Волна возбуждения распространяющаяся по нервному волокну в физиологии
В словаре Ожегова
ИМПУЛЬС, -а, м. I. Побудительный момент, толчок, вызывающий какое-н. действие (спец.). Электрический и. Нервный и. (распространяющийся по нервному волокну). 2. Внутреннее побуждение к чему-н., интеллектуальный или эмоциональный толчок, стимул (книжн.). Волевой и. И. к творчеству. || прил. импульсный, -ая, -ое (к 1 знач.) и импульсионный, -ая, -ое. Импульсное излучение.
В словаре Ефремовой
Ударение: и́мпульс
- м.
- Кратковременное изменение электрического напряжения или силы тока; кратковременныйсигнал.
- Волна возбуждения, распространяющаяся по нервному волокну (в физиологии).
- м.
- Мера механического движения, равная для материальной точки произведению массы такой точки на ее скорость (в физике).
В словаре Д.Н. Ушакова
И́МПУЛЬС, импульса, ·муж. (·лат. impulsus - толчок).
1. Побудительный мотив, причина, вызывающая совершение каких-нибудь действий (·книж. ). У него не было никаких импульсов к продолжению творческой работы.
2. Непроизвольное движение, обусловленное деятельностью нервных возбудителей ( физиол. ). Волевые импульсы. Автоматические импульсы.
В словаре Синонимов
возбуждение, толчок, стимул, побуждение, удар, выброс, всплеск
В словаре Энциклопедии
в физике: 1) мера механического движения (то же , что количество движения). Импульсом обладают все формы материи, в т. ч. электромагнитные и гравитационные поля;..2) импульс силы - мера действия силы за некоторый промежуток времени; равен произведению среднего значения силы на время ее действия;..3) импульс волновой - однократное возмущение, распространяющееся в пространстве или среде, напр.: звуковой импульс - внезапное и быстро исчезающее повышение давления; световой импульс (частный случай электромагнитного) - кратковременное (? 0,01 с) испускание света источником оптического излучения;..4) импульс электрический - кратковременное отклонение напряжения или тока от некоторого постоянного значения.---(от лат. impulsus - удар, толчок), толчок, побуждение, стремление; побудительная причина.
В словаре Синонимы 4
видеоимпульс, всплеск, дельта-импульс, побуждение, радиоимпульс, стимул, стробимпульс, толчок, фотоимпульс, эхоимпульс, эхо-импульс
В словаре Полная акцентуированная парадигма по А. А. Зализня
В словаре Словарь иностранных слов
1. Внутреннее побуждение, толчок, вызывающий совершение какого-нибудь действия. И. к творчеству.
Импульсивный - 1) являющийся результатом импульса (импульсивный поступок); 2) порывистый, склонный действовать под влиянием импульса (импульсивный человек).||Ср. МОТИВ II, СТИМУЛ.
2. физ. Количество движения, равное произведению массы тела на его скорость. Импульсный - относящийся к импульсу, импульсам. Нервный импульс (физиол.) - волна возбуждения, распространяющаяся по нервной системе. Электрический импульс (эл.) - быстрый одиночный скачок тока или напряжения в электрической цепи.
Ответ на вопрос Волна возбуждения, распространяющаяся по нервному волокну., в слове 7 букв:
Импульс
Импульс И́мпульс (коли́чество движе́ния) — векторная физическая величина, являющаяся мерой механического движения тела. В классической механике импульс тела равен произведению массы formula_1 этого тела на его скорость formula_2, направление импульса совпадает с направлением вектора скорости: В более общем виде, справедливом также и в релятивистской механике, определение имеет вид: Импульс — это аддитивный интеграл движения механической системы, связанный согласно теореме Нётер с фундаментальной симметрией — однородностью пространства.
Если бы к исследуемой катушке через диод D2 не был подключен конденсатор С5, а импульсы , формируемые мультивибратором, имели идеальную прямоугольную форму, то при поступлении фронта положительного импульса на катушке формировался бы положительный иглообразный импульс .
. себе час сна и приступил к работе. Импульс маневровыми двигателями, чтобы слегка изменить . ориентацию корабля в пространстве… и тут же – импульс главным, чтобы немного сбросить скорость . по плану…За первым тормозным импульсом последовал второй, третий, четвертый… десятый .
Эти изменения описываются различными теориями памяти:Рассмотрим подробно основные теории памяти.Физическая теория памятиФизическая теория памяти основывается на следующих принципах:1. Нервный импульс , проходя через определенную группу клеток (нейронов) способен вызвать электрические и механические изменения в местах соприкосновения с ними.2. Нервный импульс оставляет после себя физический след.3. Электрические и механические изменения вызывают повторный импульс , который проходит по этому же самому пути.4. Таким образом, запоминается материал.Химическая теория памятиВ основе химической теории памяти лежат следующие принципы:1. Вследствие химических изменений в клетках информация запоминается.2. Запоминание информации осуществляется под влиянием внешних раздражителей.3. Начинает происходить перегруппировка белковых молекул нейронов.
А вот некий инженер-космолог с лунной станции "Нинья" сочинил, что импульс компенсируется рождением из вакуума потока частиц с общим импульсом , противонаправленным данному.
Так, он обладает энергией, количеством движения ( импульсом ) и массой, которые можно определить следующим образом: энергия W = hv; импульс p = hv/c; масса m = hv/c2, где h — постоянная Планка (6,610-34 джсек); с — скорость света в вакууме (3108 мсек-1); v — частота, с которой фотон был излучен, определяемая из соотношения v = c/ сек-1, где — длина волны света.
Сканер продолжал кидать в них импульс за импульсом , но возвращалась только та часть сигнала, которая отражалась от облаков.
Энергия импульса , его большее или меньшее напряжение, будет зависеть от стимула, который порождает этот импульс .
Этот мысленный процесс прерывает движение первичных импульсов к дыхательной мускулатуре и мышцам гортани и посылает вторичный импульс , сдерживая дыхательные мышцы.
Возбуждение, возникнув в одном участке мембраны возбудимой клетки, обладает способностью распространяться. Длинный отросток нейрона – аксон (нервное волокно) выполняет в организме специфическую функцию проведения возбуждения на большие расстояния.
Закон анатомической и физиологической непрерывности – возбуждение может распространяться по нервному волокну только в случае его морфологической и функциональной целостности.
Закон двустороннего проведения возбуждения – возбуждение, возникающее в одном участке нерва, распространяется в обе стороны от места своего возникновения. В организме возбуждение всегда распространяется по аксону от тела клетки (ортодромно).
Закон изолированного проведения – возбуждение, распространяющееся по волокну, входящему в состав нерва, не передается на соседние нервные волокна.
распространяется по нервным волокнам с затуханием (с декрементом ), т.е. амплитуда локального ответа быстро падает с увеличением расстояния от места его возникновения;
вследствие затухания локальный ответ распространяется на небольшие расстояния (не более 2 см);
местное возбуждение распространяется пассивно, без затрат энергии клетки;
механизм распространения местного возбуждения аналогичен распространению электрического тока в проводниках; такой способ распространения возбуждения называют электротоническим .
распространяется по нервным волокнам без затухания, амплитуда потенциала действия одинакова на любом расстоянии от места его возникновения;
расстояние, на которое распространяется потенциал действия, ограничено только длиной нервного волокна;
распространение потенциала действия – активный процесс, в ходе которого изменяется состояние ионных каналов волокна, энергия АТФ требуется для восстановления трансмембранных ионных градиентов;
механизм проведения потенциала действия более сложен, чем механизм распространения местного возбуждения.
Миелиновые волокна. Часть нервных волокон в ходе эмбриогенеза подвергается миелинизации: леммоциты ( шванновские клетки ) сначала прикасаются к аксону, а затем окутывают его (рис. 1, А, Б). Мембрана леммоцита наматывается на аксон наподобие рулета, образуя многослойную спираль (миелиновую оболочку) (рис. 1, В, Г). Миелиновая оболочка не является непрерывной – по всей длине нервного волокна на равном расстоянии друг от друга в ней имеются небольшие перерывы (перехваты Ранвье). В области перехватов аксон лишен миелиновой оболочки.
Рис. 1. Формирование миелиновой оболочки вокруг аксона на разных стадиях его развития (А – Г); соотношение леммоцита и безмиелиновых волокон (Д) (по Судакову, 2000)
1 – леммоцит, 2 – миелиновое волокно, 3 – миелиновая оболочка, 4 – безмиелиновое волокно
Безмиелиновые волокна. Миелинизация других волокон заканчивается на ранних стадиях эмбрионального развития. В леммоцит погружается один или несколько аксонов; он полностью или частично окружает их, но не образует многослойной миелиновой оболочки (рис. 1, Д).
В состоянии покоя вся внутренняя поверхность мембраны нервного волокна несет отрицательный заряд, а наружная сторона мембраны – положительный. Электрический ток между внутренней и наружной стороной мембраны не протекает, так как липидная мембрана имеет высокое электрическое сопротивление.
Во время развития потенциала действия в возбужденном участке мембраны происходит реверсия заряда (рис. 2, А). На границе возбужденного и невозбужденного участка начинает протекать электрический ток (рис. 2, Б). Электрический ток раздражает ближайший участок мембраны и приводит его в состояние возбуждения (рис. 2, В), в то время как ранее возбужденные участки возвращаются в состояние покоя (рис. 2, Г). Таким образом, волна возбуждения охватывает все новые участки мембраны нервного волокна.
Рис. 2. Механизм распространения возбуждения по безмиелиновому нервному волокну. Объяснения – в тексте
При развитии ПД в одном из перехватов Ранвье происходит реверсия заряда мембраны (рис. 3, А). Между электроотрицательными и электроположительными участками мембраны возникает электрический ток, который раздражает соседние участки мембраны (рис. 3, Б). Однако в состояние возбуждения может перейти только участок мембраны в области следующего перехвата Ранвье (рис. 3, В). Таким образом, возбуждение распространяется по мембране скачкообразно (сальтаторно) от одного перехвата Ранвье к другому.
Рис. 3. Механизм распространения возбуждения по миелиновому нервному волокну. Объяснения – в тексте
Нервные волокна различаются по диаметру и степени миелинизации. Чем больше диаметр нервного волокна и степень его миелинизации, тем выше скорость проведения возбуждения. Волокна с разной скоростью проведения выполняют различные физиологические функции. Нервные волокна подразделяются на 6 типов, характеристики которых приведены в табл. 4.1.
Таблица 4.1. Типы нервных волокон, их свойства и функциональное назначение
Тип
Диаметр (мкм)
Миелинизация
Скорость про-ведения (м/с)
Функциональное назначение
Двигательные волокна соматической НС; чувствительные волокна проприорецепторов
Чувствительные волокна кожных рецепторов
Чувствительные волокна проприорецепторов
Чувствительные волокна терморецепторов, ноцицепторов
Преганглионарные волокна симпатической НС
Постганглионарные волокна симпатической НС; чувствительные волокна терморецепторов, ноцицепторов, некоторых механорецепторов
Нервные волокна всех групп обладают общими свойствами:
нервные волокна практически неутомляемы;
нервные волокна обладают высокой лабильностью, т. е. могут воспроизводить потенциал действия с очень высокой частотой.
Нервный импульс (лат. nervus нерв; лат. impulsus удар, толчок) — волна возбуждения, распространяющаяся по нервному волокну; единица распространяющегося возбуждения.
Нервный импульс обеспечивает передачу информации от рецепторов к нервным центрам и от них к исполнительным органам — скелетной мускулатуре, гладким мышцам внутренних органов и сосудов, железам внутренней и внешней секреции и т. д.
Распространение Нервных импульсов отождествляется с проведением потенциалов действия (см. Биоэлектрические потенциалы). Возникновение возбуждения может быть результатом раздражения (см.), напр, воздействие света на зрительный рецептор, звука на слуховой рецептор, или процессов, протекающих в тканях (спонтанное возникновение Н. и.). В этих случаях Н. и. обеспечивают согласованную работу органов при протекании какого-либо физиологического процесса (напр., в процессе дыхания Н. и. вызывают сокращение скелетных мышц и диафрагмы, результатом чего являются вдох и выдох, и т. д.).
В живых организмах передача информации может осуществляться и гуморальным путем, посредством выброса в русло крови гормонов, медиаторов и т. п. Однако преимущество информации, передаваемой при помощи Н. и., состоит в том, что она более целенаправленна, передается быстро и может быть точнее закодирована, чем сигналы, посылаемые гуморальной системой.
Факт, что нервные стволы являются путем, по к-рому передаются влияния от мозга к мышцам и в обратном направлении, был известен еще в эпоху античности. В средние века и вплоть до середины 17 в. считалось, что по нервам распространяется некая субстанция, подобная жидкости или пламени. Идея о электрической природе Н. и. возникла в 18 в. Первые исследования электрических явлений в живых тканях, связанных с возникновением и распространением возбуждения, были осуществлены Л. Гальвани. Г. Гельмгольц показал, что скорость распространения Н. и., к-рую ранее считали близкой к скорости света, имеет конечное значение и может быть точно измерена. Германн (L. Hermann) ввел в физиологию понятие потенциала действия. Объяснение механизма возникновения и проведения возбуждения стало возможным после создания С. Аррениусом теории электролитической диссоциации. В соответствии с этой теорией Бернштейн (J. Bernstein) предположил, что возникновение и проведение Н. и. обусловлено перемещением ионов между нервным волокном и окружающей средой. Англ. исследователи А. Ходжкин, Б. Катц и Э. Хаксли детально исследовали трансмембранные ионные токи, лежащие в основе развития потенциала действия. Позже стали интенсивно изучаться механизмы работы ионных каналов, по к-рым происходит обмен ионами между аксоном и окружающей средой, и механизмы, обеспечивающие способность нервных волокон проводить ряды Н. и. разного ритма и продолжительности.
Н. и. распространяется за счет местных токов, возникающих между возбужденным и невозбужденным участками нервного волокна. Ток, выходящий из волокна наружу в покоящемся участке, служит раздражителем. Наступающая после возбуждения в данном участке нервного волокна рефрактерность обусловливает поступательное движение Н. и.
Количественно соотношения разных фаз развития потенциала действия можно охарактеризовать, сопоставляя их по амплитуде и длительности во времени. Так, напр., для миелиновых нервных волокон группы А млекопитающих диаметр волокна находится в пределах 1—22 мк, скорость проведения — 5—120 м/сек, длительность и амплитуда высоковольтной части (пика, или спайка) — 0,4—0,5 мсек и 100—120 мв соответственно, следовой негативный потенциал — 12—20 мсек (3—5% от амплитуды спайка), следовой позитивный потенциал — 40—60 мсек (0,2% от амплитуды спайка).
Возможности передачи разнообразной информации расширяются за счет повышения скорости развития потенциала действия, скорости распространения, а также за счет повышения лабильности (см.) — т. е. способности возбудимого образования воспроизводить в единицу времени высокие ритмы возбуждения.
Возникновение Н. и. в нервных клетках (см.) или рецепторах (см.) связано с деполяризацией мембраны, т. е. со снижением величины электрического потенциала на мембране (потенциала покоя, или мембранного потенциала). Если величина мембранного потенциала снижается на 10—20% (пороговый критический уровень), то местный процесс переходит в распространяющийся — возникает потенциал действия (см. Возбуждение).
Конкретные особенности распространения Н. и. связаны со строением нервных волокон (см.). Сердцевина волокна (аксоплазма) обладает низким сопротивлением и, соответственно, хорошей проводимостью, а окружающая аксоплазму плазматическая мембрана — большим сопротивлением. Особенно велико электрическое сопротивление наружного слоя у миелинизированных волокон, у к-рых свободны от толстой миелиновой оболочки только перехваты Ранвье. В безмиелиновых волокнах Н. и. движется непрерывно, а в миелиновых — скачкообразно (сальтаторное проведение).
Различают декрементное и бездекрементное распространение волны возбуждения. Декрементное проведение, т. е. проведение возбуждения с угасанием, наблюдается в безмиелиновых волокнах. В таких волокнах скорость проведения Н. и. невелика и по мере отдаления от места раздражения раздражающее действие местных токов постепенно уменьшается вплоть до полного угасания. Декрементное проведение свойственно волокнам, иннервирующим внутренние органы, обладающие низкой функц, подвижностью. Без декрементное проведение характерно для миелиновых и тех безмиелиновых волокон, к-рые передают сигналы к органам, обладающим высокой реактивностью (напр., сердечной мышце). При бездекрементном проведении Н. и. проходит весь путь от места раздражения до места реализации информации без затухания.
Передача Н. и. с нервного волокна на мышечное или какой-либо другой эффектор осуществляется через синапсы (см.). У позвоночных животных в подавляющем большинстве случаев передача возбуждения на эффектор происходит при помощи выделения ацетилхолина (нервно-мышечные синапсы скелетной мускулатуры, синаптические соединения в сердце и др.). Для таких синапсов характерно строго одностороннее проведение импульса и наличие временной задержки передачи возбуждения.
В синапсах, в синаптической щели которых сопротивление электрическому току благодаря большой площади контактирующих поверхностей мало, происходит электрическая передача возбуждения. В них нет синаптической задержки проведения и возможно двустороннее проведение. Такие синапсы свойственны беспозвоночным животным.
Регистрация Н. и. нашла широкое применение в биол, исследованиях и клин, практике. Для регистрации используют шлейфные и чаще катодные осциллографы (см. Осциллография). При помощи микроэлектродной техники (см. Микроэлектродный метод исследования) регистрируют Н. и. в одиночных возбудимых образованиях — нейронах и аксонах. Возможности исследования механизма возникновения и распространения Н. и. значительно расширились после разработки метода фиксации потенциала. Этим методом были получены основные данные о ионных токах (см. Биоэлектрические потенциалы).
Нарушение проведения Н. и. происходит при повреждении нервных стволов, напр, при механических травмах, сдавливании в результате разрастания опухоли или при воспалительных процессах. Такие нарушения проведения Н. и. зачастую бывают необратимы. Следствием прекращения иннервации могут быть тяжелые функциональные и трофические расстройства (напр., атрофия скелетных мышц конечностей после прекращения поступления Н. и. вследствие необратимой травмы нервного ствола). Обратимое прекращение проведения Н. и. может быть вызвано специально, в терапевтических целях. Напр., с помощью анестезирующих средств блокируют импульсацию, идущую от болевых рецепторов в ц. н. с. Обратимое прекращение проведения Н. и. вызывает и новокаиновая блокада. Временное прекращение передачи Н. и. по нервным проводникам наблюдается и во время общего наркоза.
Библиография: Бpеже М. А. Электрическая активность нервной системы, пер. с англ., М., 1979; Жуков Е. К. Очерки по нервно-мышечной физиологии, Л., 1969; Коннели К. Восстановительные процессы и обмен веществ в нерве, в кн.: Совр, пробл. биофизики, пер. с англ., под ред. Г. М. Франка и А. Г. Пасынского, т. 2, с. 211, М., 1961; Костюк П. Г. Физиология центральной нервной системы, Киев, 1977; Латманизова Л. В. Очерк физиологии возбуждения, М., 1972; Общая физиология нервной системы, под ред. П. Г. Костюка, Л., 1979; Тасаки И. Нервное возбуждение, пер. с англ., М., 1971; Ходжкин А. Нервный импульс, пер. с англ., М., 1965; Ходоров Б. И. Общая физиология возбудимых мембран, М., 1975.
1. Двустороннее проведение возбуждения, т.е. способность возбуждения распространяться по нервному волокну в обе стороны от места возникновения. В условиях целого организма, в норме, возбуждение всегда распространяется по аксону от тела клетки (ортодромно). Двустороннее проведение наблюдается в аксонном холмике нейрона, возникающий в этом месте потенциал действия, переходит не только на аксон, но и на тело нейрона, но из-за отсутствия потециалчувствительных каналов, распространяться по телу клетки не может.
2. Изолированное проведение возбуждения в отдельных нервных волокнах. Обычно оно не передается с одного нервного волокна на другое. Это обусловлено тем, что петли тока в межклеточной жидкости ствола, имеющей низкое сопротивление, почти не проникают в невозбужденные волокна нерва вследствие высокого сопротивления их оболочек. Изолированное проведение импульсов по нервным волокнам обеспечивает высокую точность регуляторной деятельности ЦНС на другие нервные клетки и клетки эффекторы рабочего органа.
Полная изолированность достигается за счет миелинизации нервных волокон, которая завершатся в основном к 3 году жизни, но окончательно только к 30 - 40.
3. Неутомляемость нервного волокна. Н.Е. Введенский (1883) обнаружил, что нерв сохраняет способность к проведению возбуждения в течение 6 – 8 ч непрерывного раздражения. Это обусловлено тем, что при проведении ПД по нервным волокнам используется 1/1 000 000 часть запасов трансмембранных ионных градиентов и, следовательно, нужны небольшие количества АТФ для восстановления ионных градиентов. Расход энергии в нерве примерно в 16 раз меньше, чем на соответствующую единицу массы в целом организме в условиях покоя.
4. Большая скорость проведения возбуждения, достигающая 120м/с. Скорость проведения возбуждения по нервному волокну, является основной функциональной характеристикой его работы. У разных волокон, эта скорость различна, она прямо пропорциональна диаметру волокна: с утолщением аксонов она увеличивается и всегда выше в миелинизированных нервных волокнах.
Скорость проведения по нервному волокну можно определить путем сложного расчета, зная зависимость ионных токов от потенциала и времени, а также условия, определяющие электротоническое распространение - диаметр волокна, сопротивление мембраны и емкость мембраны. Результаты такого расчета близки к экспериментальным данным, что подтверждает справедливость ионной теории возбуждения и электротона.
Здесь мы обсудим только качественные факторы, влияющие на скорость проведения.
Одним из таких факторов является амплитуда входящего Nа + -тока, поскольку, чем больше ток после возбуждающего разряда мембраны, тем больше ток, который потечет через соседние, еще не возбужденные участки, и деполяризация этих участков произойдет быстрее.
Электротоническое распространение мембранных токов также является очень важным для скорости проведения. Поскольку сопротивление и емкость элементарного участка мембраны практически одинакова во всех возбудимых клетках, электротоническое распространение определяется главным образом диаметром волокна.
Поверхность мембраны нервного волокна пропорциональна его диаметру, а поперечное сечение волокна возрастает пропорционально квадрату диаметра. Поэтому при увеличении диаметра волокна продольное сопротивление его внутренней среды, определяемое площадью поперечного сечения, снижается относительно сопротивления мембраны. В результате электротонические токи распространяются более широко (увеличивается постоянная длины) и возрастает скорость проведения. Хотя с увеличением диаметра волокна емкость мембраны тоже возрастает пропорционально площади мембраны (что ведет к уменьшению скорости проведения), преобладает эффект снижения продольного сопротивления. В конечном результате скорость проведения возрастает пропорционально корню квадратному от диаметра волокна.
5. Необходимость анатомической и физиологической целостности нервного волокна. Проведение возбуждения по нервному волокну возможно лишь в том случае, если сохранена его анатомическая и физиологическая целостность. Различные факторы, воздействующие на нервное волокно (наркотические вещества, охлаждение, перевязка и т. д.) приводят к нарушению физиологической целостности, т. е. к нарушению механизмов передачи возбуждения. Несмотря на сохранение его анатомической целостности проведение возбуждения в таких условиях нарушается. Такое нарушение известно как парабиоз.
Н. Е. Введенский обнаружил, что в ответ на действие различных повреждающих агентов приводящих к нарушению физиологической непрерывности нервных волокон, которые можно наблюдать при действии на нерв анестетиков, различных ядов, растворов солей, новокаина, при гипоксии или охлаждении возбудимые ткани отвечают своеобразной фазной, одинаковой во всех случаях реакцией, которую он назвал парабиозом. При этом на раздражаемом участке формируется функциональный блок, через который не проходит нервный импульс. Причиной блока являются специфические расстройства работы ионных каналов мембраны под влиянием альтерирующих агентов, в результате чего изменяются физиологические свойства ткани, в первую очередь резко снижается ее лабильность. Для создания блока протяженность парабиотического участка должна превысить постоянную длины мембраны, иначе ПД может распространиться через этот участок электротонически.
Классические опыты Н. Е. Введенского по изучению парабиоза были выполнены на нервно-мышечном препарате лягушки. Нерв на небольшом участке подвергали повреждению (альтерация) химическими веществами (кокаин, хлороформ, фенол, хлорид калия), сильным фарадическим током, механическим фактором, Затем наносили раздражение электрическим током на альтерированный участок нерва или же выше его. Таким образом, импульсы должны были или возникать в альтерированном отрезке нерва, или проходить через него на своем пути к мышце. Сокращение мышцы свидетельствовало о проведении возбуждения по нерву.
Развитие парабиоза протекает в три стадии: провизорную, парадоксальную и тормозную.
Первая стадия парабиоза провизорная, уравнительная, или стадия трансформации. Эта стадия предшествует остальным, отсюда ее название провизорная. Уравнительной ее называют потому, что в этот период развития парабиотического состояния мышца отвечает одинаковыми по амплитуде сокращениями на сильные и слабые раздражения, наносимые на участок нерва, расположенный выше альтерировянного. В первую же стадию парабиоза наблюдается трансформация (переделка, перевод) частых ритмов возбуждеиия в более редкие. Все описанные изменения ответной реакции мышцы и характера возникновения волн возбуждения в нерве под влиянием раздражения являются результатом ослабления функциональных свойств, особенно лабильности, в альтерированном участке нерва.
Вторая стадия парабиоза парадоксальная. Эта стадия возникает в результате продолжающихся и углубляющихся изменений функциональных свойств парабиотического отрезка нерва. Особенностью этой стадии является парадоксальное отношение альтерированного участка нерва к слабым (редким) или сильным (частым) волнам возбуждения, приходящим сюда с нормальных участков нерва. Редкие волны возбуждения проходят через парабиотический отрезок нерва и обусловливают сокращение мышцы. Частые же волны возбуждения либо совсем не проводятся, как бы затухают здесь, что наблюдается при полном развитии этой стадии, либо вызывают такой же сократительный эффект мышцы, как и редкие волны возбуждения, или менее выраженный.
Третья стадия парабиоза тормозная. Характерной особенностью этой стадии является то, что в парабиотическом участке нерва не только резко снижены возбудимость и лабильность, но он также теряет способность проводить к мышце и слабые (редкие) волны возбуждения.
Парабиоз явление обратимое. При устранении причины, вызвавшей парабиоз, физиологические свойства нервного волокна восстанавливаются. При этом наблюдается обратное развитие фаз парабиоза тормозная, парадоксальная, уравнительная.
Наличие электроотрицательности в альтерированном участке нерва позволило Н. Е. Введенскому рассматривать парабиоз как особый вид возбуждения, локализованный в месте его возникновения и не способный распространяться.
В этой книге предельно сжато изложен курс лекций по нормальной физиологии. Благодаря четким определениям основных понятий студент может сформулировать ответ, за короткий срок усвоить и переработать важную часть информации, успешно сдать экзамен. Курс лекций будет полезен не только студентам, но и преподавателям.
- ЛЕКЦИЯ № 1. Введение в нормальную физиологию
- ЛЕКЦИЯ № 2. Физиологические свойства и особенности функционирования возбудимых тканей
- ЛЕКЦИЯ № 3. Физиологические свойства нервов и нервных волокон
- ЛЕКЦИЯ № 4. Физиология мышц
- ЛЕКЦИЯ № 5. Физиология синапсов
- ЛЕКЦИЯ № 6. Физиология центральной нервной системы
- ЛЕКЦИЯ № 7. Физиология различных разделов ЦНС
Приведённый ознакомительный фрагмент книги Нормальная физиология: конспект лекций (С. С. Фирсова) предоставлен нашим книжным партнёром — компанией ЛитРес.
ЛЕКЦИЯ № 3. Физиологические свойства нервов и нервных волокон
1. Физиология нервов и нервных волокон. Типы нервных волокон
Физиологические свойства нервных волокон:
1) возбудимость – способность приходить в состояние возбуждения в ответ на раздражение;
2) проводимость – способность передавать нервные возбуждение в виде потенциала действия от места раздражения по всей длине;
3) рефрактерность (устойчивость) – свойство временно резко снижать возбудимость в процессе возбуждения.
Нервная ткань имеет самый короткий рефрактерный период. Значение рефрактерности – предохранять ткань от перевозбуждения, осуществляет ответную реакцию на биологически значимый раздражитель;
4) лабильность – способность реагировать на раздражение с определенной скоростью. Лабильность характеризуется максимальным числом импульсов возбуждения за определенный период времени (1 с) в точном соответствии с ритмом наносимых раздражений.
Нервные волокна не являются самостоятельными структурными элементами нервной ткани, они представляют собой комплексное образование, включающее следующие элементы:
1) отростки нервных клеток – осевые цилиндры;
2) глиальные клетки;
3) соединительнотканную (базальную) пластинку.
Главная функция нервных волокон – проведение нервных импульсов. Отростки нервных клеток проводят сами нервные импульсы, а глиальные клетки способствуют этому проведению. По особенностям строения и функциям нервные волокна подразделяются на два вида: безмиелиновые и миелиновые.
Безмиелиновые нервные волокна не имеют миелиновой оболочки. Их диаметр 5–7 мкм, скорость проведения импульса 1–2 м/с. Миелиновые волокна состоят из осевого цилиндра, покрытого миелиновой оболочкой, образованной шванновскими клетками. Осевой цилиндр имеет мембрану и оксоплазму. Миелиновая оболочка состоит на 80 % из липидов, обладающих высоким омическим сопротивлением, и на 20 % из белка. Миелиновая оболочка не покрывает сплошь осевой цилиндр, а прерывается и оставляет открытыми участки осевого цилиндра, которые называются узловыми перехватами (перехваты Ранвье). Длина участков между перехватами различна и зависит от толщины нервного волокна: чем оно толще, тем длиннее расстояние между перехватами. При диаметре 12–20 мкм скорость проведения возбуждения составляет 70—120 м/с.
В зависимости от скорости проведения возбуждения нервные волокна делятся на три типа: А, В, С.
Наибольшей скорость проведения возбуждения обладают волокна типа А, скорость проведения возбуждения которых достигает 120 м/с, В имеет скорость от 3 до 14 м/с, С – от 0,5 до 2 м/с.
2. Механизмы проведения возбуждения по нервному волокну. Законы проведения возбуждения по нервному волокну
Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые.
В миелиновых волокнах благодаря совершенству метаболизма возбуждение проходит, не затухая, без декремента. За счет большого радиуса нервного волокна, обусловленного миелиновой оболочкой, электрический ток может входить и выходить из волокна только в области перехвата. При нанесения раздражения возникает деполяризация в области перехвата А, соседний перехват В в это время поляризован. Между перехватами возникает разность потенциалов, и появляются круговые токи. За счет круговых токов возбуждаются другие перехваты, при этом возбуждение распространяется сальтаторно, скачкообразно от одного перехвата к другому. Сальтаторный способ распространения возбуждения экономичен, и скорость распространения возбуждения гораздо выше (70—120 м/с), чем по безмиелиновым нервным волокнам (0,5–2 м/с).
Существует три закона проведения раздражения по нервному волокну.
Закон анатомо-физиологической целостности.
Проведение импульсов по нервному волокну возможно лишь в том случае, если не нарушена его целостность. При нарушении физиологических свойств нервного волокна путем охлаждения, применения различных наркотических средств, сдавливания, а также порезами и повреждениями анатомической целостности проведение нервного импульса по нему будет невозможно.
Закон изолированного проведения возбуждения.
Существует ряд особенностей распространения возбуждения в периферических, мякотных и безмякотных нервных волокнах.
В периферических нервных волокнах возбуждение передается только вдоль нервного волокна, но не передается на соседние, которые находятся в одном и том же нервном стволе.
В мякотных нервных волокнах роль изолятора выполняет миелиновая оболочка. За счет миелина увеличивается удельное сопротивление и происходит уменьшение электрической емкости оболочки.
В безмякотных нервных волокнах возбуждение передается изолированно. Это объясняется тем, что сопротивление жидкости, которая заполняет межклеточные щели, значительно ниже сопротивления мембраны нервных волокон. Поэтому ток, возникающий между деполяризованным участком и неполяризованным, проходит по межклеточным щелям и не заходит при этом в соседние нервные волокна.
Закон двустороннего проведения возбуждения.
Нервное волокно проводит нервные импульсы в двух направлениях – центростремительно и центробежно.
В живом организме возбуждение проводится только в одном направлении. Двусторонняя проводимость нервного волокна ограничена в организме местом возникновения импульса и клапанным свойством синапсов, которое заключается в возможности проведения возбуждения только в одном направлении.
- ЛЕКЦИЯ № 1. Введение в нормальную физиологию
- ЛЕКЦИЯ № 2. Физиологические свойства и особенности функционирования возбудимых тканей
- ЛЕКЦИЯ № 3. Физиологические свойства нервов и нервных волокон
- ЛЕКЦИЯ № 4. Физиология мышц
- ЛЕКЦИЯ № 5. Физиология синапсов
- ЛЕКЦИЯ № 6. Физиология центральной нервной системы
- ЛЕКЦИЯ № 7. Физиология различных разделов ЦНС
Приведённый ознакомительный фрагмент книги Нормальная физиология: конспект лекций (С. С. Фирсова) предоставлен нашим книжным партнёром — компанией ЛитРес.
Читайте также: