Сколько вольт в нервном импульсе
По нервным волокнам проходят электрические токи, которые можно измерить гальванометром, и сам мозг испускает электрические импульсы.
По нервным волокнам проходят электрические токи, которые можно измерить гальванометром, и сам мозг испускает электрические импульсы. Эти импульсы столь слабы, что их невозможно измерить обычными методами; напряжение их составляет около 20 миллионных Вольта (сравните это с 220 В в квартирной сети). Их можно, однако, обнаружить с помощью особых усилителей, а волны можно записать на специальную магнитную пленку или спроектировать на телевизионный экран. Форма и величина этих волн доставляет значительную информацию о состоянии мозга (энцефалон),так что электрические телеграммы этого рода, называемые электроэнцефалограммами,весьма важны для обнаружения некоторых болезней нервной системы.
Волны, идущие от разных частей мозга, имеют разную форму. Процедура состоит обычно в том, что к различным местам черепа приклеивается от восьми до восемнадцати маленьких металлических дисков размером в половину таблетки аспирина, соединенных проводами с усиливающим устройством. Затем настраивают приемник, и начинается "передача". Особенно впечатляющий эксперимент получается, если магниты соединяют не с пером, а с громкоговорителем; тогда импульсы мозга изображаются не чернильными кривыми, а шумами. Таким образом удается и вправду услышать электрический трепет действующего мозга.
Первооткрыватели этих волн (немецкие, итальянские, американские, русские и английские врачи) обнаружили, что их вид зависит от ряда причин. Они меняются с возрастом, а также в том случае, когда субъект открывает или закрывает глаза. Они меняются, когда он пытается решить арифметическую задачу, чем-нибудь возбужден или обеспокоен. Они меняются, когда он засыпает, но не меняются при гипнозе (свидетельствуя тем самым, что гипнотическое состояние отлично от сна).
Главное медицинское применение электроэнцефалографасостоит в обнаружении эпилепсии и опухолей мозга. На записях, снятых у эпилептиков, ровные волны внезапно прерываются пиками мощных электрических разрядов. Подобные же пики часто наблюдаются в семьях эпилептиков, даже у родственников, никогда не болевших эпилепсией ни до того, ни после; отсюда видно, что склонность к эпилептическим приступам в некоторых случаях наследуется, но эмоции и другие напряжения, вызывающие приступы, не обязательно действуют на всех, имеющих такую склонность. Это позволяет понять, почему после тяжелого эмоционального шока или автомобильной аварии может наступить эпилептический приступ у людей, прежде не страдавших эпилепсией, но имеющих родственников-эпилептиков.
Перед операцией мозга надо знать, в какой его части находится опухоль, и в некоторых случаях лучшим свидетельством является электроэнцефалограмма. Поскольку ткань опухоли отличается от тканей остального мозга, она испускает электрические волны другого вида. Приклеивая электроды к разным местам черепа и производя "триангуляцию" наподобие геодезической съемки, часто удается точно локализовать источник ненормальных импульсов, и тогда хирург знает, где начинать операцию.
Неизвестно, из какой именно части мозга исходят нормальные волны; но, вероятно, они возникают в тех его частях, которые заняты сознательным "мышлением", то есть Эго; в самом деле, при удалении у животных этих областей возникают волны иного рода, исходящие, по-видимому, от "подсознательных" частей мозга. То обстоятельство, что обычные волны происходят от "сознательных" частей мозга, позволяет понять, почему эти волны меняются, когда человек засыпает, или во время эпилептического приступа, поскольку в этих случаях обычное состояние сознания нарушается.
Выделяют пять основных групп этих волн
Дельта-волны (0,5-3 Гц): Появляются в период глубокого сна, транса, гипноза.
Тета-волны (4-7 Гц): Возникают во время сна, глубокой релаксации и медитации. Увеличивают способности памяти, фокусировку внимания, стимулируют фантазию, способствуют ярким снам. Некоторые люди отмечают, что полчаса тета-волн в день заменяют 4 часа обычного сна.
Бета-волны (13-30 Гц): Возникают в активном, бодром состоянии. Высокая активность бета-волн всегда соответствует большому выделению стресс-гормонов.
Установлено, что стимуляция мозга этими волнами извне приводит его в состояние, в котором волны возникали натуральным путем. Например, крайне возбужденного (бета-состояние) человека можно расслабить, стимулировав мозг десятигерцовыми волнами на протяжении пяти минут.
В нашем примере с тем же результатом можно применять такие пары значений, как, скажем, 400 и 410, 800 и 810, но не выше 1000. Умение чередовать и применять различного типа волны — целое искусство, и материала по этому поводу хватит на толстую книгу. Дэйвид Джонсон, больший специалист по этому вопросу, чем я, советует следующее:
Мгновенная релаксация и снятие стресса — используйте частоты между 5 и 10 Гц для различных уровней релаксации.
Замена сна — тридцатиминутная сессия на 5-ти герцах заменяет 2—3 часа сна, позволяя просыпаться рано утром более бодрым. Попробуйте слушать по полчаса перед засыпанием и утренним подъемом.
Борьба с бессонницей — волны между 4 и 6 герц в первые 10 минут, затем переход к частотам ниже 3,5 Гц (на 20-30 минут), постепенно спускаясь к 2,5 Гц перед окончанием.
Поднятие тонуса — тета-волны (4-7 Гц) по 45 минут в день.
Отчетливые зрительные образы (напр., для художников) — немного волн на 6 герцах, затем повышение к 10.
Облегчение мигрени и головной боли — экспериментируйте с комбинациями альфа и тета.
Снижение симптомов депрессии — и вновь, комбинации альфа и тета, преимущественно тета.
Ускоренное обучение — от 7 до 9 герц, пока играет обучающая запись. Это повышает усвоение материала. Также в процессе обучения (напр., путем чтения) делать каждый полчаса 10-тиминутные перерывы, в коих прослушивать альфа-волны (10 герц).
Улучшение интуиции — в этой области помогут тета-волны, 4-7 герц.
Достижение высоких состояний сознания — и вновь тета, с минимум получасовым сеансом в день. Ждите результатов где-то через месяц.
Литературы по синхронизации мозговых волн предостаточно (я имею в виду англоязычную), однако для ее изучения необходимо более-менее разбираться в науке и медицине (а также иностранных терминах). С шестидесятых годов прошлого века вышли сотни, если не тысячи солидных книг и научных статей, посвященных этому вопросу.
Следует помнить, что стимуляция мозговыми волнами
КАТЕГОРИЧЕСКИ ПРОТИВОПОКАЗАНА:
Людям, страдающим эпилепсией, а также аритмией и другими сердечными заболеваниями. Стимуляция человека из первой категории бета-волнами (конкретнее — 25 герц) определенной интенсивности в течение 30 минут вызывает припадок.
Людям, имеющим сердечные стимуляторы.
Принимающим психоактивные наркотические вещества и стимуляторы. К пьяным это тоже относится.
Больным с тяжелыми расстройствами психики.
Если вы используете синхронизацию с мозговыми волнами в своем материале, то долг чести — предупредить об этом слушателей, например, на обложке диска или в комментарии к файлу. Кроме того, не забудьте упомянуть, что не несете никакой ответственности за возможные последствия прослушивания вашего материала.
Звукорежиссеры найдут полезным средство Brainwave Synchronizer, доступный из меню Transform в редакторе Cool Edit Pro 1.x (далее CEP). Окно этого эффекта содержит в себе слайдеры Low/High, которыми вы задаете собственно частоту волн, а слайдер Intensity влияет на их интенсивность — например, для бета-волн лучше устанавливать значения до 25, а для альфа — выше 60. Сверху расположен график частот, где ось x представляет собой время, а y — частоту.
Чтобы все работало, повторюсь, слушать нужно в наушниках.
Ключевые слова этой страницы: такое, мозговые, волны.
Дата публикации: 28 ноября 2019
- Историческая справка
- Потенциал клеточной мембраны
- Электричество в организме человека
Биоэлектричество относится к электрическим потенциалам и токам, которые возникают внутри живых организмов или производятся ими. Это результат преобразования химической энергии в электрическую. Такие потенциалы генерируются рядом различных биологических процессов и используются клетками для управления метаболизмом, проведения импульсов по нервным волокнам, для регулирования мышечного сокращения.
У большинства организмов биоэлектрические потенциалы различаются по силе: от одного до нескольких сотен милливольт. Наиболее важное различие между электричеством в живых организмах и типом электрического тока, используемого для производства света, тепла или энергии, заключается в том, что биоэлектрический ток представляет собой поток ионов (атомов или молекул, несущих электрический заряд), а стандартное электричество — это движение электронов.
Историческая справка
Биоэлектрические эффекты были известны с древних времён по активности таких электрических рыб, как нильский сом, электрический угорь. Сейчас измерение биоэлектрических потенциалов стало обычной практикой в клинической медицине. Но до XVII века европейские врачи и философы считали, что нервные импульсы передаются мозгу через какую-то органическую жидкость. Эксперименты двух итальянцев, врача Луиджи Гальвани и физика Алессандро Вольта, показали, что истинное объяснение нервной проводимости — это биоэлектричество.
В XIX веке Эмиль Дюбуа-Реймон, изобрёл и усовершенствовал приборы, способные измерять очень малые электрические потенциалы и токи, генерируемые живой тканью. Один из его учеников, немецкий учёный по имени Юлиус Бернштейн, полагался на гипотезу, что нервные и мышечные волокна поляризованы, с положительными ионами снаружи и отрицательными внутри, поэтому ток, который может быть измерен, — результат изменения этой поляризации. В начале XX столетья несколько британских исследователей определили химические вещества, участвующие в передаче информации между нервами и мышцами.
Потенциал клеточной мембраны
Все клетки животных обладают электрическими свойствами, обусловленными способностью клеточной мембраны поддерживать неравные заряды внутри и снаружи клетки. Клеточная оболочка полупроницаемая, это означает, что она образует селективный барьер для ионов, являющихся электрически заряженными атомами.
Таким образом, через мембрану накапливается две формы энергии:
- химическая (разница концентрации ионов);
- электрическая.
Эти токи, возникающие внутри активной мембраны, функционально значимы близко к месту их происхождения, но некоторые живые существа, такие как рыбы и медузы, эволюционно адаптировали этот случайный ток для фактического использования. Вырабатывающие электричество организмы обзавелись специальными органами, способными генерировать значительные разряды до 1 тыс. вольт, например, электрический скат. Кто-то из них пользуется своими способностями для самообороны, а для кого-то это способ добывать еду.
Электричество в организме человека
Все клетки используют свои биоэлектрические потенциалы, чтобы контролировать метаболические процессы, но некоторые специально используют токи для отличительных физиологических функций: нервные и мышечные клетки. Информация переносится импульсами (называемыми потенциалами действия), проходящими по нервным волокнам. Подобные импульсы в мышцах сопровождают мышечные сокращения. Среди других клеток, где специализированные функции зависят от поддержания биоэлектрических потенциалов, есть:
- рецепторы, чувствительные к свету, звуку, прикосновению;
- клетки, которые выделяют гормоны или другие вещества, участвующие в общем метаболизме.
Как дополнение к потенциалам, возникающим в нервных или мышечных клетках, науке известны относительно устойчивые или медленно меняющиеся потенциалы. Они возникают:
- там, где клетки были повреждены;
- когда большой орган непарный (полушария мозга, разные участки кожи);
- при активной работе железы (фолликулы щитовидки);
- специальных структурах во внутреннем ухе.
В организме человека накапливается и статическое электричество. Когда электронам некуда деваться, заряд накапливается на поверхностях до тех пор, пока он не достигнет критического максимума и не разрядится крошечной молнией. Хотя возникающая внезапная мышечная реакция неприятна, обычно она безвредна.
Биоэлектричество — одна из основных форм энергии в организме человека. Движущиеся потенциалы действия — это основа для центральных функций организма, от которых зависит:
- проводимость двигательных, вегетативных или сенсорных сообщений по нервам;
- сокращение мышц;
- функция мозга.
В частности, двигательные нервные сигналы приводят к сокращению мышц, вегетативные — контролируют дыхание и сердцебиение, сенсорные — собирают всю информацию из внешнего мира, включая предупреждения о повреждениях организма (боль). Измеряя биоэлектрические потенциалы в органах и тканях, люди сейчас могут диагностировать такие заболевания, как инфаркт миокарда, а также создавать беспроводные биоэлектрические записывающие устройства, которые используются в кибермедицине.
Вам нужно войти, чтобы оставить комментарий.
Нервный импульс - электрический импульс или нет?
Имеются разные точки зрения: химическая и электрическая. Результаты гууглевания.
Дмитрий. Почему нервы не провода, а нервный импульс не ток. (4.09.2013)
НЕРВНЫЙ ИМПУЛЬС - волна возбуждения, к-рая распространяется по нервному волокну и служит для передачи информации от периферич. рецепторных (чувствительных) окончаний к нервным центрам, внутри центр. нервной системы и от неё к исполнительным аппаратам - мышцам и железам. Прохождение Н. и. сопровождается переходными электрич. процессами, к-рые можно зарегистрировать как внеклеточными, так и внутриклеточными электродами. Вдоль нервного волокна Нервный импусьс распространяется в виде волны электрич. потенциала. В синапсе происходит смена механизма распространения. Когда Н. и. достигает пресинаптич. окончания, в синаптич. щель выделяется активное хим. вещество - м е д и а т о р. Медиатор диффундирует через синаптич. щель и меняет проницаемость постсинаптич. мембраны, в результате чего на ней возникает потенциал, вновь генерирующий распространяющийся импульс. Так действует хим. синапс. Встречается также электрич. синапс, когда след. нейрон возбуждается электрически. Состояние покоя нервного волокна. стационарно благодаря действию ионных насосов, причём мембранный потенциал в условиях разомкнутой цепи определяется из равенства нулю полного электрич. тока.
Процесс нервного возбуждения развивается следующим образом (см. также Биофизика). Если пропустить через аксон слабый импульс тока, приводящий к деполяризации мембраны, то после снятия внеш. воздействия потенциал монотонно возвращается к исходному уровню. В этих условиях аксон ведёт себя как пассивная электрич. цепь, состоящая из конденсатора и пост. сопротивления.
Если импульс тока превышает нек-рую пороговую величину, потенциал продолжает изменяться и после выключения возмущения.
Мембрана нервного волокна представляет собой нелинейный ионный проводник, свойства к-рого существенно зависят от электрич. поля.
ИОННЫЕ НАСОСЫ молекулярные структуры, встроенные в биол. мембраны и осуществляющие перенос ионов в сторону более высокого электрохим. потенциала
СЕМЁНОВ С.Н. О ФОНОННОЙ ПРИРОДЕ НЕРВНОГО ИМПУЛЬСА С ПОЗИЦИЙ ДИНАМИКИ ЭВОЛЮЦИИ. (29.05.2013)
Семёнов С.Н. Фонон – квант биологической (клеточной) мембраны.
Николаев Л.А. ′Металлы в живых организмах′ - Москва: Просвещение, 1986 - с.127
В научно-популярной форме автор рассказывает о роли металлов в биохимических процессах, протекающих в живых организмах. Книга будет способствовать расширению кругозора учащихся.
В распространении по нерву электрических импульсов принимают участие оба иона (натрия и калия).
Хамзина Оксана Альбертовна
- Физика, 11 класс
- учитель физики
- МБОУ СОШ№22
- Россия
НАУЧНО – ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА Электрическая природа нервного импульса
Нервный импульс — электрический импульс, распространяющийся по нервному волокну. При помощи передачи нервных импульсов происходит обмен информацией междунейронами и передача информации от нейронов к клеткам других тканей организма.
Нервный импульс проходит по центральной нервной системе и от неё к исполнительным аппаратам — скелетной мускулатуре, гладким мышцам внутренних органов и сосудов, железам внешней и внутренней секреции, от периферических рецепторных (чувствительных) окончаний к нервным центрам.
Возникновение и распространение нервного импульса обеспечивается электрическими свойствами мембраны и цитоплазмы нервных клеток.
Всё и ничто
Киборги - они заполонили всю планету.
Генератор электричества создает избыток электронов в одном месте, а потребители электричества играют роль непрерывных поглотителей электронов. Если бы потребители электричества не поглощали электроны, а постепенно их накапливали, то с течением времени их потенциал сравнялся бы с электрическим потенциалом генератора, и тогда движение электричества в цепи прекратилось бы. Поэтому первый закон электрофизики можно сформулировать следующим образом: для движения электрических токов в цепи обязательно необходимо присутствие трёх составных частей
- в виде генератора (электрического плюса), который вырабатывает электроны,
- проводника тока, который передает электроны с одного места в другое,
- и потребителя электричества (электрического минуса), который поглощает электроны.
2. О генераторах электричества человеческого организма. Животные организмы имеют два вида генераторов электричества: внутренние и наружные. К внутренним относятся мозг и сердце, к наружным пять органов чувств (зрения, слуха, вкуса, обоняния и осязания).
В головном мозге биотоки вырабатываются в том месте, где располагается ретикуло-эндотелиальная формация. От головного мозга биотоки поступают в спинной мозг, а оттуда по нервным сплетениям направляются ко всем органам и тканям. Далее очень мелкие нервы проникают во все органы грудной и брюшной полости, в кости, мышцы, сосуды, связки туловища и конечностей. Нервные ткани являются специфическими проводниками биотоков. В виде тончайшей сеточки они пронизывают все органы и ткани организма. В конце своего пути биотоки покидают нервные окончания и переходят в межклеточное пространство неспецифических проводников электричества внутренних органов, мышц, сосудов, кожи и т. д. Все ткани человеческого тела состоят на 95 % из воды с растворенными в ней солями. Поэтому живые ткани являются прекрасными проводниками электричества.
Внутри глаза также имеется специфический генератор биотоков в виде сетчатки. Когда свет попадает на сетчатку глаза, возникает поток электронов, который дальше распространяется по зрительному нерву и передается в кору головного мозга. Благодаря выработке биотоков сетчаткой глаза, человек получает возможность видеть окружающий мир. Зрение дает более 80 % информации для человека.
Внутреннее ухо является генератором электроимпульсов, которые возникают при воздействии звуковых волн. Чувствительные слуховые клетки кортиева органа расположены на основной мембране внутреннего уха (улитка) и приходят в возбуждение при колебаниях основной мембраны. Из улитки биотоки проходят по слуховому нерву в продолговатый мозг, а дальше в кору головного мозга.
Кожные рецепторы воспринимают прикосновение, давление, болевое раздражение, холодовое и тепловое воздействие. При гистологическом исследовании в коже обнаружено большое количество нервных окончаний в виде кисточек, корзинок, розеток, окруженных капсулой. Тактильную чувствительность воспринимают клетки Меркеля, Фатера-Пачини и тельца Мейснера. Свободные окончания осевых цилиндров в виде заострений и пуговчатых утолщений воспринимают болевую чувствительность. Колбы Краузе, тельца Мейснера и Руффини воспринимают чувство холода и тепла. На 1 квадратном сантиметре кожи находится 200 болевых рецепторов, 20 тактильных, 12 холодовых и 2 тепловых. Воздействие давления, тепла, холода, укола и других видов травмы на эти кожные рецепторы приводит к возникновению биоимпульсов, которые по мелким и крупным нервным стволам передаются в спинной мозг, далее в продолговатый мозг и кору полушарий. Кожные рецепторы относятся к самым мелким генераторам электричества в организме человека.
Рисунок 1. Полый металлический шар.
Она не дает объяснения на вопрос: почему все биотоки можно регистрировать на поверхности кожи?
Ведь по Павловской теории биотоки не должны покидать нервные волокна, имеющие прекрасные жировые изоляторы вокруг своего электропроводящего волокна. Но почему тогда электрические приборы определяют наличие электрических потенциалов на поверхности кожи, исходящих от сердца (электрокардиограмма, ЭКГ) и от мозга (электроэнцефалограмма, ЭЭГ)?
В электрической физике каждая батарейка имеет плюсовой потенциал с избытком электронов и минусовой потенциал, где электроны поглощаются. В человеческом организме избыток электронов создают биологические генераторы тока.
Человек имеет далеко не идеальную электротехническую систему, несмотря на 3 миллиарда лет ее непрерывной эволюции. Такую расточительность и несовершенство живых тканей можно объяснить (а точнее - оправдать) следующими причинами.
Во-первых, неадекватно высокий электрический потенциал вырабатывают электростанции организма с целью быстрого прохождения биотока от начального нервного волокна через десятки синаптических щелей и вторичных нервных волокон к иннервируемому органу.
Из сказанного можно сформулировать пятый закон биоэлектрофизики: в животном организме произошло разделение процесса потребления биотоков органами от процесса их уничтожения на поверхности кожи. Избыток электрической энергии возникает внутри электрических генераторов (сердца, мозга, 5 органов чувств), потребляют биотоки все органы и ткани человека, а поглощение электронов осуществляется внутри акупунктурных точек на поверхности кожных покровов.
ВЫВОД. Теперь сделаем общий вывод из сказанного. Человек является замкнутой электрической системой. Внутри него вырабатываются электрические токи различных частот в 7 биологических электростанциях: в сердце, в мозге и в пяти органах чувств. Сначала биотоки по нервным клеткам несут информацию к специфическим для них клеткам человеческого тела, к органам и тканям. Организм человека поглощает только 5 % общей энергии. На заключительном этапе судьба 95 % электричества состоит в следующем. После передачи информации клеткам соответствующих органов, электричество устремляется по межклеточному пространству к кожным покровам, где аннигилируется акупунктурными точками. Все электричество, которое вырабатывается внутри человеческого организма (и организма животного) поглощается его же тканями. Ни один электрон, произведенный внутри живого организма, не покидает человеческое тело, и не переходит в окружающую среду, а поглощается кожей. Этим и обусловлена замкнутость электрической системы человека. Организм сам поглощает все электричество, которое ранее он же и произвел, генерировал.
Нервная система человека выступает своеобразным координатором в нашем организме. Она передаёт команды от мозга мускулатуре, органам, тканям и обрабатывает сигналы, идущие от них. В качестве своеобразного носителя данных используется нервный импульс. Что он собой представляет? С какой скоростью работает? На эти, а также на ряд других вопросов можно будет найти ответ в этой статье.
Чем является нервный импульс?
Исследование строения и работы
Впервые прохождение нервного импульса было продемонстрировано немецкими учеными Э. Герингом и Г. Гельмгольцем на примере лягушки. Тогда же и было установлено, что биоэлектрический сигнал распространяется с указанной ранее скоростью. Вообще, такое является возможным благодаря особенному построению нервных волокон. В некотором роде они напоминают электрический кабель. Так, если проводить параллели с ним, то проводниками являются аксоны, а изоляторами – их миелиновые оболочки (они являют собой мембрану шванновской клетки, которая намотана в несколько слоев). Причем скорость нервного импульса зависит в первую очередь от диаметра волокон. Вторым по важности считается качество электрической изоляции. Кстати, в качестве материала организмом используется липопротеид миелин, который обладает свойствами диэлектрика. При прочих равных условиях, чем больше будет его слой, тем быстрее будут проходить нервные импульсы. Даже на данный момент нельзя сказать, что эта система полноценно исследована. Многое, что относится к нервам и импульсам, ещё остаётся загадкой и предметом исследования.
Особенности строения и функционирования
Где они создаются?
Типы клеток
- Рецепторные (чувствительные). Ими кодируются и превращаются в нервные импульсы все температурные, химические, звуковые, механические и световые раздражители.
- Вставочные (также называются кондукторными или замыкательными). Они служат для того, чтобы перерабатывать и переключать импульсы. Наибольшее их число находится в головном и спинном мозге человека.
- Эффекторные (двигательные). Они получают команды от центральной нервной системы на то, чтобы были совершены определённые действия (при ярком солнце закрыть рукой глаза и так далее).
Каждый нейрон имеет тело клетки и отросток. Путь нервного импульса по телу начинается именно с последнего. Отростки бывают двух типов:
- Дендриты. На них возложена функция восприятия раздражения расположенных на них рецепторов.
- Аксоны. Благодаря им нервные импульсы передаются от клеток к рабочему органу.
Интересный аспект деятельности
О потенциале действия
Как всё работает в мозгу?
Работа нейромедиаторов
Когда они передают нервные импульсы, то существует несколько вариантов, что произойдёт с ними:
- Они будут диффундированы.
- Подвергнутся химическому расщеплению.
- Вернутся назад в свои пузырьки (это называется обратным захватом).
В конце 20-го века сделали поразительное открытие. Ученые узнали, что лекарства, что влияют на нейромедиаторы (а также их выброс и обратный захват), могут изменять психическое состояние человека коренным образом. Так, к примеру, ряд антидепрессантов вроде "Прозака" блокируют обратный захват серотонина. Есть определённые причины считать, что в болезни Паркинсона виноват дефицит в головном мозге нейромедиатора дофамина.
Если кратко, то они могут работать с тысячами нейромедиаторов, которые посылаются их соседями. Детали относительно обработки и интеграции данного типа импульсов нам почти не известны. Хотя над этим работает много исследовательских групп. На данный момент получилось узнать, что все полученные импульсы интегрируются, а нейрон выносит решение – необходимо ли поддерживать потенциал действия и передавать их дальше. На этом фундаментальном процессе базируется функционирование головного мозга человека. Ну что ж, тогда это неудивительно, что мы не знаем ответа на эту загадку.
Некоторые теоретические особенности
Где же создаются нервные импульсы?
Откуда они начинают свой путь? Ответ на этот вопрос может дать любой студент, который прилежно изучал физиологию возбуждения. Есть четыре варианта:
- Рецепторное окончание дендрита. Если оно есть (что не факт), то возможным является наличие адекватного раздражителя, что создаст сначала генераторный потенциал, а потом уже и нервный импульс. Подобным образом работают болевые рецепторы.
- Мембрана возбуждающего синапса. Как правило, такое возможно только при наличии сильного раздражения или их суммирования.
- Триггерная зона дентрида. В этом случае локальные возбуждающие постсинаптические потенциалы формируются как ответ на раздражитель. Если первый перехват Ранвье миелинизирован, то они на нём суммируются. Благодаря наличию там участка мембраны, которая обладает повышенной чувствительностью, здесь возникает нервный импульс.
- Аксонный холмик. Так называют место, где начинается аксон. Холмик – это наиболее частый создать импульсов на нейроне. Во всех остальных местах, которые рассматривались ранее, их возникновение гораздо менее вероятное. Это происходит из-за того, что здесь мембрана имеет повышенную чувствительность, а также пониженный критический уровень деполяризации. Поэтому, когда начинается суммирование многочисленных возбуждающих постсинаптических потенциалов, то раньше всего на них реагирует холмик.
Пример распространяющегося возбуждения
Вспомните сводки из новостей прошлого лета (также это скоро можно будет услышать опять). Пожар распространяется! При этом деревья и кустарники, которые горят, остаются на своих местах. А вот фронт огня идёт всё дальше от места, где был очаг возгорания. Аналогичным образом работает нервная система.
Часто бывает необходимо успокоить начавшееся возбуждение нервной системы. Но это не так легко сделать, как и в случае с огнем. Для этого совершают искусственное вмешательство в работу нейрона (в лечебных целях) или используют различные физиологические средства. Это можно сравнить с заливанием пожара водой.
Читайте также: