Синапс проведение импульса по нервному волокну
Потенциалы действия (импульсы возбуждения) обладают способностью распространяться вдоль по нервным и мышечным волокнам. Потенциалы могут быть локальными, они распространяются на небольшие расстояния 1-2 мм с затуханием (декрементом) и импульсными. Импульсные потенциалы распространяются без декремента на значительные расстояния – до нескольких десятков сантиметров. Локальные потенциалы возникают в ответ на действие подпорогового раздражителя, например, на мембране рецепторной клетки. Если локальное возбуждение попадает в участок мембраны, способной генерировать ПД, и амплитуда локального тока достигает критического уровня деполяризации, формируется ПД, который распространяется по всей длине нервного волокна.
Передача информации на большие расстояния в пределах нервной системы осуществляется с помощью нервных импульсов по аксонам нейронов. Обязательным условием проведения нервного импульса является наличие на всем протяжении или в ограниченных, но повторяющихся участках волокна потенциал чувствительных ионных каналов. В зависимости от расположения и концентрации ионных каналов в мембране волокна выделяют два способа проведения нервного импульса.
1. Непрерывное проведение нервного импульсаосуществляется в безмиелиновых волокнах, объясняется равномерным распределением потенциал чувствительных ионных каналов, участвующих в генерации ПД.
Рисунок 3 - Непрерывное распространение ПД в нервном волокне
Возникший ПД обеспечивает открытие потенциал зависимых Na-каналов на соседнем участке мембраны нервного волокна и движение ионов Na + внутрь волокна, что обеспечивает развитие критического уровня деполяризации на соседнем участке нервного волокна и возникновение нового ПД. Непрерывное распространение нервного импульса идет через генерацию новых импульсов по эстафете, когда каждый возникший импульс является раздражителем для соседнего участка нервного волокна и обеспечивает возникновение нового ПД.
Рисунок 4 – Сальтаторное распространение ПД в нервных волокнах
2. Сальтаторное проведение нервного импульса (ПД) осуществляется в миелиновых волокнах, так как у них потенциал чувствительные ионные каналы локализованы только в участках мембраны перехватов Ранвье, где их плотность достигает 12 000 на 1 мкм 2 . В области межузловых сегментов, обладающих высокими изолирующими свойствами, потенциал чувствительных каналов нет, вследствие чего мембрана осевого цилиндра там практически невозбудима. Поэтому ПД, возникший в одном перехвате Ранвье распространяется через межузловой сегмент до соседнего перехвата, деполяризует мембрану до критического уровня и вызывает возникновение потенциала действия.
Сальтаторное проведение нервных импульсов является эволюционно более поздним механизмом, возникшим впервые у позвоночных в связи с миелинизацией нервных волокон. Оно имеет два важных преимущества по сравнению с непрерывным механизмом проведения возбуждения:
-более экономично по затрате энергии, так как возбуждаются только перехваты Ранвье, площадь которых составляет менее 1% от площади мембраны волокна, следовательно, требуется меньше энергии для восстановления трансмембранных градиентов ионов натрия и калия;
-возбуждение проводится с большей скоростью (до 120 м/с), чем в безмиелиновых волокнах (0,5-2,0 м/с).
В связи с этими приемуществами миелиновые волокна в нервной системе сформировались там, где необходима наиболее быстрая регуляция функций. Все особенности распространения возбуждения в ЦНС объясняются ее нейронным строением: наличием химических синапсов, многократным ветвлением аксонов нейронов, наличием замкнутых нейронных путей.
Проведение нервных импульсов по волокнам нейронов починяется определенным законам:
Закона 1: нервный импульс распространяется в обе стороны от места раздражения.
Закон 2: проведение нервного импульса по волокну происходит изолировано и не распространяется на параллельные волокна. Объяснение этого закона заключается в том, что аксолемма имеет очень высокое сопротивление и не пропускает петли тока на невозбужденные волокна, расположенные рядом. Изолированное проведение обеспечивает высокую точность регуляторной деятельности ЦНС.
Закон 3: скорость проведения возбуждения по нервному волокну определяется его диаметром. Отсюда следствие: чем толще нервное волокно, тем больше скорость проведения нервного импульса по этому волокну.
Закон 4: нерв сохраняет способность к проведению возбуждения в течение 6-8 часов непрерывного раздражения (закон Н.Е. Введенского, 1883).
Закон 5: действие веществ, блокирующих работу ионных каналов, без нарушения целостности нервного волокна вызывает состояние обратимого парабиоза, (закон парабиоза, Введенский, 1901).
Кроме того, выделяют несколько видов распространения возбуждения:
1. Иррадиация (дивергенция) возбуждения в ЦНС, которая объясняется ветвлением аксонов и наличием вставочных нейронов, аксоны которых также ветвятся. Дивергенция расширяет сферу действия каждого нейрона. Один нейрон, посылая импульсы в кору большого мозга, может участвовать в возбуждении до 5000 нейронов.
Рисунок 4 – Дивергенция афферентных дорсальных корешков на нейроны головного мозга (а – дивергенция, б – конвергенция)
2. Конвергенция возбуждения представляет собой схождение нескольких нервных импульсов, идущих по разным путям к одному и тому же нейрону. Явление конвергенции распространения возбуждения описал Э. Шеррингтон, поэтому явление было названо принцип шеррингтоновской воронки или принцип общего конечного пути. Примером может служить конвергенция возбуждения на спинальном мотонейроне. Мотонейрон, иннервирующий мышцы глотки, участвует в рефлексах глотания, кашля, сосания, чиханья и дыхания, образуя общий конечный путь для многочисленных рефлекторных дуг.
Рисунок 5 – Циркуляция возбуждения в замкнутых нейронных цепях
3. Циркуляция возбуждения по замкнутым нейронным цепям, возникает в результате замыкания группы нейронов в кольцевую структуру. Циркуляция возбуждения – одна из причин явления последействия. Считают, что циркуляция возбуждения в замкнутых нейронных цепях наиболее вероятный механизм феномена кратковременной памяти. Циркуляция возбуждения возможна в цепи нейронов и в пределах одного нейрона в результате контактов разветвлений его аксона с собственными дендритами и телом.
Литература
1. Смирнов, В.М. Физиология сенсорных систем и высшая нервная деятельность / В.М. Смирнов, С.М. Будылина. - М.: Медицина, 2003. - 304 с.
2. Шульговский, В. В. Основы нейрофизиологии: Учебное пособие для студентов вузов. - М.: Аспект Пресс, 2000. - с. 277.
3. Батуев, А.С. Физиология поведения. Нейрофизиологические закономерности / А.С. Батуев. - Л.: Наука, 1986. - 340 с.
4. Александров, Ю.И. Психофизиология / Ю.И.Александров. - М.: Медицина, 2001. - 230 с.
Данилова, Н.Н. Физиология высшей нервной деятельности / Н. Н. Данилова, А.Л. Крылова. - Ростов н/Д: Феникс, 1999. – 480 с.
[1] ионоселективные каналы и ионные насосы
[2] правило действует и в обратном направлении
[3] 1780 год, профессор анатомии Болонского университета
Возникшее возбуждение передается по структурам рефлекторной дуги и достигает эффекторного органа. В передаче возбуждения можно выделить два процесса: передача по нервному волокну – до его окончания и синаптическая передача – с окончания нервного волокна на другую клетку. Проведение импульса через синапс существенно отличается от проведения по нервному волокну тем, что в процесс вовлекается химическое вещество и рецепторы к нему.
С л о в а р ь т е м ы:
Пресинаптическая и постсинаптическая мембрана
Мембранные рецепторы
Синаптоактивные вещества
Парасимпато- и симпатолитики и миметики
Агонисты и антагонисты медиаторов
Проведение возбуждения по нервному волокну
Механизм проведения возбуждения в нервных волокнах объясняется возникновением локальных токов между возбужденными и невозбужденными участками нервного волокна. При возбуждении активируются натриевые каналы, и возникает ток действия (ПД). Мембрана аксона на всем протяжении омывается солевым раствором, который хорошо проводит ток. Поскольку рядом с деполяризованным участком мембраны расположен участок с нормальным распределением зарядов (поляризованный), возникает разность потенциалов, способная деполяризовать мембрану до КУД и на соседнем участке возникает ПД (рис. 13).
Рисунок 13 Проведение возбуждения по нервному волокну
Рисунок 14
Сальтаторное проведение импульса по миелинизированному волокну
Закономерности проведения возбуждения по нервному волокну:
1. Возбуждение может распространяться в любом направлении, потому что соседние участки с обеих сторон электроотрицательны по отношению к возбужденному участку.
2. Возбуждение распространяется не затухая, т.к. разность потенциалов деполяризует участок мембраны до КУД, следовательно, возникает ПД стандартной величины.
3. Скорость проведения возбуждения тем больше, чем выше амплитуда потенциала действия, потому что больше возникающая на соседних участках аксона разность потенциалов.
4. Скорость проведения прямо пропорциональна диаметру нервного волокна.
5. Частота импульсов не изменяется.
6. Возбуждение проводится изолированно по каждому нервному волокну.
Проведение возбуждения в синапсах.
Передача нервного импульса с нервного волокна на другую клетку осуществляется посредством СИНАПСОВ. Синапс - специализированная зона контакта между аксоном и другим нейроном, мышечной или секреторной клеткой, обеспечивающая передачу нервного импульса с нервного волокна на эффекторную клетку.
Рисунок 15 Зоны синаптических контактов отмечены стрелками
Существуют синапсы с химическим и электрическим способами взаимодействия. Электрических синапсов в организме человека немного, плотные контакты между клетками обеспечивают такой же вариант передачи импульса, как и в нервных волокнах – с помощью возникающих в месте контакта местных токов. Мы рассмотрим только химические синапсы. В химических синапсах возбуждение передается с помощью химического вещества - МЕДИАТОРА.
Рисунок 16 Структура синапса
В структуре синапса принято выделять пресинаптическую мембрану, образованную терминалью аксона, синаптическую щель и постсинаптическую мембрану, каждая структура выполняет свою функцию.
Медиаторы могут быть биогенными аминами: норадреналин, дофамин, гистамин, серотонин; аминокислотами: глутаминовая кислота, глицин; олигопептидами: вещество Р, энкефалины, эндорфины; метаболитами: аденозин, АТФ, АДФ; широко распространен и в центральных структурах, и на периферии медиатор ацетилхолин.
ХИМИЧЕСКИЕ МЕДИАТОРЫ являются веществами, синтезируемыми в цитоплазме нейронов. Нейроны могут: 1) синтезировать один медиатор, 2) транспортировать по аксону с помощью микротрубочек, 3) упаковывать медиатор в гранулы, 4) хранить эти гранулы в терминалях аксонов, 5) освобождать медиатор при возбуждении, 6) захватить назад в терминаль аксона медиатор или его фрагменты, 7) восстановить гранулы и вновь заполнить их медиатором.
Медиатор выделяется в синаптическую щель размером 10-50 мкм, и взаимодействует с мембранным рецептором постсинаптической мембраны.
В синаптической щели возможно разрушение медиатора специфическими для каждого медиатора ферментами, метаболиты возвращаются в нейрон для ресинтеза. Такими ферментами могут быть ацетилхолинэстераза – фермент для разрушения ацетилхолина, моноаминооксидаза (МАО) – для разрушения норадреналина или дофамина. Возможен обратный захват не разрушенного медиатора терминалью аксона.
Постсинаптическая мембрана имеет мембранные рецепторы – сложные комплексы интегральных белков, пронизывающих клеточную мембрану, как правило, состоящие из нескольких субъединиц. В мембранных рецепторах одна часть способна распознавать собственный медиатор и связываться с ним, а вторая – представлена или ионным каналом, или системой специальных мембранных ферментов, которые называются внутриклеточные посредники (рис.17).
Рисунок 17 Кооперированный с натриевым каналом мембранный рецептор к самому распространенному медиатору ЦНС – глутамату. 1,2,3 – медиаторы, или похожие на них вещества, которые могут быть распознаны рецептором и связаны с ним, 4 – ион натрия, 5 – ворота ионного канала
Если взаимодействие медиатора с рецептором приводит к активации ионных каналов, а результатом является изменение потенциала мембраны, то такие рецепторы называются ионотропными.Если запускается система вторичных внутриклеточных посредников, происходит изменение активности ферментов и темпа метаболических процессов (гликолиз, липолиз), то такие рецепторы называютсяметаботропными (рис 18).
Рисунок 18 Ионотропные и метаботропные рецепторы
Рисунок 19 выделение медиатора и взаимодействие с рецепторами
Для выделения медиатора необходимо сочетание двух событий: 1) волна деполяризации (ПД), достигшая терминали аксона, эта волна обусловлена активацией быстрых натриевых каналов и 2) открытие медленных, потенциал-зависимых кальциевых каналов пресинаптической мембраны. Поступление кальция в клетку (по градиенту концентрации) стимулирует освобождение гранул с медиатором. Гранулы выделяются путем экзоцитоза, поэтому медиатор появляется в синаптической щели не отдельными молекулами, а квантами, примерно из нескольких тысяч молекул.
Рисунок 20 Этапы выделения медиатора
I) Деполяризация пресинаптической мембраны и поступление ионов натрия в терминаль аксона
II) Активация потенциалзависимых медленных кальциевых каналов и поступление ионов кальция в клетку
III) Освобождение медиатора, диффузия его к постсинаптической мембране и взаимодействие с мембранными рецепторами
IV) Судьба медиатора в синаптической щели
1) Возвращение метаболитов в терминаль аксона
2) Разрушение медиатора специфическими ферментами
3) Обратный захват медиатора
Результат взаимодействия медиатора с мембранными рецепторами постсинаптической мембраны приводит к изменениям проницаемости этой мембраны для ионов путем активации или инактивации ионных каналов. На постсинаптической мембране могут открываться (или закрываться) натриевые, кальциевые калиевые или хлорные каналы. Результатом этого процесса будет изменение мембранного потенциала постсинаптической мембраны. Если деполяризующий ток ионов велик (натриевые каналы), на постсинаптической мембране возникает импульс возбуждения – потенциал действия. Чаще же на постсинаптической мембране возникает лишь незначительная, не достигающая порогового уровня деполяризация, локальный ответ (ЛО). В зависимости от расположения синапса этот ЛО называется или ВПСП (возбуждающий постсинаптический потенциал в центральных синапсах) или ПКП (потенциал концевой пластинки в нервномышечных синапсах).
Рисунок 21 Изменение потенциалов пресинаптической и постсинаптической мембраны
1 – пресинаптическая мембрана, 2 – постсинаптическая мембрана
Синапсы можно классифицировать по локализации: на центральные и периферические. Центральные – это синапсы между нейронами, они отличаются местом взаимодействия терминали пресинаптического нейрона с постсинаптическим и могут быть аксо-соматическими, аксо-аксональными, аксо-дендритическими и дендро-дендритическими, кроме того, бывают аксо-вазальные синапсы, в которых медиатор выделяется в кровь. Периферические – это синапсы нервно-мышечные и нервно-секреторные, которые могут быть и соматическими и вегетативными, симпатические и парасимпатические. В периферических синапсах представлено два основных медиатора: ацетилхолин и норадреналин.
Рисунок 22 Взаимодействие синапсов
Мембранные рецепторы тоже можно классифицировать и по веществу, с которым они взаимодействуют, и по эффекту такого взаимодействия. Рецепторы, взаимодействующие с ацетилхолином (АХ) называются холинорецепторами. В функциональном отношении они разделяются на две группы: М- и Н-холинорецепторы. М - чувствительные к мускарину, Н - чувствительные к никотину. В синапсах скелетных мышц присутствуют только Н-холинорецепторы, а в гладких мышцах внутренних органов - преимущественно М-холинорецепторы. Рецепторы, взаимодействующие с норадреналином называются адренорецепторами, и делятся на альфа- и бета- адренорецепторы. В постсинаптической мембране гладкомышечных клеток внутренних органов и кровеносных сосудов часто соседствуют оба вида адренорецепторов. Действие норадреналина является деполяризующим, если он взаимодействует с альфа-адренорецепторами и гиперполяризующим при взаимодействии с бета-адренорецепторами (таблица 6). Холин- и адрено - реактивные структуры находятся во всех внутренних органах, железах внутренней и внешней секреции, скелетной и гладкой мускулатуре, вегетативных ганглиях и ЦНС.
Обратите внимание на то, что чувствительность адренорецепторов к адреналину и норадреналину различна, поэтому можно наблюдать несколько различные эффекты при активации симпатической нервной системы и при повышении в крови адреналина.
Последнее изменение этой страницы: 2016-08-14; Нарушение авторского права страницы
Проведение нервных импульсов по нервным волокнам и через синапсы. Высоковольтный потенциал, возникающий при возбуждении рецептора в нервном волокне, в 5—10 раз больше порога раздражения рецептора. Проведение волны возбуждения по нервному волокну обеспечивается тем, что каждый последующий его участок раздражается высоковольтным потенциалом предыдущего участка. В мякотных нервных волокнах этот потенциал распространяется не непрерывно, а скачкообразно; он перескакивает через один или даже несколько перехватов Ранвье, в которых усиливается. Продолжительность проведения возбуждения между двумя соседними перехватами Ранвье равняется 5—10% длительности высоковольтного потенциала.
Проведение нервного импульса по нервному волокну происходит только при условии его анатомической непрерывности и нормального физиологического его состояния. Нарушение физиологических свойств нервного волокна сильным охлаждением или отравлением ядами и наркотиками прекращает проведение нервного импульса даже при анатомической его непрерывности.
Нервные импульсы проводятся изолированно по отдельным двигательным и чувствительным нервным волокнам, которые входят в состав смешанного нерва, что зависит от изолирующих свойств покрывающих их миелиновых оболочек. В безмякотных нервных волокнах биоток распространяется непрерывно вдоль волокна и благодаря соединительнотканой оболочке не переходит с одного волокна на другое. Нервный импульс может распространяться по нервному волокну в двух направлениях: центростремительном и центробежном. Следовательно, существуют три правила проведения нервного импульса в нервных волокнах: 1) анатомической непрерывности и физиологической целости, 2) изолированного проведения и 3) двустороннего проведения.
Через 2—3 дня после отделения нервных волокон от тела нейрона они начинают перерождаться, или дегенерировать, и проведение нервных импульсов прекращается. Нервные волокна и миелин разрушаются и сохраняется только соединительнотканая оболочка. Если соединить перерезанные концы нервных волокон, или нерва, то после дегенерации тех участков, которые отделены от нервных клеток, начинается восстановление, или регенерация, нервных волокон со стороны тел нейронов, из которых они прорастают в сохранившиеся соединительнотканые оболочки. Регенерация нервных волокон приводит к восстановлению проведения импульсов.
В отличие от нервных волокон через нейроны нервной системы нервные импульсы проводятся только в одном направлении — от рецептора к работающему органу. Это зависит от характера проведения нервного импульса через синапсы. В нервном волокне над пресинаптической мембраной есть множество мельчайших пузырьков ацетилхолина. При достижении биотоком пресинаптической мембраны часть этих пузырьков лопается, и ацетилхолин проходит через мельчайшие отверстия в пресинаптической мембране в синаптическую щель.
В постсинаптической мембране имеются участки, обладающие особым сродством к ацетилхолину, который вызывает временное появление пор в постсинаптической мембране, отчего она становится временно проницаемой для ионов. В результате в постсинаптической мембране возникает возбуждение и высоковольтный потенциал, который распространяется по следующему нейрону или по иннервируемому органу. Следовательно, передача возбуждения через синапсы происходит химическим путем посредством посредника, или медиатора, ацетилхолина, а проведение возбуждения по следующему нейрону снова осуществляется электрическим путем.
Действие ацетилхолина на проведение нервного импульса через синапс кратковременно; он быстро разрушается, гидролизуется ферментом холинэстеразой.
Так как химическая передача нервного импульса в синапсе происходит в течение доли мсек, то в каждом синапсе нервный импульс на это время задерживается.
Теория по нормальной физиологии на тему: Синапс. Физиология мышечных волокон. В данной статье рассматривается механизм синаптической передачи, НМС…
При создании данной страницы использовалась лекция по соответствующей теме, составленная Кафедрой Нормальной физиологии БашГМУ
Синапс — это специфическое место контакта двух возбудимых систем (клеток) для передачи возбуждения.
По способу передачи сигналов:
- механические,
- химические,
- электрические.
По виду медиатора: холинэргические и др.
Нервно-мышечный синапс (НМС) — химический, передача с помощью медиатора ацетилхолина.
Синонимы к слову НМС:
- Нервно-мышечное соединение;
- Моторная концевая пластинка.
Аксоны нервных клеток на своих окончаниях теряют миелиновую оболочку , ветвятся, и концевые веточки аксона утолщаются. Это пресинаптическая терминаль или бляшка или пуговка , которая погружается в углубление на поверхности мышечного волокна.
Покрывающая концевую веточку аксона поверхностная мембрана называется пресинаптической мембраной , т.е. это мембрана, покрывающая поверхность синаптической бляшки (терминали аксона).
Мембрана, покрывающая мышечное волокно в области синапса, называется постсинаптической мембраной , или концевой пластинкой. Она имеет извитую структуру, образуя многочисленные складки, уходящие вглубь мышечного волокна, за счет чего увеличивается площадь контакта.
На постсинаптической мембране находятся белковые структуры — рецепторы , способные связывать медиатор . В одном синапсе количество рецепторов достигает 10-20 млн.
Между пре- и постсинаптическими мембранами находится синаптическая щель , размеры ее в среднем 50 нм, она открывается в межклеточное пространство и заполнена межклеточной жидкостью .
В синаптической щели находится мукополисахаридное плотное вещество в виде полосок, мостиков и содержится фермент ацетилхолинэстераза .
В пресинаптической терминали находится большое количество пузырьков или везикул , заполненных медиатором — химическим веществом посредником, осуществляющим передачу возбуждения.
В нервно-мышечном синапсе медиатор — ацетилхолин (АХ).
АХ синтезируется из холина и уксусной кислоты (ацетил-коэнзима А) с помощью фермента холинэстеразы. Эти вещества перемещаются из тела нейрона по аксону к пресинаптической мембране. Здесь в пузырьках происходит окончательное образование АХ.
3 фракции медиатора:
- Первая фракция — доступная — располагается рядом с пресинаптической мембраной.
- Вторая фракция — депонированная — располагается над первой фракцией.
- Третья фракция — диффузно рассеянная — наиболее удаленная от пресинаптической мембраны.
Механизм синаптической передачи
Ионы Ca вызывают образование специального белкового комплекса , который включает в себя везикулу и структуры, расположенные непосредственно около пресинаптической мембраны.
Они связаны между собой так называемыми белками экзоцитоза.
Часть белков расположена на везикулах (синапсин, синаптотагмин, синаптобревин), а часть — на пресинаптической мембране (синтаксин, синапсо-ассоциированный белок). Данный комплекс получил название секретосома .
Излитию содержимого пузырька в щель способствует белок синаптопорин , формирующий канал, по которому идет выброс медиатора.
Квант медиатора — количество молекул, содержащихся в одной везикуле.
На 1 ПД выбрасывается 100 квантов АХ.
На постсинаптической мембране возникает потенциал концевой пластинки (ПКП). Он является аналогом локального ответа (ЛО).
Потенциал действия на постсинаптической мембране не возникает ! Он формируется на соседней мембране мышечного волокна.
- связывание с рецептором,
- разрушение ферментов (ацетилхолинэстеразой),
- обратное поглощение в пресинаптическую мембрану,
- вымывание из щели и фагоцитоз.
События в синапсе :
- ПД приходит к терминали аксона;
- Он деполяризует пресинаптическую мембрану;
- Ca2+ входит в терминаль, что приводит к выделению АХ;
- В синаптическую щель выделяется медиатор АХ;
- Он диффундирует в щель и связывается с рецепторами постсинаптической мембраны;
- Меняется проницаемость постсинаптической мембраны для ионов Na+;
- Ионы Na+ проникают в постсинаптическую мембрану и уменьшают ее заряд — возникает потенциал концевой пластинки (ПКП) .
На самой постсинаптической мембране ПД возникнуть не может, так как здесь отсутствуют потенциалзависимые каналы, они являются хемозависимыми!
- ПКП суммируются и достигают КУД на соседнем участке мышечного волокна, что приводит к возникновению ПД и его распространению по мышечному волокну (около 5 м/с).
Достигнув пороговой величины, то есть КУД, ПКП возбуждает соседнюю (внесинаптическую) мембрану мышечного волокна за счет местных круговых токов.
Особенности проведения возбуждения в нервно-мышечном синапсе
Одностороннее проведение возбуждения — только в направлении от пресинаптического окончания к постсинаптической мембране.
Суммация возбуждения соседних постсинаптических мембран.
Синаптическая задержка — замедление в проведении импульса от нейрона к мышце составляет 0,5-1 мс. Это время затрачивается на секрецию медиатора, его диффузию к постсинаптической мембране, взаимодействие с рецептором, формирование ПКП, их суммацию.
Низкая лабильность — она составляет 100-150 имп/с для сигнала, что в 5-6 раз ниже лабильности нервного волокна.
Чувствительность к действию лекарственных веществ, ядов, БАВ, выполняющих роль медиатора.
Утомляемость химических синапсов — выражается в ухудшении проводимости вплоть до блокады в синапсе при длительном функционировании синапса. Главная причина утомляемости — исчерпание запасов медиатора в пресинаптическом окончании.
Законы проведения возбуждения по нервам:
- Закон функциональной целостности нерва.
- Закон изолированного проведения возбуждения.
- Закон двустороннего проведения возбуждения.
В зависимости от скорости проведения возбуждения нервные волокна подразделяются на 3 группы: A, B, C. В группе A выделяют 4 подгруппы: альфа, бетта, гамма и сигма.
Физиология мышечных волокон
- скелетная (40-50% массы тела),
- сердечная (менее 1%),
- гладкая (8-9%).
Физиологические свойства скелетных мышц:
- Возбудимость — способность отвечать на действие раздражителя возбуждением.
- Проводимость — способность проводить возбуждение из места его возникновения к другим участкам мышцы.
- Лабильность — способность мышцы сокращаться в соответствии с частотой действия раздражителя (200-300 Гц для скелетной мышцы).
- Сократимость — для мышцы является специфическим свойством — это способность мышцы изменять длину или напряжение в ответ на действие раздражителя.
Физические свойства скелетных мышц:
- Растяжимость — способность мышцы изменять длину под действием растягивающей силы.
- Эластичность — способность мышцы восстанавливать первоначальную длину или форму после прекращения действия растягивающей силы.
- Силы мышц — способность мышцы поднять максимальный груз.
- Способность мышцы совершать работу.
Режимы сокращения:
- Изотонический,
- Изометрический,
- Ауксотонический.
Изотонический режим — сокращение мышцы происходит с изменением ее длины без изменения напряжения (тонуса) (напр.: сокращение мышц языка).
Изометрический режим — длина постоянная, увеличивается степень мышечного напряжения (тонуса) (напр.: при поднятии непосильного груза).
Ауксотонический режим — одновременно изменяется длина и напряжение мышцы (характерен для обычных двигательных актов).
Механизм сокращения поперечно-полосатых мышц
Любая скелетная мышца состоит из мышечных волокон, которые, в свою очередь, состоят из множества тонких нитей — миофибрилл , расположенных продольно. Каждая миофибрилла состоит из протофибрилл — нитей сократительных белков: миозина (миозиновая протофибрилла), актина (актиновая протофибрилла).
Кроме сократительных белков в миофибрилле имеются два регуляторных белка: тропомиозин и тропонин .
Миозиновые волокна соединены в толстый пучок, от которого в торону актиновых нитей отходят поперечные мостики. У каждого мостика выделяют шейку и головку.
Нить актина располагается в виде 2 скрученных ниток бус. На ней имеются актиновые центры.
Тропомиозин в виде спиралей оплетает поверхность актина, закрывая в покое ее центры. Одна молекула тропомиозина контактирует с 7 молекулами актина.
Тропонин образует утолщение на конце каждой нити тропомиозина.
Под влиянием возникшего в мышечном волокне ПД из саркоплазматического ретикулума (СПР — депо Ca2+) высвобождаются ионы Ca. Кальций связывается с тропонином, который смещает тропомиозиновый стержень, что приводит к открытию актиновых центров.
В результате, к актиновым центрам присоединяются головки поперечных миозиновых мостиков.
Процесс расслабления происходит в обратной последовательности с использованием энергии АТФ за счет функционирования кальциевого насоса.
При отсутствии повторного импульса ионы Ca не поступают из СПР. В результате отсутствия Ca-тропонинового комплекса, тропомиозин возвращается на свое прежнее место, блокируя актиновые центры актина. Актиновые протофибриллы легко скользят в обратном направлении благодаря эластичности мышцы, и мышца удлиняется (расслабляется).
Гладкие мышцы
Гладкие мышцы — это мышцы, формирующие слой стенок полых внутренних органов. Они построены из веретенообразных одноядерных мышечных клеток без поперечной исчерченности за счет хаотичного расположения миофибрилл.
Особенности гладких мышц:
- Иннервируются волокнами вегетативной нервной системы (ВНС);
- Обладают низкой возбудимостью:
- Обладают низкой величиной МП (мембранного потенциала) — -50 — -60 мВ из-за более высокой проницаемости для ионов Na+
- ПД (потенциал действия) отличается меньшей амплитудой и большей длительностью. Он формируется в основном за счет ионов Ca2+
- Медленная проводимость:
Клетки в гладких мышцах функционально связаны между собой посредством щелевидных контактов — нексусов, которые имеют низкое электрическое сопротивление. За счет этих контактов ПД распространяется с одного мышечного волокна на другое, охватывая большие мышечные пласты, и в реакцию вовлекается вся мышца.
Гладкие мышцы способны осуществлять относительно медленные ритмические и длительные тонические сокращения.
Медленные ритмические сокращения обеспечивают перемещение содержимого органа из одной области в другую.
Длительные тонические сокращения, особенно сфинктеров полых органов, препятствуют выходу из них содержимого.
Это способность сохранять приданную им при растяжении или деформации форму. Благодаря пластичности гладкая мышца может быть полностью расслаблена как в укороченном, так и в растянутом состоянии.
Особенность гладких мышц, отличающая их от скелетных. Благодаря автоматии гладкие мышцы могут сокращаться в условиях отсутствия иннервации . Важную роль в этом играет растяжение.
Растяжение является адекватным раздражителем для гладкой мускулатуры. Сильное и резкое растяжение гладких мышц вызывает их сокращение.
Сравнительная характеристика скелетных и гладких мышц:
Читайте также: