния центральной нервной системы (ЦНС). Хирургические методы: перерезки, частичной перерезки, экстирпации. Методы регистрации электрической активности нейронов мозга. Измерение силы и скорости рефлекторных реакций.
Рубрика | Медицина |
Вид | реферат |
Язык | русский |
Дата добавления | 01.12.2013 |
Размер файла | 20,5 K |
- посмотреть текст работы
- скачать работу можно здесь
- полная информация о работе
- весь список подобных работ
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Методики оценки центральной нервной системы
В экспериментальной физиологии широко применяются хирургические методы: перерезки, частичной перерезки, экстирпации. Однако и в клинических условиях в ряде случаев используются эти методы (с целью лечения, а не для изучения функций). Разрушение структур мозга, перерезки отдельных путей обычно выполняется с использованием стереотаксической техники: введение электродов в мозг человека или животного в определенные участки и на определенную глубину. Таким образом, например, используя электролиз, можно удалить участок, вызывающий эпилептические проступы. Пионером в этом направлении был Пенфилд. В России этот метод использовали в клинике академика Н.П. Бехтеревой при лечении ряда патологий ЦНС, в том числе при болезни Паркинсона. Использование этого метода для лечения людей ограничен.
Наиболее активно в клинической и экспериментальные практике используются методы регистрации электрической активности нейронов мозга. Например, метод микроэлектродной техники - его можно даже использовать на человеке - во время операций на мозге в соответствующие участки мозга вводится стеклянная микропипетка, с помощью которой и регистрируется электрическая активность отдельного нейрона. Это же можно осуществить с нейронами, изолированными из организма.
Метод вызванных потенциалов (ВП) интересен тем, что с его помощью можно оценить все те структуры мозга, участвующие в обработке информации, исходящей от данного рецептора. Если в данный участок мозга поступает информация, то в этой области регистрируются вызванные потенциалы.
Особую популярность приобрел метод электроэнцефалографии: регистрация суммарной электрической активности нейронов мозга. Осуществляется путем регистрации разности потенциалов между двумя точками, расположенными на голове. Существует определенная классификация отводов, используемых при регистрации ЭЭГ. В целом, ЭЭГ представляет собой низкоамплитудные колебания электрической активности, частотные и амплитудные характеристики которых зависят от состояния ЦНС. Различают ритмы ЭЭГ:
· альфа-ритм (8-13 Гц, 10-100 мк),
· бета-ритм (14-30 Гц, ампли. менее 20 мк),
· тета-ритм (7-11 Гц, ампли. более 100 мк),
· дельта-ритм (менее 4 Гц, ампли.150-200 мк).
Конечно в условиях покоя у человека регистрируется альфа-ритм. В активном состоянии - бета-ритм. Переход от альфа-к бета-ритма или от тета-до альфа-и бета-ритма называется десинхронизацией семьей. Во время сна, когда уменьшается активность коры больших полушарий, имеет место синхронизация - переход электрической активности от альфа-ритма в тета-и даже к дельта-ритма. При этом клетки мозга начинают работать одновременно: частота генерации волн уменьшается, а их амплитуда растет. В целом, ЭЭГ позволяет определить состояние мозга (стадии естественного сна, дает возможность судить о глубине наркоза, о наличии патологического процесса в мозге (эпилептический очаг, опухоль) и т.д.
Считали, что метод ЭЭГ позволит изучить физиологические процессы, лежащие в основе мышления, но до сих пор в этом направлении не получено обнадеживающих данных.
При самоконтроле за состоянием нервной системы можно использовать доступные каждому пробы. Например, представление о функции вегетативной нервной системы можно получить по кожно-сосудистой реакции. Определяется она следующим образом: по коже каким-либо неострым предметом, например неотточенным концом карандаша, с легким нажимом проводят несколько полосок. Если в месте нажима на коже появляется розовая окраска, кожно-сосудистая реакция в норме, белая - возбудимость симпатической иннервации кожных сосудов повышена, красная или выпукло-красная возбудимость симпатической иннервации кожных сосудов высокая. Белый и красный дермограф может наблюдаться при отклонениях в деятельности вегетативной нервной системы (при переутомлении, во время болезни, при неполном выздоровлении).
Рефлексометрия
Для исследования удобны хрономиорефлексометр (ХМРМ-01) и электромиорефлексометр (ЭМР-01), предназначенные для измерения временных характеристик простых двигательных реакций, длительности мышечных компонентов реакций и разности латентных периодов миоэлектрических реакций.
Сухожильные рефлексы оцениваются по следующим градациям:
0 - рефлексы отсутствуют;
1 - рефлексы низкие;
2 - рефлексы живые;
3 - рефлексы оживлены;
4 - расширение рефлексогенных зон.
центральная нервная система рефлекторный
Кроме того, оценивается наличие патологических знаков кистевых, стопных, защитных рефлексов, клонусов стоп, коленных чашечек, кистей. Затем определяется наличие синдромов: аддукторного, Hamstring-синдрома, трицепс-синдрома.
На основании тестирования двигательной и чувствительной функций в соответствии с международным стандартом определяется неврологический двигательный уровень, чувствительный уровень, зона частичного поражения.
Электроэнцефолография
Электроэнцефалография дает возможность качественного и количественного анализа функционального состояния головного мозга и его реакций при действии раздражителей. Запись ЭЭГ широко применяется в диагностической и лечебной работе (особенно часто при эпилепсии), в анестезиологии, а также при изучении деятельности мозга, связанной с реализацией таких функций, как восприятие, память, адаптация и т.д. ЭЭГ - чувствительный метод исследования, он отражает малейшие изменения функции коры головного мозга и глубинных мозговых структур, обеспечивая миллисекундное временное разрешение, не доступное другим методам, в частности ультразвуковым сосудистым, изучающим гемодинамику.
Показания к проведению электроэнцефалографии
· пароксизмальные состояния (потери сознания) любой этиологии, для исключения эпилепсии
· эпилепсия (до назначения п/судорожной терапии, на фоне приема препаратов, и обязательно (при планируемом снижении дозы противосудорожного препарата и особенно при планируемом отказе от п/судорожной терапии)
· фебрильные судороги у детей (на фоне высокой температуры)
· черепно-мозговые травмы
· психоэмоциональные нарушения
· задержка психоречевого, психомоторного развития у детей, ДЦП
· последствия инсультов, нарушения мозгового кровообращения
· врожденные аномалии развития головного мозга
· опухоли (в дооперационном и послеоперационном периоде)
· другие заболевания головного мозга
История
24 августа 1875 года английский врач Ричард Кэтон (R. Caton) (1842-1926) сделал доклад на заседании Британской медицинской ассоциации. В этом докладе он представил научному сообществу свои данные по регистрации от мозга кроликов и обезьян слабых токов. В том же году независимо от Кэтона русский физиолог В.Я. Данилевский в докторской диссертации изложил данные полученные при изучении электрической активности мозга у собак.
В своей работе он отметил наличие спонтанных потенциалов, а также изменения вызываемые различными стимулами.
В 1882 году И.М. Сеченов опубликовал работу "Гальванические явления на продолговатом мозгу лягушки", в которой впервые был установлен факт наличия ритмической электрической активности мозга. В 1884 году Н.Е. Введенский для изучения работы нервных центров применил телефонический метод регистрации, прослушивая в телефон активность продолговатого мозга лягушки и коры больших полушарий кролика. Введенский подтвердил основные наблюдения Сеченова и показал, что спонтанную ритмическую активность можно обнаружить и в коре больших полушарий млекопитающих.
Начало электроэнцефалографическим исследованиям положил В.В. Правдич-Неминский, опубликовав 1913 году первую электроэнцефалограмму записанную с мозга собаки. В своих исследованиях он использовал струнный гальванометр. Также Правдич-Неминский вводит термин электроцереброграмма.
Первая запись ЭЭГ человека получена австрийским психиатром Гансом Бергером в 1928 году. Он же предложил запись биотоков мозга называть "электроэнцефалограмма". Работы Бергера, а также сам метод энцефалографии получили широкое признание лишь после того как в мае 1934 года Эдриан (Adrian) и Мэттьюс (Metthews) впервые убедительно продемонстрировали "ритм Бергера" на собрании Физиологического общества в Кембридже.
Методика
Для выделения на ЭЭГ значимых признаков её подвергают анализу. Основными понятиями, на которые опирается характеристика ЭЭГ, являются:
· средняя частота колебаний
· их максимальная амплитуда
· их фаза
также оцениваются различия кривых ЭЭГ на разных каналах и их временная динамика.
Суммарная фоновая электрограмма коры и подкорковых образований мозга пациента, варьируя в зависимости от уровня филогенетического развития и отражая цитоархитектонические и функциональные особенности структур мозга, также состоит из различных по частоте медленных колебаний.
Диагностическая ценность ЭЭГ головного мозга
ЭЭГ имеет очень важное преимущество перед ПЭТ и фМРТ: электроэнцефалография может показать один из основных параметров работы нервной системы - свойство ритмичности, которое отражает согласованность работы разных структур мозга. ЭЭГ фиксирует первичные изменения (электрические процессы в нервных клетках). В то время как упомянутые методы обеспечивают детализированное изображение структур мозга в норме или при повреждении патологическими процессами, т.е. фиксируют вторичные метаболические изменения в ткани мозга.
Каковы же преимущества электроэнцефалографии? Некоторые из них очевидны: процедура довольно проста в использовании, дешева и не связана с воздействием на испытуемого (неинвазивна). ЭЭГ может быть зарегистрирована около кровати пациента и использоваться для контроля стадии эпилепсии, длительного мониторинга мозговой активности.
Следовательно, при записи электрической (а также магнитной) энцефалограммы, нейрофизиолог имеет доступ к фактическим механизмам обработки информации мозга.
Именно эта возможность делает ЭЭГ уникальным и, безусловно, ценным методом диагностики.
Размещено на Allbest.ru
Изучение связей между электрофизиологическими и клинико-анатомическими процессами живого организма. Электрокардиография как диагностический метод оценки состояния сердечной мышцы. Регистрация и анализ электрическй активности центральной нервной системы.
презентация [225,3 K], добавлен 08.05.2014
Методы исследования функции центральной нервной системы. Рефлексы человека, имеющие клиническое значение. Рефлекторный тонус скелетных мышц (опыт Бронджиста). Влияние лабиринтов на тонус мускулатуры. Роль отделов ЦНС в формировании мышечного тонуса.
методичка [34,3 K], добавлен 07.02.2013
Гистологическая классификация опухолей и опухолевидных поражений центральной нервной системы. Особенности диагностики, анамнеза. Данные лабораторных и функциональных исследований. Основные методы лечения опухолей головного мозга. Суть лучевой терапии.
реферат [17,8 K], добавлен 08.04.2012
Основные функции центральной нервной системы. Структура и функция нейронов. Синапс как место контакта двух нейронов. Рефлекс как основная форма нервной деятельности. Сущность рефлекторной дуги и ее схема. Физиологические свойства нервных центров.
реферат [392,2 K], добавлен 23.06.2010
Виды патологических состояний, развивающихся в вегетативной нервной системе, этиологические факторы этих заболеваний. Характер вегетативных симптомов при поражении спинного мозга. Хирургические методы лечения заболеваний вегетативной нервной системы.
реферат [26,3 K], добавлен 16.06.2010
Исследование функционального состояния центральной нервной системы методом электроэнцефалографии. Формирование протокола обследования. Картирование электрической активности мозга. Исследование мозгового и периферического кровообращения методом реографии.
курсовая работа [19,4 M], добавлен 12.02.2016
Основные вопросы физиологии центральной нервной системы и высшей нервной деятельности в научном плане. Роль механизмов работы мозга, лежащих в основе поведения. Значение знаний по анатомии и физиологии ЦНС для практических психологов, врачей и педагогов.
реферат [20,9 K], добавлен 05.10.2010
Электрический компонент возбуждения нервных и большинства мышечных клеток. Классическое исследование параметров и механизма потенциала действия центральной нервной системы. Функции продолговатого мозга и варолиевого моста. Основные болевые системы.
реферат [22,9 K], добавлен 02.05.2009
Диагностика неврологических заболеваний. Инструментальные методы исследований. Использование рентгеновских лучей. Компьютерная томография головного мозга. Исследование функционального состояния мозга путем регистрации его биоэлектрической активности.
презентация [4,2 M], добавлен 13.09.2016
Основные отличия вегетативной от центральной нервной системы. Функционирование симпатической нервной системы. Функции ядер спинного мозга и ствола мозга, которые контролируются вегетативными центрами. Дуга вегетативного рефлекса, ее особенности.
презентация [12,9 M], добавлен 15.02.2014
- главная
- рубрики
- по алфавиту
- вернуться в начало страницы
- вернуться к началу текста
- вернуться к подобным работам
- Рубрики
- По алфавиту
- Закачать файл
- Заказать работу
- Вебмастеру
- Продать
- весь список подобных работ
- скачать работу можно здесь
- сколько стоит заказать работу?
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.
Сетко Н. П., Сетко А. Г., Булычева Е В., Бейлина Е Б., Сетко И. М.,
Функциональное состояние центральной нервной системы является важным критерием в оценке состояния здоровья детей и подростков. Исследование показателей состояния нервной системы позволяет оценить качество регуляторных механизмов в организме, являющихся основными в формировании адекватного и своевременного адаптационного ответа организма на изменяющиеся условия окружающей среды. От функционального состояния нервной системы зависит и здоровье, и работоспособность человека.
Оценку деятельности нервных центров спинного мозга проводят на основе исследования сухожильных рефлексов (ахиллова, коленного, локтевого). У человека с функциональными расстройствами центральной нервной системы, в частности, с повышенной возбудимостью, наблюдаются повышенные сухожильные рефлексы (т.е. выраженная ответная реакция). Полное отсутствие рефлекторной реакции свидетельствует о патологических изменениях по ходу рефлекторной дуги.
Координация движений в организме человека осуществляется за счет согласованной деятельности коры больших полушарий головного мозга, мозжечка, вестибулярного аппарата. Ведущим органом координации движений является мозжечок, который регулирует и мышечный тонус – при его поражении возникает гипотония.
Для исследования координационной функции нервной системы проводят пробу Ромберга, пальценосовую, пяточно-коленную пробы, определяют нистагм.
Исследование и оценка статической координации (устойчивость стояния) осуществляется по пробе Ромберга. Обследуемому предлагают стоять со сдвинутыми носками и пятками ног и с опущенными руками. При поражении мозжечка отмечают покачивание туловища, которое увеличивается, если:
а) обследуемый протягивает руки вперед;
б) закрывает глаза;
в) ставит одну ногу впереди другой (в одну линию);
г) стоит на одной ноге;
д) стоит на пальцах.
При грубых нарушениях статики человек не может стоять даже с широко расставленными ногами. При оценке пробы обращают внимание на степень устойчивости (исследуемый стоит неподвижно или покачивается), наличие дрожания (тремора) век и пальцев, на длительность сохранения устойчивости в положении стоя на одной ноге.
К динамическим координационным пробам относят пальценосовую и пяточно-коленную пробы, используемые при исследовании координации движений конечностей. При нарушении динамической координации наблюдается промах и дрожание кисти руки. Такое нарушение может быть выявлено и при проведении коленно-пяточной пробы (исследуемый не может коснуться пяткой одной ноги колена другой).
Нистагм – непроизвольные ритмические, судорожные движения глазных яблок, регистрируемые под влиянием раздражения какого-либо отдела вестибулярного анализатора или зрительной стимуляции. Нистагм исследуется в неврологической клинике для диагностики болезней ЦНС, в частности, для оценки деятельности мозжечка. В норме колебательные движения глазных яблок отсутствуют. При поражении мозжечка отмечают колебательные движения при отведении глаз в сторону и попытке задержать взгляд в данном положении.
Основными инструментальными методами оценки центральной нервной системы является электроэнцефалография (ЭЭГ), реоэнцефалография (РЭГ).
Электроэнцефалография (ЭЭГ) – метод регистрации электрической активности (биотоков) мозговой ткани c целью объективной оценки функционального состояния головного мозга. Она имеет большое значение для диагностики травмы головного мозга, сосудистых и воспалительных заболеваний мозга, а также для контроля за функциональным состоянием спортсмена, выявления ранних форм неврозов, для лечения и при отборе в спортивные секции (особенно в бокс, карате и другие виды спорта, связанные с нанесением ударов по голове). При анализе данных, полученных как в состоянии покоя, так и при функциональных нагрузках, различных воздействиях извне в виде света, звука и др.), учитывается амплитуда волн, их частота и ритм. У здорового человека преобладают альфа-волны (частота колебаний 8–12 в 1 с), регистрируемые только при закрытых глазах обследуемого. При наличии афферентной световой импульсации открытые глаза, альфа-ритм полностью исчезает и вновь восстанавливается, когда глаза закрываются. Это явление называется реакцией активации основного ритма. В норме она должна регистрироваться. Бета-волны имеют частоту колебаний 15–32 в 1 с, а медленные волны представляют собой тэта-волны (с диапазоном колебаний 4–7 с) и дельта – волны (с еще меньшей частотой колебаний). У 35–40 % людей в правом полушарии амплитуда альфа-волн несколько выше, чем в левом, отмечается и некоторая разница в частоте колебаний – на 0,5–1 колебание в секунду. При травмах головы альфа-ритм отсутствует, но появляются колебания большой частоты и амплитуды и медленные волны. Kроме того, методом ЭЭГ можно диагностировать ранние признаки неврозов.
Реоэнцефалография (РЭГ) – метод исследования церебрального кровотока, основанный на регистрации ритмических изменений электрического сопротивления мозговой ткани вследствие пульсовых колебаний кровенаполнения сосудов. Реоэнцефалограмма состоит из повторяющихся волн и зубцов. При ее оценке учитывают характеристику зубцов, амплитуду реографической (систолической) волн и др. О состоянии сосудистого тонуса можно судить также по крутизне восходящей фазы. Патологическими показателями являются углубление инцизуры и увеличение дикротического зубца со сдвигом их вниз по нисходящей части кривой, что характеризует понижение тонуса стенки сосуда. Метод РЭГ используется при диагностике хронических нарушений мозгового кровообращения, вегетососудистой дистонии, головных болях и других изменениях сосудов головного мозга, а также при диагностике патологических процессов, возникающих в результате травм, сотрясений головного мозга
и заболеваний, вторично влияющих на кровообращение в церебральных сосудах (шейный остеохондроз, аневризмы и др.).
Становится очевидным, что в условиях донозологической диагностики при проведении профилактических осмотров такие методы оценки являются затратными по времени и по задействованию медицинских работников, имеющих соответствующую специализацию в проведении таких исследовании. Кроме того, выше перечисленные методы оценки центральной нервной системы не позволяют констатировать уровень функционирования центральной нервной системы, а направлены на выявление органических поражений нервной системы или изменений, относящихся к клинической диагностике.
Бланки c результатами теста обрабатываются – экспериментатор помечает на Бланке невычеркнутые (пропущенные) и неправильно вычеркнутые кольца. Затем подсчитывает и заносит в Бланк фиксации результатов следующие показатели:
1. Q – общее количество колец, просмотренных за каждые 2 минуты работы.
2. N – число пропущенных и неправильно вычеркнутых колец за каждые 2 минуты.
3. M – число колец, которые следовало вычеркнуть за каждые 2 минуты.
4. A = (M – N)/M – показатель точности работы за каждые 2 минуты.
5. P = А?Q – показатель продуктивности работы за каждые 2 минуты.
6. S = (0,5436?Qt – 2,807?Nt)/600 – показатель скорости переработки информации,
общее количество просмотренных колец за 10 минут;
Центральная нервная система (ЦНС) — самая сложная из всех функциональных систем человека (рис. Центральная и периферическая нервная система).
В мозгу находятся чувствительные центры, анализирующие изменения, которые происходят как во внешней, так и во внутренней среде. Мозг управляет всеми функциями организма, включая мышечные сокращения и секреторную активность желез внутренней секреции.
Центральная и периферическая нервная система (А, Б, В)
А: 1 — диафрагмальный нерв, 2 — плечевое сплетение, 3 — межреберные нервы, 4 — подмышечный нерв, 5 — мышечно-кожный нерв; 6 — лучевой нерв, 7 — срединный нерв, 8 — локтевой нерв, 9 — поясничное сплетение, 10 — крестцовое сплетение, 11 — срамное и копчиковое сплетение, 12 — седалищный нерв, 13 — малоберцовый нерв, 14 — большеберцовый нерв, 15 — головной мозг, 16 — наружный кожный нерв бедра, 17 — латеральный тыльный кожный нерв, 18 — большеберцовый нерв. Б: сегменты спинного мозга. В: Спинной мозг: 1 — белое вещество, 2 — серое вещество, 3 — спинномозговой канал, 4 — передний рог, 5 — задний рог, 6 — передние корешки, 7 — задние корешки, 8 — спинномозговой узел, 9 — спинномозговой нерв.
Центральная и периферическая нервная система (Г)
Г: 1 — спинной мозг, 2 — передняя ветвь спинномозгового нерва, 3 — задняя ветвь спинномозгового нерва, 4 — передний корешок спинномозгового нерва, 5 — задний корешок спинномозгового нерва, 6 — задний рог, 7 — передний — рог, 8 — спинномозговой узел, 9 — спинномозговой нерв, 10 — двигательная нервная клетка, 11 — спинномозговой узел, 12 — концевая нить, 13 — мышечные волокна, 14 — чувствительный нерв, 15 — окончание чувствительного нерва, 16 — головной мозг.
Главная функция нервной системы состоит в быстрой и точной передаче информации. Сигнал от рецепторов к сенсорным центрам, от этих центров — к моторным центрам и от них — к эффекторным органам, мышцам и железам, должен передаваться быстро и точно.
В коре головного мозга насчитывается до 50 миллиардов нервных клеток (нейронов), объединенных в сложнейшую сеть. Отдельные клетки при помощи отростков соединяются между собой, каждая из них связана с несколькими тысячами других клеток коры большого мозга, образуя сложные функциональные системы (схема Функциональная система по П.K. Анохину). Нервные клетки могут находиться в состоянии возбуждения или торможения. Эти два основных процесса характеризуются силой, подвижностью и уравновешенностью.
Схема. Функциональная система по П.K. Анохину
В основе функционирования нервной системы лежат безусловные и условные рефлексы.
Особенности характера (темперамента) в большой степени определяются активностью желез внутренней секреции (эндокринных желез).
О психическом состоянии спортсмена можно судить по результатам исследования ЦНС и анализаторов.
Обследовать спортсмена можно как в состоянии относительного покоя, во время решения различных сложных задач, а также физических нагрузках. Это дает возможность определить критический уровень отдельных функций, что имеет для спортсменов большое значение.
Методы исследования нервной системы
Основные методы исследования ЦНС и нервно-мышечного аппарата — электроэнцефалография (ЭЭГ), реоэнцефалография (РЭГ), электромиография (ЭМГ), определяют статическую устойчивость, тонус мышц, сухожильные рефлексы и др.
Электроэнцефалография(ЭЭГ) — метод регистрации электрической активности (биотоков) мозговой ткани c целью объективной оценки функционального состояния головного мозга. Она имеет большое значение для диагностики травмы головного мозга, сосудистых и воспалительных заболеваний мозга, а также для контроля за функциональным состоянием спортсмена, выявления ранних форм неврозов, для лечения и при отборе в спортивные секции (особенно в бокс, карате и другие виды спорта, связанные с нанесением ударов по голове).
При анализе данных, полученных как в состоянии покоя, так и при функциональных нагрузках, различных воздействиях извне в виде света, звука и др.), учитывается амплитуда волн, их частота и ритм. У здорового человека преобладают альфа-волны (частота колебаний 8—12 в 1 с), регистрируемые только при закрытых глазах обследуемого. При наличии афферентной световой импульсации открытые глаза, альфа-ритм полностью исчезает и вновь восстанавливается, когда глаза закрываются. Это явление называется реакцией активации основного ритма. В норме она должна регистрироваться.
Бета-волны имеют частоту колебаний 15—32 в 1 с, а медленные волны представляют собой тэта-волны (с диапазоном колебаний 4—7 с) и дельта — волны (с еще меньшей частотой колебаний).
У 35—40% людей в правом полушарии амплитуда альфа-волн несколько выше, чем в левом, отмечается и некоторая разница в частоте колебаний — на 0,5—1 колебание в секунду.
При травмах головы альфа-ритм отсутствует, но появляются колебания большой частоты и амплитуды и медленные волны.
Kроме того, методом ЭЭГ можно диагностировать ранние признаки неврозов (переутомлений, перетренированости) у спортсменов.
Реоэнцефалография (РЭГ) — метод исследования церебрального кровотока, основанный на регистрации ритмических изменений электрического сопротивления мозговой ткани вследствие пульсовых колебаний кровенаполнения сосудов.
Реоэнцефалограмма состоит из повторяющихся волн и зубцов. При ее оценке учитывают характеристику зубцов, амплитуду реографической (систолической) волн и др.
О состоянии сосудистого тонуса можно судить также по крутизне восходящей фазы. Патологическими показателями являются углубление инцизуры и увеличение дикротического зубца со сдвигом их вниз по нисходящей части кривой, что характеризует понижение тонуса стенки сосуда.
Метод РЭГ используется при диагностике хронических нарушений мозгового кровообращения, вегетососудистой дистонии, головных болях и других изменениях сосудов головного мозга, а также при диагностике патологических процессов, возникающих в результате травм, сотрясений головного мозга и заболеваний, вторично влияющих на кровообращение в церебральных сосудах (шейный остеохондроз, аневризмы и др.).
Электромиография(ЭМГ) — метод исследования функционирования скелетных мышц посредством регистрации их электрической активности — биотоков, биопотенциалов. Для записи ЭМГ используют электромиографы. Отведение мышечных биопотенциалов осуществляется с помощью поверхностных (накладных) или игольчатых (вкалываемых) электродов. При исследовании мышц конечностей чаще всего записывают электромиограммы с одноименных мышц обеих сторон. Сначала регистрируют ЭМ покоя при максимально расслабленном состоянии всей мышцы, а затем — при ее тоническом напряжении.
По ЭМГ можно на ранних этапах определить (и предупредить возникновение травм мышц и сухожилий) изменения биопотенциалов мышц, судить о функциональной способности нервно-мышечного аппарата, особенно мышц, наиболее загруженных в тренировке. По ЭМГ, в сочетании с биохимическими исследованиями (определение гистамина, мочевины в крови), можно определить ранние признаки неврозов (переутомление, перетренированность). Kроме того, множественной миографией определяют работу мышц в двигательном цикле (например, у гребцов, боксеров во время тестирования).
ЭМГ характеризует деятельность мышц, состояние периферического и центрального двигательного нейрона.
Анализ ЭМГ дается по амплитуде, форме, ритму, частоте колебаний потенциалов и других параметрах. Kроме того, при анализе ЭМГ определяют латентный период между подачей сигнала к сокращению мышц и появлением первых осцилляций на ЭМГ и латентный период исчезновения осцилляций после команды прекратить сокращения.
Хронаксиметрия — метод исследования возбудимости нервов в зависимости от времени действия раздражителя. Сначала определяется реобаза — сила тока, вызывающая пороговое сокращение, а затем — хронаксия. Хронансия — это минимальное время прохождения тока силой в две реобазы, которое дает минимальное сокращение. Хронаксия исчисляется в сигмах (тысячных долях секунды).
В норме хронаксия различных мышц составляет 0,0001—0,001 с. Установлено, что проксимальные мышцы имеют меньшую хронаксию, чем дистальные. Мышца и иннервирующий ее нерв имеют одинаковую хронаксию (изохронизм). Мышцы — синергисты имеют также одинаковую хронаксию. На верхних конечностях хронаксия мышц-сгибателей в два раза меньше хронаксии разгибателей, на нижних конечностях отмечается обратное соотношение.
У спортсменов резко снижается хронаксия мышц и может увеличиваться разница хронаксий (анизохронаксия) сгибателей и разгибателей при перетренировке (переутомлении), миозитах, паратенонитах икроножной мышцы и др.
Устойчивость в статическом положении можно изучать с помощью стабилографии, треморографии, пробы Ромберга и др.
Определение равновесия в статических позах
Регулярные тренировки способствуют совершенствованию координации движений. В ряде видов спорта (акробатика, спортивная гимнастика, прыжки в воду, фигурное катание и др.) данный метод является информативным показателем в оценке функционального состояния ЦНС и нервно-мышечного аппарата. При переутомлении, травме головы и других состояниях эти показатели существенно изменяются.
Тест Яроцкого позволяет определить порог чувствительности вестибулярного анализатора. Тест выполняется в исходном положении стоя с закрытыми глазами, при этом спортсмен по команде начинает вращательные движения головой в быстром темпе. Фиксируется время вращения головой до потери спортсменом равновесия. У здоровых лиц время сохранения равновесия в среднем 28 с, у тренированных спортсменов — 90 с и более.
Порог уровня чувствительности вестибулярного анализатора в основном зависит от наследственности, но под влиянием тренировки его можно повысить.
Пальцево-носовая проба. Обследуемому предлагается дотронуться указательным пальцем до кончика носа с открытыми, а затем — с закрытыми глазами. В норме отмечается попадание, дотрагивание до кончика носа. При травмах головного мозга, неврозах (переутомлении, перетренированности) и других функциональных состояниях отмечается промахивание (непопадание), дрожание (тремор) указательного пальца или кисти.
Теппинг-тест определяет максимальную частоту движений кисти.
Для проведения теста необходимо иметь секундомер, карандаш и лист бумаги, который двумя линиями разделяют на четыре равные части. В течение 10 с в максимальном темпе ставят точки в первом квадрате, затем — 10-секундный период отдыха и вновь повторяют процедуру от второго квадрата к третьему и четвертому. Общая длительность теста — 40 с. Для оценки теста подсчитывают количество точек в каждом квадрате. У тренированных спортсменов максимальная частота движений кисти более 70 за 10 секунд. Снижение количества точек от квадрата к квадрату свидетельствует о недостаточной устойчивости двигательной сферы и нервной системы. Снижение лабильности нервных процессов ступенеобразно (с увеличением частоты движений во 2-м или 3-м квадратах) — свидетельствует о замедлении процессов врабатываемости. Этот тест используют в акробатике, фехтовании, в игровых и других видах спорта.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Читайте также: