Влияние электрического тока на центральную нервную систему
Поражение нервной системы электрическим током / Рыбалкин Р.В., Кудянов Е.Г. // Избранные вопросы судебно-медицинской экспертизы. — Хабаровск, 2007. — №81. — С. 106-109.
библиографическое описание:
Поражение нервной системы электрическим током / Рыбалкин Р.В., Кудянов Е.Г. // Избранные вопросы судебно-медицинской экспертизы. — Хабаровск, 2007. — №81. — С. 106-109.
код для вставки на форум:
Электротравмы составляют 2-2,5 % среди всех травматических повреждений, однако большой процент смертности и инвалидности при поражении электрическим током ставит их на одно из первых мест по значимости. Электротравма это почти всегда следствие нарушений правил техники безопасности на производстве или неумения пользоваться электроприборами в быту. Поражение атмосферным электричеством наблюдается в связи с нахождением во время грозы вблизи от металлических конструкций, под деревьями, т. е. около высоких предметов, которые как бы ориентируют путь тока молнии. Производственные и бытовые поражения электричеством происходят, главным образом, под действием токов напряжения от 127 до 380 В.
Эти поражения током дают чаще смертельные исходы в связи с тем, что вызывают фибрилляцию желудочков сердца, в то время как токи высокого напряжения вызывают большие ожоги. Ввиду хорошей электропроводимости нервной ткани сильнее всего в человеческом организме поражается нервная система.
Тяжесть поражения зависит от силы и напряжения тока, продолжительности его воздействия и состояния организма во время электротравмы. Утомление, опьянение, повышенная влажность кожи усиливают действие электрического тока.
Клиника. В зависимости от характера клинических симптомов и интенсивности их проявления выделяют четыре степени электротравмы.
- Первая степень характеризуется развитием судорожных сокращений мышц без потери сознания. Все больные в таких случаях отмечают ощущение напряжения и скованности мышц, затруднение дыхания из-за сокращения дыхательной мускулатуры.
- Вторая степень характеризуется судорожным сокращением мышц и потерей сознания.
- Третья степень проявляется потерей сознания, нарушением сердечнососудистой деятельности и дыхания.
- Четвертая степень — клиническая смерть.
Поражение нервной системы, как правило, обнаруживается непосредственно после электротравмы, но иногда признаки поражения нервной системы появляются спустя некоторое время.
Обычно человек, подвергшийся электротравме, теряет сознание, наступает полное выключение двигательной, чувствительной и рефлекторной функции, т. е. развивается состояние шока. Во время падения возможен ушиб головы. Поэтому картина часто усугубляется коммоционно-контузионными признаками. Если пострадавших удается вывести из шокового состояния, то со стороны нервной системы у них обнаруживаются самые разнообразные поражения — электротравматиче- ский энцефаломиелоз, для которого характерна диффузность, множественность симптоматики - нарушения психики, мозжечковые симптомы, параличи конечностей, нарушение черепно-мозговой иннервации, расстройства чувствительности, функций тазовых органов и др.
В некоторых случаях патологический процесс бывает более ограниченным и характеризуется моносимптомами — гемиплегией, поражением зрительных нервов и др. Нередко после электротравмы развиваются эпилептиформные припадки, протекающие по типу общих или локальных приступов. Наряду с поражением центральной нервной системы отмечается поражение периферических нервов. Нередки функциональные нарушения со стороны вегетативной нервной системы: лабильность вазомоторов лица, приливы крови к лицу, акроцианоз, гипергидроз, местные отеки, сердцебиение, головокружение, головная боль. Эти явления обычно сопровождаются жалобами на повышенную раздражительность, эмоциональную возбудимость, утомляемость и т. п.
Функциональные нарушения центральной нервной системы у лиц, перенесших электротравму, остаются на длительное время, что приводит к полной или частичной утрате работоспособности. У пострадавших снижаются память, внимание, появляется рассеянность. Как показали клинические наблюдения, электрический ток способствует обострению хронического патологического процесса или развитию нового заболевания. Электрический ток больше, чем другие травмирующие факторы, обладает способностью вызывать нарушения во всех системах организма в момент его воздействия. Поэтому в первые часы и даже ближайшие дни после электротравмы трудно определить дальнейшее течение и исход болезни.
Нередко тяжелая элекгротравма заканчивается смертью, механизм которой сводится к трем моментам: угнетение функций продолговатого мозга; фибрилляция желудочков сердца, вызванная непосредственным прохождением электрического тока через сердце; тетанический спазм дыхательных мышц.
Патоморфология. При гистологическом исследовании нервной системы погибших после электротравмы обнаруживаются отек мягкой оболочки головного мозга, сужение сосудов, вазопарезы, точечные геморрагии, выпотевание плазмы, разрывы сосудистых стенок, набухание, тигролиз, деформация и сморщивание ядер, разрушение отростков нервных клеток, местами нейронофагия и гибель клеток.
В зависимости от длительности воздействия и силы электрического тока, в нервной ткани происходят вначале функционально-динамические сдвиги, которые могут приводить к стойким структурным изменениям.
Патогенез электротравмы в настоящее время представляют следующим образом. В первую очередь, электрический ток поражает вегетативную нервную систему. Вследствие этого развиваются вазомоторные расстройства, приводящие к вторичным изменениям нервной ткани, - ишемии, некрозу. Кроме того, электрический ток оказывает и прямое влияние на нервную ткань, вызывая ультрамолекулярное сотрясение цитоплазмы, смещение ионов. В результате возникают биопотенциалы повреждения, которые являются причиной дальнейшего повреждения нервной ткани и формирования различных патофизиологических изменений. Электрический ток оказывает на нервную систему свое патологическое действие и рефлекторным путем.
Человек, пораженный током ниже 380 В, почти всегда фиксируется к токоведущей части и сам не может от нее освободиться вследствие тетанического сокращения мышц кистей и потери сознания. В связи с этим, при осмотре трупа на месте его обнаружения следует проявлять известную осторожность и внимательность и не начинать осмотр трупа, не убедившись в безопасности данного действия, а именно осмотр следует начинать только после отключения токонесущих конструкций от питания либо после перемещения трупа в безопасное для осмотра место.
Актуальность изучения повреждений одежды и тела человека, сформированных электрошоковыми устройствами / Журихина С.И., Макаров И.Ю., Ширяева Ю.Н. // Избранные вопросы судебно-медицинской экспертизы. — Хабаровск, 2019. — №18. — С. 81-82.
Морфологические особенности теплового повреждающего действия технического электричества / Пиголкин Ю.И., Сковородников С.В., Ремизова А.С., Дубровин И.А. // Вестник судебной медицины. — Новосибирск, 2015. — №2. — С. 14-16.
Смертельное поражение постоянным электрическим током низкого напряжения / Исаков В.Д., Назаров Ю.В., Теплов К.В., Лисянский А.М. // Судебно-медицинская экспертиза. — М., 2013. — №4. — С. 41-43.
Влияние электричества на организм человека
В этом разделе мы попытаемся исправить очень часто встречающуюся в учебниках по электронике ошибку, связанную с игнорированием или недостаточно детальным раскрытием темы электробезопасности. Если вы читаете эту статью, значит вы занимаетесь или собираетесь заняться практической работой с электричеством, и тема безопасности имеет для вас первостепенное значение. Те авторы, редакторы и издатели, которые по каким-то причинам не включают эту тему в свои труды, лишают читателя жизненно важной информации.
Большинство из нас испытали на себе некоторые формы поражения электрическим током, приведшие к болевым ощущениям или травмам. В основном такой опыт ограничивается покалываниями или болевым ударом вследствие разряда статического электричества. При работе с электрическими схемами, которые выдают большую мощность на нагрузках, боль является наименее значимым результатом поражения электрическим током.
Прохождение электрического тока через материал, обладающий каким-либо сопротивлением, приводит к рассеиванию энергии в виде тепла. Это самая основная форма воздействия электричества на живую ткань: под воздействием тока она нагревается. Если будет выделено большое количество тепла, то ткань может быть просто сожжена. По сути дела, эффект поражения электрическим током аналогичен эффекту воздействия открытого пламени или других источников высоких температур, но помимо этого, электричество может сжечь ткани под кожей человека, и даже его внутренние органы.
Еще более опасным является воздействие электрического тока на нервную систему человека. "Нервная система" - это сеть специальных клеток организма, называемых "нервными клетками" или "нейронами", которые обрабатывают и проводят огромное количество сигналов, управляющих всеми функциями организма. Головной мозг, спинной мозг и сенсорно-моторные органы функционируют в организме как единое целое, позволяя ему чувствовать, двигаться, реагировать, мыслить и помнить.
Нервные клетки взаимодействуют друг с другом по принципу "преобразования": они создают электрические сигналы (очень малых напряжений и токов) в ответ на ввод определенных химических соединений, называемых нейромедиаторами, и высвобождают эти нейромедиаторы при стимуляции электрическими сигналами. Если через человека пройдет электрический ток достаточной величины, то под его воздействием крошечные электрические импульсы, порожденные нейронами, будут многократно превышены, что приведет к перегрузке нервной системы и блокированию рефлексов и сигналов управления мышцами. Последние при этом непроизвольно сократятся, и человек ничего с этим не сможет сделать.
Особенно опасная ситуация может возникнуть, ели человек коснется провода, находящегося под напряжением, рукой. Мышцы предплечья, которые отвечают за сжатие пальцев, развиты намного лучше, чем мышцы, ответственные за разжатие пальцев, поэтому, при воздействии электрического тока на обе группы мышц, сжимающие мышцы победят и сожмут пальцы в кулак. Ели провод при этом будет находиться со стороны ладони, то пальцы его обхватят, усугубив сложившуюся ситуацию. Самостоятельно отпустить провод человек уже не сможет.
С медицинской точки зрения, непроизвольное сокращение мышц называется оцепенением. Вывести пораженного электрическим током человека из состояния оцепенения можно только одним способом: прекратить прохождение тока через него.
Даже после прекращения воздействия электрического тока, человек еще некоторое время не сможет восстановить контроль над своими мышцами, пока не нормализуется баланс нейромедиаторов. На этом принципе построены такие устройства, как "электрошокеры", которые с помощью высоковольтного импульса на некоторое время (до нескольких минут) могут вывести человека из строя.
Электрический ток может повлиять не только на мышцы скелета, но так же и на мышцы диафрагмы и сердца. Чтобы нарушить работу сердца и вызвать аритмию достаточно тока небольшой величины. В этом случае нормальное сердцебиение сменится "трепетанием", которое не сможет обеспечить эффективную перекачку крови к жизненно важным органам организма. Если ток через организм будет достаточно сильным, то наступит смерть от удушья или от остановки сердца. Как это ни покажется странным, но для восстановления сердцебиения медики так же используют мощный разряд электрического тока, приложенный к груди человека.
И последнее, что мы с вами рассмотрим в этой статье - это опасности свойственные электрическим сетям общего пользования. Несмотря на то, что первоначальные исследования электрических цепей нами будут сосредоточены исключительно на постоянном токе (DC), большинство современных бытовых приборов используют для питания переменный ток (AC). Технические причины предпочтения переменного тока постоянному в системах питания не входят в рамки обсуждения этой статьи, но характерные опасности каждого вида электрической энергии очень важны а плане безопасности.
Характер воздействия переменного тока на организм человека в значительной степени зависит от его частоты. В России, США и Европейских странах используется переменный ток низкой частоты (50 - 60 Гц). Такой ток более опасен чем переменный ток высокой частоты, и в 3-5 раз опаснее чем постоянный ток равнозначного напряжения. Воздействие переменного тока низкой частоты приводит к продолжительному сокращению мышц, которое не позволит убрать руку сжавшую провод от этого провода. Воздействие постоянного тока вызовет единичное конвульсивное сокращение мышц, после чего пораженный сможет отойти от источника тока.
Переменный ток с большей вероятностью может вызвать аритмию сердца, тога как постоянный ток может остановить его. После того, как воздействие тока на организм прекращается, то у остановленного сердца имеется больше шансов восстановить нормальное сердцебиение, чем у сердца с аритмией (трепещущего). Поэтому дефибрилляторы, применяемые медиками скорой помощи, используют разряд постоянного тока, который останавливает аритмию и дает сердцу шанс на восстановление.
Теперь мы с вами знаем, что электрические токи опасны и взаимодействия с ними нужно избегать. В последующих статьях этого раздела мы рассмотрим какие токи входят и выходят из организма человека, и изучим меры предосторожности при работе с электричеством.
Постоянный ток распространяется в тканях по пути наименьшего сопротивления, по межклеточным пространствам, кровеносным и лимфатическим сосудам.
В действии постоянного тока на организм большое значение имеет электропроводность тканей, зависящая от их влажности. Сухая кожа обладает сопротивлением в десятки тысяч ом; тонкая, нежная, особенно влажная, а также поврежденная кожа лучше проводит постоянный ток. Электропроводность других сред и тканей организма гораздо больше.
Наибольшей электропроводностью обладают спинномозговая жидкость, меньшей - мышцы и цельная кровь. Значительная величина сопротивления кожи приводит к тому, что во время действия постоянного тока на организм почти все напряжение, подводимое к электродам, приходится на кожу, на внутренние же ткани приходится относительно малый потенциал.
Электропроводность тела - величина непостоянная; она может меняться в широких пределах. Усиление кожного кровообращения и потливость усиливают электропроводность. Функциональное состояние организма влияет на электропроводность; она увеличивается при переутомлении, переживаниях, опьянении. У одного и того же человека электропроводность в течение дня и в различные сезоны года колеблется; на разных участках кожи она неодинакова. Силовые линии тока, пройдя через поверхностные слои кожи, встречают дальше меньшее сопротивление и направляются вглубь в основном по кровеносным и лимфатическим сосудам, мышцам и , что важно отметить , по оболочкам нервных стволов.
Постоянный ток оказывает раздражающее действие на организм не только при его замыкании и размыкании, но и во время прохождения тока. При раздражении кожи силой тока, превышающей пороговую величину, человек ощущает боль в виде покалывания. Если электрод расположен на коже вблизи нервного ствола, ощущение раздражения сильнее. В момент замыкания тока раздражение происходит на катоде, в момент размыкания - на аноде. Установлено, что на катоде во время замыкания возбудимость и проводимость повышаются, а на аноде, наоборот, понижаются. Эти изменения на катоде называют катэлектротоном, на аноде - анэлектротоном. Функциональные изменения происходят не только на месте локализации электродов, но и на расстоянии от них. В момент размыкания возбудимость и проводимость на каждом полюсе меняются в обратном направлении.
Напомним, что каждая клетка является генератором электричества. Между клеткой и окружающей ее средой существует разность потенциалов из-за неравномерного распределения ионов между клеточными мембранами. В покое внутренняя поверхность оболочки клетки заряжена отрицательно, наружная – положительно.
Мембраны клеток имеют большое сопротивление, поэтому через них постоянный ток не проходит. Свободные заряды (в основном ионы K+, Na+) могут перемещаться только от мембраны к мембране.
При воздействии на ткани постоянного электрического тока распределение ионов изменяется. Наружная поверхность мембраны клетки заряжается отрицательно, что согласно ионной теории возбуждения П.П. Лазарева приводит к возбуждению данного участка клетки. Между возбуждёнными и невозбуждёнными участками мембраны возникают локальные токи, что ведёт к изменению концентрации ионов, а это, в свою очередь, - к возбуждению всей клетки. Такое возбуждение клетки вызывает раздражение нервных рецепторов и возникновение рефлекторных реакций местного и общего характера.
Местные реакции заключаются в улучшении проницаемости клеточных мембран, расширении кровеносных сосудов, ускорении кровотока, улучшении обмена веществ между клеткой и межклеточным пространством. В месте воздействия тока образуются биологически активные вещества.
Нервные импульсы, возникающие при раздражении рецепторов, передаются в центральную нервную систему и вызывают сложные ответные реакции органов и систем организма.
3. Механическое (динамическое).
1. Термическое. Функциональные расстройства вызываются в организме при нагреве его до высокой температуры.
По закону Джоуля -Ленца тепло выделяется при прохождении электрического тока
Q = I 2 R,
а так как 80 % человеческого тела состоит из биологической жидкости, то при прохождении электрического тока происходит повышение температуры тела, а затем перегревание жидкостей и ожоги тканей.
2. Электролитическое. Разложение биологической (органической) жидкости, в том числе и крови на составляющие, сопровождающееся нарушением физико-химического состава. Этот процесс не обратим.
3. Динамическое. Ампер проделывал опыт с лягушки, пропуская электрический тока через ее лапку лапкой, что вызывало сокращение мышц.
У человека действие электрического тока также вызывает судорожные сокращения мышц, в результате могут быть разрывы тканей, вывихи, переломы костей в результате электродинамического эффекта, а также мгновенного взрывоподобного образования пара от перегретой тканевой жидкости и крови.
4. Биологическое действие тока проявляется в раздражении и возбуждении живых тканей организма, а также в нарушении внутренних биоэлектрических процессов, протекающих в нормально действующем организме и теснейшим образом связанных с его жизненными функциями.
Электрический ток, проходя через организм, раздражает живые ткани, вызывая в них ответную реакцию –возбуждение, являющееся одним из основных физиологических процессов.
Если электрический ток проходит непосредственно через мышечную ткань, то возбуждение проявляется в виде непроизвольного сокращения мышц. Это так называемое прямое или непосредственное биологическое действие тока.
Однако действие тока может быть не только прямым, но ирефлекторным (косвенным),т.е. через центральную нервную систему. Ток может вызывать возбуждение и тех тканей, которые не находятся на его пути. Дело в том, что электрический ток, проходя через тело человека, вызывает раздражение рецепторов – особых клеток, обладающих высокой чувствительностью к воздействию факторов внешней и внутренней среды.
Раздражение рецепторов приводит в возбуждение находящиеся возле них чувствительные нервные окончания, от которых волна возбуждения в виде нервного импульса передается по нервным путям в центральную нервную систему (т. е. в спинной и головной мозг).
ЦНС передает нервный импульс к мышцам, железам, сосудам, которые могут находиться вне зоны прохождения тока.
При обычных раздражениях рецепторов ЦНС обеспечивает целесообразную ответную деятельность соответствующих органов тела. Например, при случайном прикосновении к горячему предмету человек непроизвольно отдернет от него руку. В случае же чрезмерного для организма раздражающего действия, например, электрического тока, ЦНС может подать нецелесообразную исполнительную команду, что может привести к серьезным нарушениям деятельности жизненно важных органов, в том числе сердца и легких, даже если эти органы не лежат на пути тока.
В живой ткани, в первую очередь в мышцах, в том числе и сердечной мышце, а также в центральной и периферической нервной системе постоянно возникают электрические потенциалы – биопотенциалы, которые связаны с возникновением и распространением процесса возбуждения, т. е. с переходом живой ткани в состояние активной деятельности.
Внешний ток, взаимодействуя с биотоками, значения которых весьма малы, может нарушить нормальный характер их воздействия на ткани и органы человека, подавить биотоки и тем самым вызвать специфические расстройства в организме вплоть до его гибели.
ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИСХОД ПОРАЖЕНИЯ
Исход воздействия электрического тока на организм человека зависит от ряда факторов: 1) сопротивления тела человека, от 2) значения и рода тока и 3)длительности прохождения тока через тело человека, 4) пути тока, 5) частоты тока, 6) приложенногок нему напряжения,а также 7)индивидуальных свойств человека.
1. Сопротивление тела человека влияет на исход поражения, поскольку оно определяет значение тока, проходящего через человека, и приложенного к нему напряжения,.
Сопротивление тела человека колеблется от нескольких сот Ом до 2 кОм.
Тело человека является проводникомэлектрического тока. Проводимость живой ткани в отличие от обычных проводников обусловлена физическими свойствами, сложнейшими биохимическими и биофизическими процессами, присущими лишь живой материи.
В результате сопротивление тела человека является переменнойвеличиной, имеющей нелинейную зависимость от множества факторов, в том числе от состояния кожи, параметровэлектрической цепи, физиологических факторов и состояния окружающей среды.
В живой ткани нет свободных электронов, и поэтому она не может быть уподоблена металлическому проводнику, электрический ток в котором представляет собой упорядоченное движение свободных электронов
Роговой слой кожи имеет наибольшее сопротивление, особенно мозоли. Мягкие ткани имеют гораздо меньшее сопротивление
а) схема кожи как конденсатора; б), в) схема замещения.
Сопротивление тела человека, т. е. сопротивление между двумя электродами, наложенными на поверхность тела, можно условно считать состоящим из трех последовательно включенных сопротивлений: двух одинаковых сопротивлений наружного слоя кожи, составляющими так называемое наружное сопротивление тела человека, и одного, называемого внутренним сопротивлением тела, которое включает в себя два сопротивления внутреннего слоя кожи и сопротивление внутренних тканей тела
R внутр.магк.тк.= 300–500 Ом;
r вхкожи. = 1 кОм –100 кОм;
с вхкожи. = 0,01 мФ; при расчетах обычно пренебрегают.
, =) min для всех расчетов = 1000 Ом.
Состояние кожи сильно влияет на величину сопротивления тела человека. Так, порезы, царапины, ссадины и другие микротравмы, могут снизить сопротивление тела до значения, близкого к значению его внутреннего сопротивления, т. е. до 500–700 Ом, увеличивая опасность поражения человека током.
Такое же влияние оказывает и увлажнение кожи водой или за счет пота. повышая ее проводимость.
Таким образом, работа с электроустановками сырыми руками или в условиях, вызывающих увлажнениекаких-либо участков кожи, а также при повышенной температуре воздухаили при других условиях, вызывающих усиленное потовыделение, усугубляет опасность поражения человека током.
Загрязнение кожи различными веществами и в особенности хорошо проводящими электрический ток (металлическая или угольная пыль) сопровождается снижением ее сопротивления.
На сопротивление тела оказывает влияние площадь контактов, а также место их приложения, так как у одного и того же человека сопротивление кожи неодинаково на разных участках тела.
Наименьшим сопротивлением обладает кожа лица, шеи, рук на участке выше ладоней, тыльной стороны ладоней, подмышечных впадин, и др.
Чем меньше сопротивление кожи, а, следовательно, тела в целом, тем больший ток проходит через человека и тем опаснее исход поражения его током. Данное обстоятельство нередко приходится учитывать в практической деятельности. Например, при работе под напряжением на воздушной линии 127–380 В (по исправлению уличного освещения, замене перегоревшего предохранителя на вводе в дом и т. п.), кроме обычных защитных средств – диэлектрических перчаток, инструмента с изолированными рукоятками и т. п., необходимо надевать изолирующий шлем или обычный головной убор, поскольку случайное прикосновение головой к проводам приводит к тяжелым последствиям. Рукава спецодежды должны быть опущены и по возможности застегнуты у запястья.
Величина R h – нелинейная – уменьшается с увеличением тока, напряженияисо временем воздействия.
Значение тока и длительность его прохождения через тело человека оказывают непосредственное влияние на сопротивление тела: с увеличением тока и времени его прохождения сопротивление падает, поскольку при этом усиливается местный нагрев кожи, что приводит к расширению ее сосудов, а следовательно, к усилению снабжения этого участка кровью и увеличению потовыделения.
С ростом напряжения, приложенного к телу человека, происходит уменьшение в десятки раз сопротивления кожи, а следовательно, и сопротивления тела в целом, которое приближается к сопротивлению внутренних тканей тела, т. е. к своему наименьшему значению 300–500 Ом. Это можно объяснить электрическим пробоем рогового слоя кожи, который происходит при напряжении 50-200 В, увеличением тока, проходящего через кожу (за счет повышения приложенного напряжения), и др.
Сопротивление человека зависит также от рода и частоты тока. При постоянном токе полное сопротивление тела zh оказывается равным активному сопротивлению Rh. При переменном токе zh меньше Rh. С увеличением частоты переменного тока zh будет уменьшаться. При 2500–5000 Гц zh ненамного отличается от внутреннего сопротивления Rв, а при 10–20 кГц и больше можно считать, что наружный слой кожи практически утрачивает сопротивление электрическому току и, следовательно, zh = Rв.
2. Величины (значения) Ih и род тока:
а) пороговый ощутимый ток – слабый зуд и легким покалыванием при
токе, ощущение нагрева кожи при = токе :
в среднем 1,1 мА при f = 50 Гц; = около 6 мА.
Указанные значения пороговых ощутимых токов справедливо лишь для случаев прохождения тока через тело человека по пути рука – рука или рука –ноги,т. е. когда человек касается токоведущих частей ладонями обеих рук или ладонью одной руки, стоя на токопроводящем основании. Если же контакт с токоведущими частями создается другими участками тела, имеющими более нежный кожный покров, в том числе тыльной стороной руки, лицом и пр., то человек начинает ощущать ток еще меньшего значения.
Пороговый ощутимый ток не может вызвать поражения человека, и в этом смысле он не является опасным. Однако длительное прохождение его через человека отрицательно сказывается на здоровье, и поэтому является недопустимым.
Кроме того, ощутимый ток может стать косвенной причиной несчастного случая, поскольку человек, почувствовав воздействие тока, теряет уверенность в своей безопасности и может произвести неправильные действия. Особенно опасным является неожиданное действие ощутимого тока при работах вблизи токоведущих частей, на высоте и в других аналогичных условиях.
Безопасный ток, который длительно (в течение нескольких часов) может проходить через человека, не нанося ему вреда и не вызывая никаких ощущений, очевидно, во много раз меньше порогового ощутимого тока. Точные значения безопасного тока не установлены, в практике его ограничивают несколькими микроамперами, и во всяком случае он не превышает 50 мкА при 50 Гц и 100 мкА при постоянном токе.
Значение безопасного тока необходимо учитывать при конструировании изолирующих защитных средств – штанг, клещей и пр., изолирующих устройств и приспособлений для работы под напряжением, экранирующих защитных костюмов и пр. Дело в том, что токи утечки через изоляцию устройств и приспособлений, а также емкостные токи системы человек – земля длительно проходят через человека и поэтому не должны превышать значений безопасного тока.
Неотпускающий ток. Увеличение тока сверх порога ощутимых токов вызывает у человека судороги мышц и неприятные болезненные ощущения, которые с ростом тока усиливаются и распространяются на все большие участки тела.
Так, при 3-5 мА и 50 Гц раздражающее действие тока ощущается всей кистью руки; при 8-10 мА боль резко охватывает всю руку, сопровождаясь непроизвольными сокращениями мышц кисти руки и предплечья.
При 10-15 мА боль становится непереносимой, а судороги мышц рук оказываются настолько значительными, что человек не может разжать руку, в которой зажата токоведущая часть, не может отбросить от себя провод, т. е. он не в состоянии самостоятельно нарушить контакт с токоведущей частью и оказывается как бы прикованным к ней. Такой же эффект производят и токи большего значения. Все эти токи носят название неотпускающих, а наименьший из них – 10-15 мА при 50 Гц (50-80 мА при постоянном токе) – является порогом неотпускающих токов и называется пороговым неотпускающим током.
Пороговый неотпускающий ток условно можно считать безопасным для человека в том смысле, что он не вызывает немедленного поражения его. Однако при длительном прохождении ток растет за счет уменьшения сопротивления тела, в результате чего усиливаются боли и могут возникнуть серьезные нарушения работы легких и сердца, а в некоторых случаях наступает смерть.
При постоянном токе неотпускающих токов, строго говоря, нет, т. е. человек при любых значениях тока может самостоятельно оторваться от токоведущих частей. Однако в момент отрыва возникают весьма болезненные сокращения мышц, аналогичные тем, которые наблюдаются при переменном токе примерно такого же значения.
Опыты показали, что наибольший постоянный ток, при котором человек в состоянии выдержать боль, возникающую в момент отрыва рук от электродов, составляет 50–80 мА. Этот ток и принят условно за порог неотпускающих токов при постоянном напряжении. Значения пороговых неотпускающих токов у разных людей различны. Они различны также у мужчин, женщин и детей. Средние значения их составляют: для мужчин 16 мА при 50 Гц и 80 мА при постоянном токе, для женщин (соответственно) 11 и 50 мА, для детей 8 и 40 мА.
Ток, превышающий пороговый неотпускающий ток, 25-50 мА при Гц усиливает болевые раздражения и судорожные сокращения мышц, которые распространяются на большие участки тела человека, в том числе на мышцы грудной клетки. Длительное воздействие этого тока может вызвать прекращения дыхания, после чего спустя некоторое время наступит смерть от удушья. Этот ток одновременно приводит к повышению артериального давления крови и затруднению работы сердца. В случае длительного воздействия тока наступает ослабление деятельности сердца и как итог этого – потеря сознания.
Ток больше 50 мА вплоть до 100 мА (50 Гц) действует значительно сильнее тока 25–50 мА. Явления нарушения работы легких и сердца наступают через меньший промежуток времени. Кроме того, воздействие этого тока на сердечно-сосудистую систему оказывается более выраженным и опасным. При этом токе, как и при токе 25–50 мА, первыми (по времени) поражаются, как правило, легкие, а затем сердце.
Фибрилляционный ток.Ток 100 мА и более (при 50 Гц), проходя через тело человека по тому же пути (рука – рука или рука – ноги), распространяют свое действие на мышцу сердца. Это обстоятельство является весьма опасным для жизни человека, поскольку спустя 1–2 с с момента замыкания цепи этого тока через человека может наступить фибрилляция сердца. При этом прекращается кровообращение и, в организме возникает недостаток кислорода; это в свою очередь быстро приводит к прекращению дыхания, т. е. наступает смерть. Таким образом, при токе 100 мА и более прекращает работу сердце, а затем легкие, причем поражение сердца наступает быстро: обычно не более чем через 2 с с начала воздействия тока.
Токи, которые вызывают фибрилляцию сердца, называются фибрилляционными, наименьший из них– пороговым фибрилляционным током.
При частоте 50 Гц. фибрилляционнымиявляются токи в пределах от 100 мА до 5 А, а пороговым фибрилляционным током 100 мА. При постоянном токе порогом фибрилляции считается ток 300 мА, а верхним пределом фибрилляционного тока 5 А.
Эти данные справедливы при условии длительного прохождения тока через человека (не менее 2–3 с) по пути рука – рука или рука – ноги. Если же ток проходит кратковременно, то значение порогового фибрилляционного тока возрастает.
При ином пути фибрилляционные токи могут иметь большие или меньшие значения. Так, например, в случае прикосновения к токоведущей части непосредственно грудью фибрилляция сердца может наступить при токе, значительно меньшем 100 мА, поскольку в этом случае значительная часть этого тока будет проходить непосредственно через сердце.
Ток больше 5 А как при 50 Гц, так и при постоянном токе фибрилляцию сердца, как правило, не вызывает. При таких токах происходит немедленная остановка сердца, минуя состояние фибрилляции.
Если действие тока было кратковременным (до 1–2 с) и не вызвало повреждения сердца в результате нагрева, ожога и т. п., после отключения тока сердце, как правило, самостоятельно возобновляет нормальную деятельность. В практике наблюдались случаи выживания людей после того, как через них проходил ток в несколько ампер и даже в несколько десятков ампер.
Однако при больших токах, даже в случае кратковременного воздействия их, наряду с остановкой сердца происходит и паралич дыхания. При этом после отключения тока дыхание как правило, самостоятельно не восстанавливается и требуется немедленная помощь пострадавшему в виде искусственного дыхания.
При больших токах смертельные поражения являются обычно следствием прекращения дыхания, как и при токах до 100 мА.
Читайте также: