Специфический белок нервной ткани
По своему соcтаву и процессам метаболизма нервная ткань значительно отличается от других тканей.
НЕЙРОН
Нейрон - это функциональная единица нервной системы, он состоит из тела (сомы), многочисленных ветвящихся коротких отростков – дендритов и одного длинного отростка – аксона, длина которого может достигать несколько десятков сантиметров. Аксоны и дендриты оканчиваются синаптическими образованиями. Дендриты, проводят нервный импульс по направлению к телу клетки, а аксон, проводит его от сомы. Таким образом, дендриты и аксоны отвечают соответственно за получение и передачу сигнала. Тело нейрона является трофическим центром, нарушение целостности которого ведет клетку к гибели.
Тело нейрона окружено плазматической мембраной – плазмалеммой. Плазмалемма выполняет структурную функцию, служит барьером для поддержания внутриклеточного состава (клеточные органеллы, везикулы нейромедиаторов, метаболиты), играет активную (ионные насосы, ферменты) и пассивную (ионные каналы, высвобождение нейромедиатора) роли в создании мембранного потенциала, транспорте веществ через мембрану и передаче нервного импульса.
Внутри нейрон заполнен нейроплазмой(цитоплазмой). Объем нейроплазмы аксона и дендритов, может в несколько раз превышать объем нейроплазмы в теле нейрона. Нейроплазма содержит все основные органеллы клетки.
ХИМИЧЕСКИЙ СОСТАВ НЕРВНОЙ ТКАНИ
В связи с различием строения, серое и белое вещество нервной ткани отличаются по химическому составу.
-В сером веществе воды больше, чем в белом.
-В сером веществе белки составляют половину плотных веществ, а в белом веществе – одну треть.
-В белом веществе на липиды приходится более половины сухого остатка, а в сером – лишь около 30%.
Химический состав серого и белого вещества головного мозга человека
Компонент | Серое вещество, % | Белое вещество,% |
Вода | 84,0 | 70,0 |
Сухой остаток | 16,0 | 30,0 |
Белки | 8,0 | 9,0 |
Липиды | 5,0 | 17,0 |
Минеральные вещества | 1,0 | 2,0 |
Белки нервной ткани
В головном мозге на белки приходиться 40% сухой массы. В настоящее время выделено более 100 белковых фракций нервной ткани (методами хроматографии, электрофореза и экстракции буферными растворами).
В нервной ткани содержатся простые и сложные белки.
Простые белки
Нейроальбумины –основные растворимые белки (89-90%) нервной ткани, являются белковым компонентом фосфопротеинов, в свободном состоянии встречаются редко. Легко соединяются с липидами, нуклеиновыми кислотами, углеводами и другими небелковыми компонентами.
Нейроглобулины,содержатся в небольшом количестве (в среднем 5%).
Катионные белки- основные белки (рН 10,5 – 12,0), например, гистоновые. При электрофорезе они движутся к катоду.
Нейросклеропротеины (опорные белки).Например,нейроколлагены, нейроэлластины, нейростромины и др. Они составляют 8-10% от всех простых белков нервной ткани, локализованы в основном в белом веществе головного мозга и ПНС, выполняют структурно-опорную функцию.
Сложные белки
Сложные белки нервной ткани представлены: нуклеопротеинами, липопротеинами, протеолипидами, фосфопротеинами, гликопротеинами и т.д.
Гликопротеины –содержат олигосахаридные цепи, которые придают специфические отличия клеточным мембранам. Нейроспецифические гликопротеины участвуют в формировании миелина, в процессах клеточной
адгезии, нерорецепции и взаимном узнавании нейронов в онтогенезе и при регенерации.
Протеолипиды –в наибольших количествах содержатся в миелине и в небольших количествах - в синаптических мембранах и синаптических пузырьках.
Нейроспецифические белки
В цитоплазме нейронов присутствуют кальцийнейрин, белок 14-3-2, белок S-100, белок Р-400.
Белок S-100 (или кислый белок), содержит много глутаминовой и аспарагиновой кислот, гомологичен мышечному тропонину С, находиться в цитоплазме или связан с мембранами. На 85-90% он сосредоточен в нейроглии, и на 10-15% в нейронах. Участвует в развитии нервной системы и ее пластичности. Концентрация S-100 возрастает при обучении животных.
Белок 14-3-2 -кислый белок, который преимущественно локализован в нейронах ЦНС.
Белок Р-400находится в мозжечке мышей, где, возможно, отвечает за двигательный контроль.
К сократительным белкам нейронаотносятсянейротубулин, нейростенин, актиноподобные белки (кинезин и др.). Они обеспечивают ориентацию и подвижность цитоскелета (микротрубочек и нерофиламентов), активный транспорт веществ в нейроне, участвуют в работе синапсов.
В нейронах имеются белки, осуществляющие гуморальную регуляцию. Это некоторые гликопротеины гипоталамуса, нейрофизины и подобные им белки.
На мембране нейронов расположены нейроспецифические поверхностные антигены (NS1, NS2, L1) с неизвестной функцией и факторы адгезии клеток(N-САМ), важные для развития нервной системы.
Нейроспецифические белки участвуют в осуществлении всех функций нервной системы - генерации и проведении нервного импульса, процессах переработки и хранении информации, синаптической передаче, клеточном узнавании, рецепции и др.
Биохимия нервной системы изучает химический состав нервной ткани и особенности ее метаболизма. Специфика нервной ткани определяется гематоенцифаличним барьером (ГЭБ). Он обеспечивает избирательную проницаемость различных метаболитов и способствует накоплению отдельных веществ в нервной ткани, поэтому ее внутренняя среда значительно отличается по химическому составу от других тканей. Характерные особенности нервной ткани определенны ее функциями в целом организме и проявлением в ее химическом составе и метаболических процессах, которые ей присущи.
Серое вещество головного мозга представлено преимущественно телами нейронов, белое — аксонами, поэтому эти отделы различаются по химическому составу.
Серое вещество содержит больше воды. Доля сухого остатка в ней составляет 16%, половину составляют белки, треть — липиды. Белое вещество мозга отличается меньшим количеством воды (70%) и большим содержанием сухого остатка (30%), в котором липидов вдвое больше, чем белков.
Химический состав нервной ткани
Количество белков в головном мозге составляет около 40%. По растворимости они делятся на:
а) растворимые в воде;
б) растворимые в солевых растворах;
Серое вещество содержит больше водорастворимых белков, белое — наоборот, нерастворимых. С помощью современных биохимических методов исследования в ткани мозга найдено около 100 растворимых белков. Белки нервной ткани делятся на простые и сложные.
К простым белкам относят нейроальбумины, составляющие 90% всех растворимых белков нервной ткани. Они образуют комплексы с липидами, нуклеиновыми кислотами, углеводами, являются основными компонентами фосфопротеина, а в свободном состоянии практически не встречаются. Количество нейроглобулинов составляет около 5% от всех растворимых белков. Главными представителями катионных белков нервной ткани является гистоны, которые разделяют на 5 фракций в зависимости от содержания в их составе остатков лизина, аргинина, глицина. Нейросклеропротеины (нейроколагены, нейронеластины, нейростромины) — структурноопорные белки, на долю которых приходится 8-10% от количества простых белков нервной ткани. Они локализованы в периферийной нервной системе и белом веществе головного мозга.
Белки представлены нуклеопротеинами, липопротеинами, протеолипидами, фосфопротеинами, гликопротеинами и др. В ткани мозга также содержатся сложные надмолекулярные образования — липонуклеопротеины, липогликопротеины, гликолипонуклеопротеиновые комплексы.
Нуклеопротеиды относятся к рибонуклеопротеинам или к дезоксирибонуклеопротеинам, которые растворяются в воде, солях, лугах.
Липопротеины составляют значительную часть водорастворимых белков нервной ткани. Их липидный компонент — это в основном фосфоглицериды и холестерин.
Протеолипиды — белковолипидные комплексы — нерастворимые в воде, но растворимы в органических растворителях. В основном протеолипиды сосредоточены в миелине, которые в небольшом количестве содержатся в синаптических мембранах и синаптических пузырьках.
Фосфопротеины головного мозга составляют 2% от общего количества сложных белков. Они — компоненты мембран различных морфологических структур нервной ткани.
Гликопротеины — это гетерогенная группа сложных белков. В зависимости от соотношения белкового и углеводного компонентов их разделяют на:
а) гликопротеины, содержащие от 5 до 40% углеводов, их белковая составляющая представлена альбуминами и глобулинами;
б) гликолипопротеины, в которых доля углеводов составляет от 40 до 80%, а также имеющийся липидный компонент.
а) белок S100 (белок Мура) — принадлежит к семейству кислых низкомолекулярных белков с большим содержанием остатков глутаминовой и аспарагиновой кислот. Это нейроспецифический протеин, хотя некоторые его изоформы случаются в других тканях. В ЦНС идентифицировано 18 изоформ белков S100, которые сосредоточены в основном в нейроглии, в нейронах их не более 10-15%. Белки Мура относят к Са, Zn, Cu связывающих протеинов кальмодулинового типа с разнообразными функциями.
— фосфорилирования других белков и их ферментативную активность;
— внутриклеточный и аксональный транспорт;
— деление клеток и транскрипцию;
— подвижность и сократительную активность клеток;
— процессы пролиферации и апоптоза;
— клеточный метаболизм и др.
Белки семейства S100 как нейроспецифические имеют отношение к высшим функциям мозга — мышления, памяти, внимания, интеллекта. Увеличение количества белков S100 в крови свидетельствует о нарушении метаболических процессов в головном мозге, которые возникают при болезни Альцгеймера, шизофрении, сосудистых, злокачественных заболеваниях, алкоголизме, вследствие возрастных изменений и др.
б) белок 4312 — кислый протеин, который в небольшом количестве содержится в нейронах и нейроглии. Биологическая роль его не выяснена;
в) белок 10В — участвует в процессах памяти;
г) белки мембран синаптических пузырьков — синапсин и синаптин, синаптофизин участвуют в связывании с поверхностью синаптических пузырьков компонентов цитоскелета, регулировании высвобождения нейромедиатора из пузырьков в синаптическую мембрану.
В нервной ткани находятся неспецифические ферменты, регулирующие основные метаболические пути обмена углеводов, липидов, белков: изоферменты лактатдегидрогеназы, альдолаза, гексокиназа, малатдегидрогеназа, глутаматдегидрогеназа, кислая фосфатаза, моноаминоксидаза и другие.
К нейроспецифическим ферментам нервной ткани относят: энолазу, изоферменты КФК (КФК), глутаматдекарбоксилазы, аргиназу, лейцинаминопептидазы, ацетилхолинэстеразу.
Характерной особенностью нервной ткани является высокое содержание липидов. Липиды нервной ткани подразделяют на две группы:
1) липиды серого вещества, входящие в состав нейронных мембран;
2) липиды белого вещества, из которых построен многослойный миелиновой футляр.
Большинство липидов серого вещества аналогичны мембранным липидам других тканей.
Миелиновые структуры характерны только для нервной ткани. Типичными липидами миелина являются: холестерол, сфинголипиды, фосфолипиды. В эмбриональный период развития количество миелина в мозге незначительное, но сразу после рождения синтез миелина значительно увеличивается. Миелиновая оболочка, образовавшаяся вокруг нервных волокон, остается стабильной на протяжении всей жизни. Специфическая природа липидов нервной ткани определяет ее характерные особенности. В составе липидов нервной ткани отсутствуют нейтральные жиры, низкая концентрация жирных кислот, значительное количество сложных фосфо и гликолипидов. Белое и серое вещества мозга различаются по качественному составу липидов. В сером веществе на долю фосфолипидов приходится около 60% от общего содержания липидов, в белой — 40%. В белом веществе количество холестерола, сфингомиелины, цереброзидов выше, чем в сером веществе мозга.
Холестерол синтезируется в мозге лишь в период его интенсивного развития. В мозге взрослых людей этот процесс не происходит из-за очень низкой активности ключевого фермента синтеза холестерина — ОМГ-КоА-редуктазы. Эфиры холестерина локализуются только в участках интенсивной миелинизации.
Липиды нервной ткани образуют с белками сложные протеолипидные комплексы.
— структурная — образуют клеточные мембраны нейронов, является составной миелина;
— диэлектрическая — обеспечивают электрическую изоляцию за счет миелина;
— защитная — ганглиозиды как антиоксиданты ингибируют перекисное окисление липидов;
— регуляторная — инозитфосфатиды участвуют в передаче гормонального сигнала.
Нервная ткань составляет 2,0-2,5% общей массы организма. Она состоит из нервных клеток, нервных волокон, нервных окончаний и нейроглии. Структурной и функциональной единицей нервной ткани является нейрон. Нейроны объединяются в органы, органы - в нервную систему, которая воспринимает внешние и внутренние раздражения, анализирует их, регулирует и координирует все основные функции организма, объединяет его в единое целое, осуществляет связь организма животного с внешней средой.
Химический состав нервной ткани и ее структурных элементов определяется значением органа нервной системы в жизнедеятельности организма, местом животного в филогенетическом ряду, возрастом и функциональным состоянием организма и др. Нервная ткань эмбриона в среднем содержит 90% воды и 10% сухого остатка, взрослого организма - соответственно 65% воды и 35% сухого остатка. Больше всего воды имеется в сером веществе коры больших полушарий головного мозга (82,7%), меньше - в белом (72,8%) и в спинном мозгу (74%). Серое вещество мозга крупного рогатого скота содержит 80,6% воды и 19,4% сухого остатка, в сухом остатке 55,4% составляют белки, 43,1 - липиды и 1,5% зола, белое вещество имеет 68,4% воды и 31,6% сухого остатка, в сухом остатке 24,8% составляют белки, 74,6 - липиды и 0,6% зола.
Белки. В нервной ткани имеется от 5-7 до 16 индивидуальных белков (в т. ч. в митохондриях - до 8), представляющих около 100 различных растворимых белковых фракций. Они относятся к двум группам - протеинам и протеидам. Протеины представлены: нейроальбуминами (они являются основным белковым компонентом фосфопротеидов и составляют основную массу растворимых белков - 89-90%), нейро-глобулинами (около 5% всех растворимых белков), гистонами и нейросклеропротеидами (структурно-опорные белки -нейроколлагены, нейроэластины, нейростромины и др., составляют 8-10% от всех простых белков). Протеиды нервной ткани представлены следующими подгруппами: нуклеопротеидами (ДНП и РНП), липопротеидами (фосфатидов и холестерина), протеолипидами, фосфопротеидами (около 2% всех сложных белков), гликопротеидами. В нервной ткани обнаружено два специфических белка -S-100, или белок Мура (его иногда называли "белком памяти", 85-90% белка сосредоточено в нейроглии, 10-15% -в нейронах), и белок 14-3-2. В нервной ткани содержатся ферменты всех шести классов, катализирующих все стороны обмена веществ, восприятие, анализ и передачу нервных импульсов.
Содержание углеводов. Нервная ткань бедна углеводами, хотя потребность в них здесь велика. Основными углеводами здесь являются глюкоза (1-4 мкмоля на 1 г ткани) и гликоген (2,5-4,5 мкмоля на 1 г). У новорожденных животных содержание гликогена в мозгу в 3 раза выше, чем у взрослых. Большая часть гликогена (около 80%) связана с белками и липидами, меньшая (до 20%) находится в свободном состоянии. Нервная ткань содержит промежуточные продукты углеводного обмена - гексозо- и триозофосфаты, молочную, пировиноградную и другие кислоты.
Содержание липидов. Нервная ткань богата липидами, часть из которых специфична для нее. Так, в расчете на сухой остаток серое вещество мозга крупного рогатого скота содержит 43,1% и белое вещество-74,6% липидов. Из них фосфатиды соответственно составляют 16,3 и 27,5%, в том числе лецитины-3,2 и 3,3; кефалины-9,4 и 19,2; сфингомиелины - 3,7 и 5,0; холестерин - 3,2 и 10,9; цереброзиды - 4,3 и 14,1%. В нервной ткани мало жиров. Они могут быть представлены лигноцериновой, цереброновой и другими характерными для нервной ткани кислотами и оксикислотами. Из нервной ткани выделены страндин и другие сложные гликолипиды.
Содержание нуклеотидов и креатинфосфата. Из свободных нуклеотидов адениловые нуклеотиды составляют 84%.
Обмен веществ в нервной ткани. Изучение обмена веществ в нервной ткани сопряжено с рядом трудностей. Прежде всего, нервная ткань обладает сложным строением, химическим составом, многообразием функций и реакций обмена веществ. В организме человека имеется 1010 нейронов, в коре больших полушарий - около 14 млрд. Каждый нейрон в среднем связан с 5 тыс. клеток. Синтез белков в нейроне больше, чем в другой клетке, предельно совершенен, что обеспечивает полноценное функционирование нейрона в течение всей жизни организма. Головной мозг заключен в черепную коробку, спинной - в позвоночный канал. Малейшее вмешательство в структуру нервной ткани грозит патологией. Многие реакции протекают в ней в течение десятых, сотых и даже тысячных долей секунды. Все это требует особого подхода к изучению обмена веществ в нервной ткани.
Дыхание нервной ткани. Мозг потребляет 20-25% всего кислорода, поступающего в организм. Газообмен мозга в 20 раз больше газообмена покоящихся мышц. Так, нервная ткань за 10 с способна использовать весь кислород, который в ней содержится. У молодых животных нервная система потребляет 40-50% кислорода, поступившего в организм, причем 80% расходуют нейроны. При возбуждении потребление кислорода нервной тканью возрастает примерно на 50%.
Обмен углеводов. Основной источник химической энергии для нервной ткани - глюкоза. Нервная ткань вдвое больше потребляет глюкозы, чем мышечная, и втрое больше, чем почки. Предполагается, что глюкоза, прежде чем используется клетками нервной системы, проходит стадию биосинтеза гликогена. Гликоген может расщепляться гидролитическим и фосфоролитическим путями. В головном мозгу преобладает первый путь. Серое вещество мозга вчетверо больше потребляет глюкозы, чем белое. Химическая энергия, заключенная в глюкозе, освобождается анаэробным и аэробным путями. Около 85% глюкозы окисляется до CO2 и H2O. Обмен углеводов в нервной ткани зависит от обеспечения ее витамином B1 - его пирофосфат является коферментом пируватдекарбоксилазы, превращающей пировиноградную кислоту в ацетил-КоА.
Обмен белков. Для белков характерна высокая степень метаболизма. Так, за время превращения нейробласта в нейрон содержание белка в клетке возрастает более чем в 2000 раз. Период полужизни молекул белков составляет 2,8-15,2 сут. Обмен белков быстрее происходит в сером веществе мозга, медленнее -в белом, медленно - в периферических нервах. Интенсивность обмена белков в нервных клетках в 53-70 раз большая, чем в глиоцитах. Глиоциты составляют около 40% объема мозга.
Нервная ткань богата аминокислотами. Так, если в крови в среднем содержится аминокислот 0,064 г/л, то в тканях мозга - 0,36 г на 1 кг. Среди них особое место принадлежит глутаминовой кислоте, из которой образуется глутамин и далее после транспортировки в печень - мочевина. На его долю приходится 80% аминного азота. Часть кислоты декарбоксилируется, образуется а-аминомасляная кислота, которая через янтарный полуальдегид превращается в янтарную кислоту. Она включается в цикл трикарбоновых кислот, что приводит к образованию макроэргических соединений, CO2 и H2O.
Глутаминовая кислота может дезаминироваться и превращаться в кетоглутаровую кислоту, Кетоглутаровая кислота идет в цикл трикарбоновых кислот. Аммиак - на образование глутамина, а затем - на синтез мочевины в печени. Некоторое количество мочевины может синтезироваться в нервной ткани и другими путями. В нервной ткани образуются некоторые аминокислоты: глутаминовая, аспарагиновая, аланин, серин, цистин, глицин и аргинин.
Обмен липидов. В тканях головного мозга превращения жиров не имеют существенного значения. Здесь синтезируется холестерин из ацетил-КоА. Количество холестерина возрастает при абсцессах мозга, менингоэнцефалитах и др. Состав липидов нервной ткани сравнительно стабилен. Так, если в тканях печени в течение суток обновляется 50% всех жирных кислот, то в нервной системе за неделю обновляется лишь 20%. Быстрее всего обновляются фосфатиды, особенно инозитфосфатиды. При возбуждении в нервной ткани задерживается холестерин и выделяется в кровеносное русло лецитин.
Химизм передачи нервного импульса. Нервная система выполняет ряд специфических функций: восприятие и передачу информации об изменениях внешней и внутренней среды в соответствующие центры, переработку этой информации, передачу эффекторных импульсов к исполнительным органам и тканям, регуляцию деятельности последних и др. Механизм передачи нервных импульсов - электрический, химический и смешанного типа.
Нервная система состоит из нейронов, нейрон - из тела нервной клетки, аксона (аксонов), дендритов и нервных окончаний. Нейрон имеет наружную плазматическую мембрану. Согласно ионной теории передачи нервного импульса внутренняя поверхность мембраны во время покоя заряжена отрицательно, наружная - положительно. Эти заряды возникают в результате функционировани натрий-калиевого насоса. Под влиянием различных факторов нейрон возбуждается, изменяется проницаемость мембраны и ионы Na+ устремляются в клетку. Внутренняя часть мембраны приобретает положительный заряд, наружная - отрицательный. Возникает потенциал действия. Нервный импульс с помощью нервных окончаний передается на соответствующий объект. После прекращения раздражения в нейроне восстанавливается динамическое равновесие между содержанием ионов K+ и Na+, так как натрий-калиевый насос удаляет избыток ионов Na+ из клетки.
Согласно химической теории, нервный импульс от нейрона к нейрону или на соответствующий орган передается с помощью специальных веществ - медиаторов. В передаче импульсов участвуют нервные окончания, входящие в состав синапса. Число синапсов на отдельных нейронах велико - до 10-20 тыс. и больше. Синапс состоит из пресинаптической части (синаптического окончания нейрона), синаптической щели и постсинаптической части. Медиаторы синтезируются в теле нервной клетки и ее отростках, связываются с белками и накапливаются в виде синаптических пузырьков. Под влиянием раздражителя пресинаптическая мембрана деполяризуется, увеличивается ее проницаемость к ионам Ca2+ - они проникают в пресинаптические окончания и вызывают расщепление комплекса белок - медиатор. Медиатор диффундирует через поры мембраны в синаптическую щель, взаимодействует с рецепторами постсинаптической мембраны и вызывает потенциал действия.
Функциями медиаторов обладают ацетилхолин, серотонин, гистамин, а-аминомасляная кислота и др.
· Ацетилхолин - медиатор в синапсах центральной, парасимпатической и симпатической нервной системы. Синтезируется из ацетил-КоА и холина под влиянием холинацетилтрансферазы и ионов Mg2+, K+, Ca2+. Образуется в эндоплазматической сети нейрона, поступает в синапсы, связывается с белками и накапливается в виде синаптических пузырьков. После возникновения нервного импульса комплекс ацетилхолин - белок расщепляется, медиатор через поры пресинаптической мембраны проникает в синаптическую щель и взаимодействует с холинорецепторами постсинаптической мембраны. Возникает потенциал действия, и возбуждение передается от нейрона к нейрону или к эффектор-ной клетке.
· Серотонин (5-окситриптамин) - медиатор нервной системы, образуется из аминокислоты триптофана. После оказания биологического действия в синапсе дезаминируется, образовавшаяся 5-оксииндолилуксусная кислота выделяется из организма с мочой.
· Гистамин образуется из гистидина под влиянием гистидиндекарбоксилазы. Принцип действия гистамина такой же, как и остальных медиаторов. После оказания своего действия инактивируется дезаминированием гистаминазой или путем соединения с клеточными белками.
Аминомасляная кислота (ГАМК) - промежуточный продукт обмена веществ в нервной ткани. Образуется из глутаминовой кислоты под влиянием глутаматдекарбоксилазы. Оказывает тормозящее действие на функции дендритов нейронов головного и спинного мозга и деятельность мионевральных бляшек. После оказания биологического действия инактивируется переаминированием с кетоглутаровой кислотой.
Связь между функциональным состоянием головного мозга и процессами обмена веществ в организме. Нервная система оказывает регулирующее действие на реакции обмена веществ. При возбуждении отдельных центров нервной системы реакции обмена веществ усиливаются, в состоянии покоя устанавливается динамическое равновесие между реакциями анаболизма и катаболизма, а при торможении реакции обмена веществ замедляются.
Ликвор (спинномозговая жидкость) циркулирует в полости желудочков головного мозга, спинномозгового канала и субарахноидальном пространстве головного и спинного мозга. Он предохраняет мозг от вредных внешних воздействий, участвует в регуляции внутричерепного давления и отдельных сторон тканевого обмена в нервной системе. Плотность ликвора - 1,007-1,009, рН 7,4-7,8. По химическому составу ликвор сходен с сывороткой крови. Так, он содержит белки и другие азотистые вещества, углеводы, хлорид-ионы, К+ и Ca2+. Химический состав ликвора изменяется при нервных болезнях. В клинике проводится пункция ликвора и введение некоторых лекарственных веществ в ликвор для облегчения их контакта с нейронами.
Химический состав серого и белого вещества головного мозга человека (в процентах от массы сырой ткани)
Составные части Серое вещество Белое вещество
Сухой остаток 16 30
Минеральные вещества . . 1 2
Серое вещество головного мозга представлено в основном телами нейронов, а белое вещество — аксонами. Серое и белое вещество значительно отличаются по химическому составу. Химический состав периферических нервов близок к белому веществу. Для нервных клеток характерно высокое содержание липидов (фосфо-, глико- и сфинголипиды) — в целом, 50 % от сухой массы.
В теле нейрона около 65% воды и 35% плотных веществ. Плотные вещества на 20-25 % липиды (в основном фосфолипиды и ганглиозиды), на 70 % — белки, на 3-5 % — нуклеиновые кислоты; остальная часть — углеводы, метаболиты, электролиты и др. В ядрах нервных клеток содержатся белки и вся ДНК. Цитоплазма обладает плотностью приблизительно в 1,5 раза большей, чем ядро. Примерно от четверти до трети всех ее белков связано с РНК, причем эта часть белков сосредоточена в более плотной зоне, непосредственно прилегающей к оболочке ядра, в виде телец Ниссля (состоят из РНК и белков). В клетках представлены нейроальбумины, нейроглобулины и др. белки. Липиды составляют 25 % сухого вещества и преимущественно содержатся в митохондриях, микросомах и пространствах между тельцами Ниссля.
Дендриты по составу близки к составу тела клетки, но содержание плотных веществ значительно ниже. Еще ниже содержание плотных веществ в плазме аксонов: здесь отсутствуют тельца Ниссля, мало митохондрий, но в окончаниях аксонов их много.
Миелиновые оболочки нервов — многослойные образования. Каждый слой состоит из чередующихся слоев белков и липидов, то есть по химическому составу миелин — сложный белково-липидный комплекс. В расчете на сухую массу в миелине липидов 70-80 %, белков 20-30 %. На липиды миелина приходится около 65% липидов всего белого вещества мозга. В слоях миелиновых оболочек молекулы различных липидов строго расположены.
по X. Хидену
Рис. Молекулярная организация миелиновой оболочки. 1 — аксон; 2 — миелин; 3 — ось волокна; 4 — белок (наружные слои); 5 —липид; 6 — белок (внутренний слой); 7 — холестерин; 8 — цереброзид; 9 — сфингомиелин; 10 — фосфатидилсерин.
В зрелом миелине отношение холестерин-фосфоглицерины-галактолипиды составляет 4:3:2. Основной фосфоглицерин — фосфатидилэтаноламин, основные галактолипиды — цереброзиды, также есть гликолипиды. Миелиновая оболочка содержит два своеобразных белка: основной белок (около 30 % белка миелина), способный при введении некоторым животным вызывать энцефалит, протеолипиды (50 % белков миелина) — белки, нерастворимые в воде, но растворимые в смеси хлороформ-метанол (из-за большого содержания липидного компонента и гидрофобных аминокислот).
Белки головного мозга
На долю белков приходится примерно 40% сухой массы головного мозга. Мозговая ткань является трудным объектом для изучения белкового состава вследствие большого содержания липидов и наличия белково-липидных комплексов.
Впервые А.Я.Данилевский разделил белки мозговой ткани на нерастворимые и растворимые в воде, солевых растворах. Серое вещество богаче (30%) растворимыми белками, чем белое (19%). Белое вещество содержит больше (22%) нерастворимого белка, чем серое (5%). Сочетая методы, из мозга выделили около 100 различных растворимых белковых фракций.
Нервная ткань содержит простые и сложные белки.
Простые белки — альбумины (нейроальбумины), глобулины (нейроглобулины), катионные белки (гистоны и др.) и опорные белки (нейросклеропротеиды).
Поскольку альбумины и глобулины головного мозга по своим физико-химическим свойствам несколько отличаются от аналогичных белков сыворотки крови, они, как правило, называются нейроальбуминами и нейроглобулинами. Количество нейроглобулинов в головном мозге относительно невелико — в среднем 5% по отношению ко всем растворимым белкам. Нейроальбумины являются основным белковым компонентом фосфопротеидов нервной ткани, на их долю приходится основная масса растворимых белков (89—90%). В свободном состоянии нейроальбумины встречаются редко. Большая часть нейроглобулинов входит в состав сложных белков. В частности, они легко соединяются с липидами, нуклеиновыми кислотами, углеводами и другими небелковыми компонентами.
Белки, которые в процессе электрофоретического разделения при рН 10,5—12,0 движутся к катоду, получили название катионных. Главнейшими представителями этой группы белков в нервной ткани являются гистоны, которые делятся на пять основных фракций в зависимости от содержания в их полипептидных цепях остатков лизина, аргинина и глицина.
Нейросклеропротеиды можно охарактеризовать как структурно-опорные белки. Основные представители этих белков — нейроколлагены, нейроэластины, нейростромины и др. Они составляют примерно 8—10% от всех простых белков нервной ткани и локализованы в основном в белом веществе головного мозга и в периферической нервной системе.
Сложные белки нервной ткани представлены нуклеопротеидами, липопротеидами, протеолипидами, фосфопротеидами, гликопротеидами и т. д. В мозговой ткани много еще более сложных надмолекулярных образований: липонуклеопротеиды, липогликопротеиды, липогликонуклеопротеидные комплексы.
Нуклеопротеиды — белки, которые принадлежат либо к ДНП, либо к РНП. Часть их из ткани мозга извлекают водой, часть — солевыми средами, а третья — 0,1 н. раствором щелочи.
Липопротеиды составляют значительную часть водорастворимых белков мозговой ткани. Их липидный компонент состоит в основном из фосфолипидов и холестерина.
Протеолипиды — единственные сложные белки, которые извлекаются органическими растворителями, например, смесью хлороформа и метанола. В отличие от липопротеидов в них липидный компонент преобладает над белковым. Наибольшее количество протеолипидов сосредоточено в миелине, в небольших количествах они входят в состав синаптических мембран и синаптических пузырьков.
Фосфопротеиды — сложные белки, простетической группой которых чаще является фосфатная группа, соединенная по типу сложноэфирной связи с остатком серина. Содержание фосфопротеидов в головном мозге более высокое, чем в других органах и тканях, — около 2% по отношению ко всем сложным белкам мозга. Фосфопротеиды обнаружены в мембранах различных морфологических структур нервной ткани.
Гликопротеиды представляют собой чрезвычайно гетерогенную группу белков. По количеству белка и углеводов, входящих в состав гликопротеидов, их можно разделить на две основные группы. Первая группа гликопротеинов содержит от 5 до 40% углеводов и их производных; белковую часть преимущественно из альбуминов и глобулинов. Вторая группа гликопротеинов содержит 40—85%. углеводов, часто есть липидный компонент; по своему составу они могут быть отнесены к гликолипопротеидам.
В последние годы в нервной ткани обнаружен ряд специфических белков. В частности, белок S-100, или белок Мура, называют кислым белком, так как он содержит большое количество остатков глутаминовой и аспарагиновой кислот. Этот белок сосредоточен в основном в нейроглии (85—90%), в нейронах его не более 10—15% от общего количества в головном мозге. Концентрация белка S-100 возрастает при обучении (тренировках) животных (участие в формировании, хранении памяти может быть не прямым, а опосредованным)
Ферменты. В мозговой ткани много ферментов обмена углеводов, липидов и белков. В кристаллическом виде из ЦНС выделены ацетилхолинэстераза и креатинкиназа.
Многие ферменты мозговой ткани находятся в нескольких молекулярных формах (изоферменты): лактатдегидрогеназа, креатинкиназа, гексокиназа, малатдегидрогеназа, глутаматдегидрогеназа, холинэстераза, кислая фосфатаза, альдолаза, моноаминоксидаза и др.
Среди химических компонентов головного мозга особое место занимают липиды, высокое содержание и специфическая природа которых придают мозговой ткани характерные особенности. В группу липидов головного мозга входят фосфолипиды, холестерин, сфингомиелины, цереброзиды, ганглиозиды и очень небольшое количество нейтрального жира. Липиды нервной ткани находятся в тесной взаимосвязи с белками, образуя сложные системы типа протеолипидов.
В сером веществе головного мозга фосфолипиды составляют более 60% от всех липидов, а в белом веществе — около 40%. Напротив, в белом веществе содержание холестерина, сфингомиелинов и особенно цереброзидов больше, чем в сером веществе.
Липидный состав нервной ткани
вещество вещество Миелин
Общее содержание липидов,
% от сухой массы . 32,7 54,9 70
В процентах к общим липидам
Холестерин 22,0 27,5 27,7
Цереброзиды 5,4 19,8 22,7
Ганглиозиды 1,7 5,4 3,8
Фосфатидилэтанол амины 22,7 14,9 15,6
Фосфатидилхолины 26,7 12,8 11,2
Фосфатидилсерины 8,7 7,9 4,8
Фосфатидил инозиты 2,7 0,9 0,6
Плазмалогены 8,8 11,2 12,3
Сфингомиелины 6,9 7,7 7,9
В мозговой ткани имеются гликоген и глюкоза. Однако по сравнению с другими тканями ткань мозга бедна углеводами. Общее содержание глюкозы в головном мозге разных животных составляет в среднем 1—4 мкмоль/г ткани, а гликогена — 2,5—4,5 мкмоль/г ткани (в расчете на глюкозу). Интересно отметить, что общее содержание гликогена в мозге эмбрионов и новорожденных животных значительно выше, чем в мозге взрослых. Например, у новорожденных мышей в отличие от взрослых особей уровень гликогена в 3 раза выше. По мере роста и дифференцировки мозга концентрация гликогена быстро снижается и остается относительно постоянной у взрослого животного.
В мозговой ткани имеются также промежуточные продукты обмена углеводов: гексозо- и триозофосфаты, молочная, пировиноградная и другие кислоты.
Адениновые нуклеотиды и креатинфосфат
Из свободных нуклеотидов в мозговой ткани на долю адениновых нуклеотидов приходится около 84%. Большая часть оставшихся нуклеотидов – производные гуанина. В целом количество макроэргических соединений в нервной ткани невелико. В головном мозге крыс содержание нуклеотидов и креатинфосфата в среднем составляет (в мкмоль/г сырой массы): АТФ — 2,30-2,90; АДФ — 0,30-0,50; АМФ — 0,03-0,05; ГТФ — 0,20-0,30; ГДФ —0,15-0,20; УТФ — 0,17-0,25; креатинфосфат — 3,50-4,75. Распределение основных макроэргических соединений примерно одинаково во всех отделах мозга.
Содержание циклических нуклеотидов (цАМФ и цГМФ) в головном мозге значительно выше, чем во многих других тканях. Уровень цАМФ в мозге составляет в среднем 1-2 нмоль/г ткани, а цГМФ — до 0,2 нмоль/г ткани. Для мозга характерна также и высокая активность ферментов метаболизма циклических нуклеотидов. Большинство исследователей считают, что циклические нуклеотиды участвуют в синаптической передаче.
Минеральные вещества
Nа, К, Сu, Fе, Са, Мg и Мn распределены в головном мозге относительно равномерно между серым и белым веществом. Содержание же фосфора в белом веществе выше, чем в сером.
Содержание основных минеральных компонентов в головном мозге и плазме крови
Читайте также: