Скорость электрического тока в нервах
Скорость передачи нервных импульсов
У нас издавна повелось сравнивать хитроумные творения природы с более простыми и более понятными выдумками человеческого гения. Такие сопоставления помогают ученым более наглядно представить многие сложнейшие явления. Хорошо известно, что танцевать легче всего от печки.
Не удивительно, что еще в прошлом веке, когда наука о мозге, главным образом о его строении, значительно продвинулась вперед, заметили аналогию между центральной нервной системой и телефонной сетью большого города. Действительно, известное сходство есть. В телефонную станцию – мозг с периферии, то есть со всех концов тела, бежит по нервам, как по проводам, беспрерывный поток информации. В глубинах мозга нужная информация отбирается, сортируется и направляется в строго определенные отделы, которые обмениваются между собой впечатлениями, обсуждают полученную информацию. После непродолжительных взаимных консультаций принимается решение, и вот уже по нервам на периферию к мышцам, железам, ко всем органам несутся приказы.
Сходство усиливается тем, что и по телефонным проводам и по нервам бежит электричество. В этом убедился еще Гальвани. С тех пор десятки тысяч опытов подтвердили, что раздражение любых органов чувств кодируется в электрические импульсы и в таком виде попадает в мозг. Да и в мозгу вся информация, циркулирующая между различными его отделами, передается в виде электрических импульсов.
Если бы работой такой телефонной сети заинтересовался инженер, его больше всего удивило бы, что электрические импульсы распространяются страшно медленно: в нервной сети млекопитающих всего со скоростью 0,5–100 метров в секунду.
Напомним, что электрический ток является упорядоченным движением электронов. И хотя сами электроны движутся со скоростью порядка одного миллиметра в секунду, электромагнитное поле, которое вызывает их движение, распространяется почти со скоростью света. Поэтому если в Москве на электрический кабель подать напряжение, на другом его конце во Владивостоке, за 10 тысяч километров от Москвы, электроны придут в движение уже через 1/30 секунды.
Еще больше изумился бы инженер, замерив сопротивление отдельных нервных волокон, составляющих нервный ствол. Оно очень велико. Один метр нервного волокна имеет такое же сопротивление, как 16 миллиардов километров обычного медного провода. Поразмыслив, инженер сделал бы вывод, что в такой телефонной сети сообщения могут передаваться только в том случае, если ее линии передачи оснащены усилительными подстанциями.
Такое утверждение недалеко от истины. Действительно, возбуждение распространяется не за счет энергии рецептора или нервного центра, а за счет энергии, вырабатываемой нервом.
Волокна, из которых складываются нервы, являются отростками нервных клеток. Диаметр их, равный 0,1–10 микрон, ничтожен в сравнении с длиной. В нервной сети млекопитающих встречается два вида нервных волокон: тонкие – голые, одетые лишь тончайшей, невидимой в оптический микроскоп оболочкой, и мякотные, покрытые толстой миелиновой оболочкой.
Целесообразность оболочки не вызывает сомнения, она является изолятором, отделяющим друг от друга волокна, тесно упакованные в нервном стволе. Миелиновая оболочка предотвращает переход возбуждения с одного волокна на другое и возникновение в связи с этим невообразимой путаницы. Единственно, чего не понимали ученые, почему верхняя изолирующая оболочка не сплошная, как рубашка у любого кабеля, а состоит из отдельных фрагментов около миллиметра длиной. Между ними есть небольшие промежутки, так называемые перехваты Ранвье, в которых нервное волокно остается оголенным.
Собственная тонкая оболочка нервного волокна избирательно проницаема для одних веществ и не пропускает другие. Через нее свободно проходят катионы калия и водорода, но она служит непреодолимой преградой для более крупных катионов, например катиона натрия, а кроме того, не пропускает анионы. (Как известно, катионы несут положительный заряд, анионы, наоборот, заряжены отрицательно.)
Обычно концентрация ионов по обе стороны оболочки не одинакова: ионов натрия и хлора внутри волокна в 10 раз меньше, чем в тканевых жидкостях, зато ионов калия в 20 раз больше. Поэтому катионы калия устремляются наружу и создают на внешней поверхности нервного волокна положительный заряд. Анионы не могут последовать за калием и, скапливаясь на внутренней поверхности волокна, создают здесь отрицательный заряд. Вот почему в покое внутренняя сторона мембраны всегда заряжена отрицательно, а наружная – положительно. Разность этих зарядов, или, иначе, потенциал покоя, равняется 50–70 милливольтам.
Потенциал покоя сохраняется лишь до тех пор, пока в нервном волокне не возникло возбуждение. Если какой‑то раздражитель, падающий на нервную клетку, нервное окончание или на любой другой участок нервного волокна, вызвал в этом месте возбуждение, то проницаемость мембраны немедленно, хотя и на короткий срок, меняется. Она начинает пропускать ионы натрия, которые устремляются внутрь, благодаря чему оболочка волокна перезаряжается: становится электроотрицательной снаружи и электроположительной внутри. В результате два соседних участка протоплазмы волокна, ничем между собой не разделенные, окажутся противоположно заряженными.
Такое положение сохраняться не может, между соседними участками потечет электрический ток, возникнет электрический импульс. Электрический ток вызовет возбуждение соседнего, ранее отрицательно заряженного участка волокна, что тотчас же сделает его оболочку проницаемой для натрия и изменит заряд на положительный. А как только это произойдет, между вновь возбужденным и следующим участком волокна потечет электрический ток, и все повторится сначала. Из бесконечного повторения этого процесса и складывается прохождение по волокну нервного импульса.
Так распространяется возбуждение в тонких, не покрытых миелином волокнах. Там же, где есть миелиновая изоляция, возникновение таких коротеньких петель тока невозможно, и весь процесс развертывается лишь в перехватах Ранвье. В миелиновых волокнах возбуждение распространяется скачками от одного перехвата к другому и движется поэтому гораздо быстрее, чем в тонких волокнах.
Таким образом, электрический ток в металлическом проводнике – это упорядоченное движение электронов, практически сразу возникающее на всем его протяжении, а нервный импульс – это движение возбудительного процесса вдоль нервного волокна, которое сопровождается возникновением электрического тока, вызывающего, в свою очередь, возбуждение соседнего участка.
Такой способ распространения возбуждения объясняет две интересные особенности нервного импульса. Во‑первых, проходя по длинному волокну, нервный импульс ничуть не затухает, оставаясь постоянным по величине в начале и в конце своего пути. Во‑вторых, все импульсы, идущие по волокну, совершенно одинаковы. Они не отражают силы или особенностей раздражителя, вызвавшего нервный импульс, а зависят только от свойств нервного волокна, по которому распространяются.
Эти положения были однажды проиллюстрированы в очень интересном опыте. По краю купола у медуз проходит нервное кольцо. (По своему устройству оно существенно отличается от нерва, но в данном случае это не имеет значения.) Импульс по кольцу медузы, как по нерву, может распространяться в обе стороны. Если раздражать какой‑то участок кольца, импульсы побегут в обе стороны и, встретившись на противоположной стороне купола, погасят друг друга.
Опыт, о котором идет речь, интересен тем, что ученым удалось, вызвав возбуждение на определенном участке кольца, блокировать соседний. Поэтому возбуждение могло распространяться лишь в одну сторону. А когда нервный импульс обежал кольцо, блокада была снята, и он беспрепятственно проследовал через это место, совершив второй, третий, четвертый виток. Целые сутки длился опыт, а импульс все бежал и бежал, не замедляя скорости, не уменьшаясь в величине. Опыт мог бы продолжаться и дольше, до тех пор, пока животное не погибло бы или не наступило полное его истощение.
Проведение нервного импульса имеет следующие особенности:
1. Однонаправленность передачи - нервные импульсы передаются только от пресинаптической мембраны к постсинаптической мембране, что обусловлено строением химического синапса . Таким образом, синапс работает по принципу клапана, что обеспечивает надежность работы нервной системы.
2. Усиление - так как мембраны пре- и постсинаптической области отделены друг от друга синаптической щелью , электрическая передача возбуждения практически невозможна из-за значительной потери тока во внеклеточной среде, поэтому химическая передача представляет собой необходимый усиливающий механизм, что повышает чувствительность системы.
3. Адаптация, или аккомодация - при непрерывной стимуляции количество освобождающегося в синапсе медиатора постепенно уменьшается до тех пор, пока запасы медиатора не будут истощены, тогда дальнейшая передача им сигналов тормозится. Это предотвращает повреждение эффекторов вследствие перевозбуждения.
4. Интеграция - постсинаптический нейрон может получать сигналы от большого числа возбуждающих и тормозных пресинаптических нейронов. Это явление называется синаптической конвергенцией . При этом постсинаптический нейрон способен суммировать сигналы от всех пресинаптических нейронов .
5. Дискриминация - временная суммация в синапсе позволяет отфильтровывать слабые импульсы прежде, чем они достигнут мозга.
6. Торможение - передача сигналов через синапсы и нервно-мышечные соединения может затормаживаться определенными блокирующими агентами. Наблюдается пресинаптическое торможение и постсиниптическое торможение . Такое устройство позволяет изменять воздействие данного пресинаптического нейрона с помощью сигналов, поступающих от другого нейрона.
Кандидат биологических наук Л. Чайлахян, научный сотрудник Института биофизики АН СССР
Мозг человека, без сомнения, высшее достижение природы.
Велика и заманчива цель, но неимоверно сложен объект исследования. Шутка сказать, этот килограмм ткани представляет собой сложнейшую систему связи десятков миллиардов нервных клеток.
Однако первый существенный шаг к познанию работы мозга уже сделан. Может быть, он один из самых легких, но он чрезвычайно важен для всего дальнейшего.
Я имею в виду исследование механизма передачи нервных импульсов — сигналов, бегущих по нервам, как по проводам. Именно эти сигналы являются той азбукой мозга, с помощью которой органы чувств посылают в центральную нервную систему сведения-депеши о событиях во внешнем мире. Нервными импульсами зашифровывает мозг свои приказы мышцам и различным внутренним органам. Наконец, на языке этих сигналов говорят между собой отдельные нервные клетки и нервные центры.
В проблеме изучения механизма нервного импульса и его распространения можно выделить два основных вопроса: природа проведения нервного импульса или возбуждения в пределах одной клетки — по волокну и механизм передачи нервного импульса от клетки к клетке — через синапсы.
Какова природа сигналов, передающихся от клетки к клетка по нервным волокнам?
Этой проблемой человек интересовался уже давно, Декарт предполагал, что распространение сигнала связано с переливанием жидкости по нервам, как по трубкам. Ньютон думал, что это чисто механический процесс. Когда появилась электромагнитная теория, ученые решили, что нервный импульс аналогичен движению тока по проводнику со скоростью, близкой к скорости распространения электромагнитных колебаний. Наконец, с развитием биохимии появилась точка зрения, что движение нервного импульса — это распространение вдоль по нервному волокну особой биохимической реакции.
И всё же ни одно из этих представлений не оправдалось.
В настоящее время природа нервного импульса раскрыта: это удивительно тонкий электрохимический процесс, в основе которого лежит перемещение ионов через оболочку клетки.
Большой вклад в раскрытие этой природы внесли работы трех ученых: Алана Ходжкина, профессора биофизики Кембриджского университета; Эндрью Хаксли, профессора физиологии Лондонского университета, и Джона Экклса, профессора физиологии австралийского университета в Канберре. Им присуждена Нобелевская премия в области медицины за 1963 год,
Впервые предположение об электрохимической природе нервного импульса высказал известный немецкий физиолог Бернштейн в начале нашего столетия.
К началу двадцатого века было довольно многое известно о нервном возбуждении. Ученые уже знали, что нервное волокно можно возбудить электрическим током, причем возбуждение всегда возникает под катодом — под минусом. Было известно, что возбужденная область нерва заряжается отрицательно по отношению к невозбужденному участку. Было установлено, что нервный импульс в каждой точке длится всего 0,001—0,002 секунды, что величина возбуждения не зависит от силы раздражения, как громкость звонка в нашей квартире не зависит от того, как сильно мы нажимаем на кнопку. Наконец, ученые установили, что носителями электрического тока в живых тканях являются ионы; причем внутри клетки основной электролит — соли калия, а в тканевой жидкости — соли натрия. Внутри большинства клеток концентрация ионов калия в 30—50 раз больше, чем в крови и в межклеточной жидкости, омывающей клетки.
И вот на основании всех этих данных Бернштейн предположил, что оболочка нервных и мышечных клеток представляет собой особую полупроницаемую мембрану. Она проницаема только для ионов К + ; для всех остальных ионов, в том числе и для находящихся внутри клетки отрицательно заряженных анионов, путь закрыт. Ясно, что калий по законам диффузии будет стремиться выйти из клетки, в клетке возникает избыток анионов, и по обе стороны мембраны появится разность потенциалов: снаружи — плюс (избыток катионов), внутри — минус (избыток анионов). Эта разность потенциалов получила название потенциала покоя. Таким образом, в покое, в невозбужденном состоянии внутренняя часть клетки всегда заряжена отрицательно по сравнению с наружным раствором.
Бернштейн предположил, что в момент возбуждения нервного волокна происходят структурные изменения поверхностной мембраны, ее поры как бы увеличиваются, и она становится проницаемой для всех ионов. При этом, естественно, разность потенциалов исчезает. Это и вызывает нервный сигнал.
Мембранная теория Бернштейма быстро завоевала признание и просуществовала свыше 40 лет, вплоть до середины нашего столетия.
Но уже в конце 30-х годов теория Бернштейна встретилась с непреодолимыми противоречиями. Сильный удар ей был нанесен в 1939 году тонкими экспериментами Ходжкина и Хаксли. Эти ученые впервые измерили абсолютные величины мембранного потенциала нервного волокна в покое и при возбуждении. Оказалось, что при возбуждении мембранный потенциал не просто уменьшался до нуля, а переходил через ноль на несколько десятков милливольт. То есть внутренняя часть волокна из отрицательной становилась положительной.
Но мало ниспровергнуть теорию, надо заменить ее другой: наука не терпит вакуума. И Ходжкин, Хаксли, Катц в 1949—1953 годах предлагают новую теорию. Она получает название натриевой.
Здесь читатель вправе удивиться: до сих пор о натрии не было речи. В этом все и дело. Ученые установили с помощью меченых атомов, что в передаче нервного импульса замешаны не только ионы калия и анионы, но и ионы натрия и хлора.
В организме достаточно ионов натрия и хлора, все знают, что кровь соленая на вкус. Причем натрия в межклеточной жидкости в 5—10 раз больше, чем внутри нервного волокна.
Что же это может означать? Ученые предположили, что при возбуждении в первый момент резко увеличивается проницаемость мембраны только для натрия. Проницаемость становится в десятки раз больше, чем для ионов калия. А так как натрия снаружи в 5—10 рез больше, чем внутри, то он будет стремиться войти в нервное волокно. И тогда внутренняя часть волокна станет положительной.
А через какое-то время — после возбуждения — равновесие восстанавливается: мембрана начинает пропускать и ионы калия. И они выходят наружу. Тем самым они компенсируют тот положительный заряд, который был внесен внутрь волокна ионами натрия.
Совсем нелегко было прийти к таким представлениям. И вот почему: диаметр иона натрия в растворе раза в полтора больше диаметра ионов калия и хлора. И совершенно непонятно, каким образом больший по размеру ион проходит там, где не может пройти меньший.
Нужно было решительно изменить взгляд на механизм перехода ионов через мембраны. Ясно, что только рассуждениями о порах в мембране здесь не обойтись. И тогда была высказана идея, что ионы могут пересекать мембрану совершенно другим способом, с помощью тайных до поры до времени союзников — особых органических молекул-переносчиков, спрятанных в самой мембране. С помощью такой молекулы ионы могут пересекать мембрану в любом месте, а не только через поры. Причем эти молекулы-такси хорошо различают своих пассажиров, они не путают ионы натрия с ионами калия.
Интересно, что нервные волокна тратят на свою основную работу — проведение нервных импульсов — всего около 15 минут в сутки. Однако готовы к этому волокна в любую секунду: все элементы нервного волокна работают без перерыва — 24 часа в сутки. Нервные волокна в этом смысле подобны самолетам-перехватчикам, у которых непрерывно работают моторы для мгновенного вылета, однако сам вылет может состояться лишь раз в несколько месяцев.
Мы познакомились сейчас с первой половиной таинственного акта прохождения нервного импульса — вдоль одного волокна. А как же передается возбуждение от клетки к клетке, через места стыков — синапсы. Этот вопрос был исследован в блестящих опытах третьего нобелевского лауреата, Джона Экклса.
Возбуждение не может непосредственно перейти с нервных окончаний одной клетки на тело или дендриты другой клетки. Практически весь ток вытекает через синаптическую щель в наружную жидкость, и в соседнюю клетку через синапс попадает ничтожная его доля, неспособная вызвать возбуждение. Таким образом, в области синапсов электрическая непрерывность в распространении нервного импульса нарушается. Здесь, на стыке двух клеток, в силу вступает совершенно другой механизм.
Когда возбуждение подходит к окончанию клетки, к месту синапса, в межклеточную жидкость выделяются физиологически активные вещества — медиаторы, или посредники. Они становятся связующим звеном в передаче информации от клетки к клетке. Медиатор химически взаимодействует со второй нервной клеткой, изменяет ионную проницаемость ее мембраны — как бы пробивает брешь, в которую устремляются многие ионы, в том числе и ионы натрия.
Итак, благодаря работам Ходжкина, Хаксли и Экклса важнейшие состояния нервной клетки — возбуждение и торможение — можно описать в терминах ионных процессов, в терминах структурно-химических перестроек поверхностных мембран. На основании этих работ уже можно делать предположения о возможных механизмах кратковременной и долговременной памяти, о пластических свойствах нервной ткани. Однако это разговор о механизмах в пределах одной или нескольких клеток. Это лишь, азбука мозга. По-видимому, следующий этап, возможно, гораздо более трудный, — вскрытие законов, по которым строится координирующая деятельность тысяч нервных клеток, распознание языка, на котором говорят между собой нервные центры.
Мы сейчас в познании работы мозга находимся на уровне ребенка, который узнал буквы алфавита, но не умеет связывать их в слова. Однако недалеко время, когда ученые с помощью кода — элементарных биохимических актов, происходящих в нервной клетке, прочтут увлекательнейший диалог между нервными центрами мозга.
Детальное описание иллюстраций
Нервная система человека выступает своеобразным координатором в нашем организме. Она передаёт команды от мозга мускулатуре, органам, тканям и обрабатывает сигналы, идущие от них. В качестве своеобразного носителя данных используется нервный импульс. Что он собой представляет? С какой скоростью работает? На эти, а также на ряд других вопросов можно будет найти ответ в этой статье.
Чем является нервный импульс?
Исследование строения и работы
Впервые прохождение нервного импульса было продемонстрировано немецкими учеными Э. Герингом и Г. Гельмгольцем на примере лягушки. Тогда же и было установлено, что биоэлектрический сигнал распространяется с указанной ранее скоростью. Вообще, такое является возможным благодаря особенному построению нервных волокон. В некотором роде они напоминают электрический кабель. Так, если проводить параллели с ним, то проводниками являются аксоны, а изоляторами – их миелиновые оболочки (они являют собой мембрану шванновской клетки, которая намотана в несколько слоев). Причем скорость нервного импульса зависит в первую очередь от диаметра волокон. Вторым по важности считается качество электрической изоляции. Кстати, в качестве материала организмом используется липопротеид миелин, который обладает свойствами диэлектрика. При прочих равных условиях, чем больше будет его слой, тем быстрее будут проходить нервные импульсы. Даже на данный момент нельзя сказать, что эта система полноценно исследована. Многое, что относится к нервам и импульсам, ещё остаётся загадкой и предметом исследования.
Особенности строения и функционирования
Где они создаются?
Типы клеток
- Рецепторные (чувствительные). Ими кодируются и превращаются в нервные импульсы все температурные, химические, звуковые, механические и световые раздражители.
- Вставочные (также называются кондукторными или замыкательными). Они служат для того, чтобы перерабатывать и переключать импульсы. Наибольшее их число находится в головном и спинном мозге человека.
- Эффекторные (двигательные). Они получают команды от центральной нервной системы на то, чтобы были совершены определённые действия (при ярком солнце закрыть рукой глаза и так далее).
Каждый нейрон имеет тело клетки и отросток. Путь нервного импульса по телу начинается именно с последнего. Отростки бывают двух типов:
- Дендриты. На них возложена функция восприятия раздражения расположенных на них рецепторов.
- Аксоны. Благодаря им нервные импульсы передаются от клеток к рабочему органу.
Интересный аспект деятельности
О потенциале действия
Как всё работает в мозгу?
Работа нейромедиаторов
Когда они передают нервные импульсы, то существует несколько вариантов, что произойдёт с ними:
- Они будут диффундированы.
- Подвергнутся химическому расщеплению.
- Вернутся назад в свои пузырьки (это называется обратным захватом).
В конце 20-го века сделали поразительное открытие. Ученые узнали, что лекарства, что влияют на нейромедиаторы (а также их выброс и обратный захват), могут изменять психическое состояние человека коренным образом. Так, к примеру, ряд антидепрессантов вроде "Прозака" блокируют обратный захват серотонина. Есть определённые причины считать, что в болезни Паркинсона виноват дефицит в головном мозге нейромедиатора дофамина.
Если кратко, то они могут работать с тысячами нейромедиаторов, которые посылаются их соседями. Детали относительно обработки и интеграции данного типа импульсов нам почти не известны. Хотя над этим работает много исследовательских групп. На данный момент получилось узнать, что все полученные импульсы интегрируются, а нейрон выносит решение – необходимо ли поддерживать потенциал действия и передавать их дальше. На этом фундаментальном процессе базируется функционирование головного мозга человека. Ну что ж, тогда это неудивительно, что мы не знаем ответа на эту загадку.
Некоторые теоретические особенности
Где же создаются нервные импульсы?
Откуда они начинают свой путь? Ответ на этот вопрос может дать любой студент, который прилежно изучал физиологию возбуждения. Есть четыре варианта:
- Рецепторное окончание дендрита. Если оно есть (что не факт), то возможным является наличие адекватного раздражителя, что создаст сначала генераторный потенциал, а потом уже и нервный импульс. Подобным образом работают болевые рецепторы.
- Мембрана возбуждающего синапса. Как правило, такое возможно только при наличии сильного раздражения или их суммирования.
- Триггерная зона дентрида. В этом случае локальные возбуждающие постсинаптические потенциалы формируются как ответ на раздражитель. Если первый перехват Ранвье миелинизирован, то они на нём суммируются. Благодаря наличию там участка мембраны, которая обладает повышенной чувствительностью, здесь возникает нервный импульс.
- Аксонный холмик. Так называют место, где начинается аксон. Холмик – это наиболее частый создать импульсов на нейроне. Во всех остальных местах, которые рассматривались ранее, их возникновение гораздо менее вероятное. Это происходит из-за того, что здесь мембрана имеет повышенную чувствительность, а также пониженный критический уровень деполяризации. Поэтому, когда начинается суммирование многочисленных возбуждающих постсинаптических потенциалов, то раньше всего на них реагирует холмик.
Пример распространяющегося возбуждения
Вспомните сводки из новостей прошлого лета (также это скоро можно будет услышать опять). Пожар распространяется! При этом деревья и кустарники, которые горят, остаются на своих местах. А вот фронт огня идёт всё дальше от места, где был очаг возгорания. Аналогичным образом работает нервная система.
Часто бывает необходимо успокоить начавшееся возбуждение нервной системы. Но это не так легко сделать, как и в случае с огнем. Для этого совершают искусственное вмешательство в работу нейрона (в лечебных целях) или используют различные физиологические средства. Это можно сравнить с заливанием пожара водой.
Потенциал действия или нервный импульс, специфическая реакция, протекающая в виде возбуждающей волны и протекающей по всему нервному пути. Эта реакция является ответом на раздражитель. Главной задачей является передача данных от рецептора к нервной системе, а после этого она направляет эту информацию к нужным мышцам, железам и тканям. После прохождения импульса, поверхностная часть мембраны становится отрицательно заряженной, а внутренняя ее часть остается положительной. Таким образом, нервным импульсом называют последовательно передающиеся электрические изменения.
Возбуждающее действие и его распространение подвергается физико-химической природе. Энергия для проведения этого процесса образуется непосредственно в самом нерве. Происходит это из-за того, что прохождение импульса влечет образование тепла. Как только он прошел, начинается затихание или референтное состояние. В которою всего лишь долю секунды нерв не может проводить стимул. Скорость, с которой может поступать импульс колеблется в пределах от 3 м/с до 120 м/с.
Строение
Волокна, по которым проходит возбуждение, имеют специфическую оболочку. Грубо говоря, эта система напоминает электрический кабель. По своему составу оболочка может быть миелиновая и безмиелиновая. Самый главной составляющей миелиновой оболочки является – миелин, который играет роль диэлектрика.
Аксоном называется отросток, с помощью него обеспечивается передача данных от одной клетки к остальным. Регулируется этот процесс с помощью синапса – непосредственной связи между нейронами или нейроном и клеткой. Еще существует, так называемое синаптическое пространство или щель. Когда поступает раздражительный импульс к нейрону, то в процессе реакции высвобождаются нейромедиаторы (молекулы химического состава). Они проходят через синаптическое отверстие, в итоге попадая на рецепторы нейрона или клетки, которой нужно донести данные. Для проведения нервного импульса необходимы ионы кальция, так как без этого не происходит высвобождение нейромедиатора.
Вегетативная система обеспечивается в основном безмиелиновыми тканями. По ним возбуждение распространяется постоянно и беспрерывно.
Принцип передачи основан на возникновении электрического поля, поэтому возникает потенциал, раздражающий мембрану соседнего участка и так по всему волокну.
При этом потенциал действия не передвигается, а появляется и исчезает в одном месте. Скорость передачи по таким волокнам составляет 1-2 м/с.
Законы проведения
В медицине присутствуют четыре основных закона:
- Анатомо-физиологическая ценность. Проводится возбуждение только в том случае, если нет нарушения в целостности самого волокна. Если не обеспечивать единство, например, по причине ущемления, принятия наркотиков, то и проведение нервного импульса невозможно.
- Изолированное проведение раздражения. Возбуждение может передаваться вдоль нервного волокна, никаким образом, не распространяясь на соседние.
- Двустороннее проведение. Путь проведения импульса может быть только двух видов – центробежно и центростремительно. Но в действительности направление происходит в одном из вариантов.
- Бездекрементное проведение. Импульсы не утихают, иными словами, проводятся без декремента.
Химия проведения импульса
Процесс раздражения так же контролируется ионами, в основном калием, натрием и некоторыми органическими соединениями. Концентрация расположения этих веществ разная, клетка заряжена внутри себя отрицательно, а на поверхности положительно. Этот процесс будет называться разностью потенциалов. При колебании отрицательного заряда, например, его уменьшении провоцируется разность потенциалов и этот процесс называется деполяризацией.
Раздражение нейрона влечет за собой открытие каналов натрия в месте раздражения. Это может способствовать вхождению положительно заряженных частиц во внутрь клетки. Соответственно отрицательный заряд снижается и происходит потенциал действия или происходит нервный импульс. После этого натриевые каналы снова прикрываются.
Часто встречается, что именно ослабление поляризации способствует открытию калиевых каналов, что провоцирует высвобождению положительно заряженных ионов калия. Этим действием уменьшается отрицательный заряд на поверхности клетки.
Потенциал покоя или электрохимическое состояние восстанавливается тогда, когда в работу включаются калий-натриевые насосы, с помощью которых ионы натрия выходят из клетки, а калия заходят в нее.
В результате можно сказать – при возобновлении электрохимических процессов и происходят импульсы, стремящиеся по волокнам.
Читайте также: