За что отвечают нервные клетки у животных
Группа нервных тканей объединяет ткани эктодермального происхождения, которые в совокупности образуют нервную систему и создают условия для реализации ее многочисленных функций. Обладают двумя основными свойствами: возбудимостью и проводимостью.
Структурно-функциональной единицей нервной ткани является нейрон (от др.-греч. νεῦρον — волокно, нерв) - клетка с одним длинным отростком - аксоном, и одним/несколькими короткими - дендритами.
Спешу сообщить, что представление, будто короткий отросток нейрона - дендрит, а длинный - аксон, в корне неверно. С точки зрения физиологии правильнее дать следующие определения: дендрит - отросток нейрона, по которому нервный импульс перемещается к телу нейрона, аксон - отросток нейрона, по которому импульс перемещается от тела нейрона.
Отростки нейронов проводят сгенерированные нервные импульсы и передают их другим нейронам, эффекторам (мышцы, железы), благодаря чему мышцы сокращаются или расслабляются, а секреция желез усиливается или уменьшается.
Отростки нейронов покрыты жироподобным веществом - миелиновой оболочкой, которая обеспечивает изолированное проведение нервного импульса по нерву. Если бы не было миелиновой оболочки (вообразите!) нервные импульсы распространялись бы хаотично, и, когда мы хотели сделать движение рукой, двигалась бы нога.
Существует болезнь, при которой собственные антитела уничтожают миелиновую оболочку (случаются и такие сбои в работе организма.) Эта болезнь - рассеянный склероз, по мере прогрессирования приводит к разрушению не только миелиновой оболочки, но и нервов - а значит, происходит атрофия мышц и человек постепенно становится обездвиженным.
Вы уже убедились, насколько значимы нейроны, их высокая специализация приводит к возникновению особого окружения - нейроглии. Нейроглия - вспомогательная часть нервной системы, которая выполняет ряд важных функций:
- Опорная - поддерживает нейроны в определенном положении
- Изолирующая - ограничивает нейроны от соприкосновения с внутренней средой организма
- Регенераторная - в случае повреждения нервных структур нейроглия способствует регенерации
- Трофическая - с помощью нейроглии осуществляется питание нейронов: напрямую с кровью нейроны не контактируют
В состав нейроглии входят разные клетки, их в десятки раз больше чем самих нейронов. В периферическом отделе нервной системы миелиновая оболочка, изученная нами, образуется именно из нейроглии - шванновских клеток. Между ними хорошо заметны перехваты Ранвье - участки, лишенные миелиновой оболочки, между двумя смежными шванновскими клетками.
Нейроны функционально подразделяются на чувствительные, двигательные и вставочные.
Чувствительные нейроны также называются афферентные, центростремительные, сенсорные, воспринимающие - они передают возбуждение (нервный импульс) от рецепторов в ЦНС. Рецептором называют концевое окончание чувствительных нервных волокон, воспринимающих раздражитель.
Вставочные нейроны также называются промежуточные, ассоциативные - они обеспечивают связь между чувствительными и двигательными нейронами, передают возбуждение в различные отделы ЦНС.
Двигательные нейроны по-другому называются эфферентные, центробежные, мотонейроны - они передают нервный импульс (возбуждение) из ЦНС на эффектор (рабочий орган). Наиболее простой пример взаимодействия нейронов - коленный рефлекс (однако вставочного нейрона на данной схеме нет). Более подробно рефлекторные дуги и их виды мы изучим в разделе, посвященном нервной системе.
На схеме выше вы наверняка заметили новый термин - синапс. Синапсом называют место контакта между двумя нейронами или между нейроном и эффектором (органом-мишенью). В синапсе нервный импульс "преобразуется" в химический: происходит выброс особых веществ - нейромедиаторов (наиболее известный - ацетилхолин) в синаптическую щель.
Разберем строение синапса на схеме. Его составляют пресинаптическая мембрана аксона, рядом с которой расположены везикулы (лат. vesicula — пузырек) с нейромедиатором внутри (ацетилхолином). Если нервный импульс достигает терминали (окончания) аксона, то везикулы начинают сливаться с пресинаптической мембраной: ацетилхолин поступает наружу, в синаптическую щель.
Попав в синаптическую щель, ацетилхолин связывается с рецепторами на постсинаптической мембране, таким образом, возбуждение передается другому нейрону, и он генерирует нервный импульс. Так устроена нервная система: электрический путь передачи сменяется химическим (в синапсе).
Гораздо интереснее изучать любой предмет на примерах, поэтому я постараюсь как можно чаще радовать вас ими ;) Не могу утаить историю о яде кураре, который используют индейцы для охоты с древних времен.
Этот яд блокирует ацетилхолиновые рецепторы на постсинаптической мембране, и, как следствие, химическая передача возбуждения с одного нейрона на другой становится невозможна. Это приводит к тому, что нервные импульсы перестают поступать к мышцам организма, в том числе к дыхательным мышцам (межреберным, диафрагме), вследствие чего дыхание останавливается и наступает смерть животного.
Собираясь вместе, аксоны образуют нервные пучки. Нервные пучки объединяются в нервы, покрытые соединительнотканной оболочкой. В случае, если тела нервных клеток концентрируются в одном месте за пределами центральной нервной системы, их скопления называют нервные узлы - или ганглии (от др.-греч. γάγγλιον — узел).
В случае сложных соединений между нервными волокнами говорят о нервных сплетениях. Одно из наиболее известных - плечевое сплетение.
Неврологические болезни могут развиваться в любой точке нервной системы: от этого будет зависеть клиническая картина. В случае повреждения чувствительного пути пациент перестает чувствовать боль, холод, тепло и другие раздражители в зоне иннервации пораженного нерва, при этом движения сохранены в полном объеме.
Если повреждено двигательное звено, движение в пораженной конечности будет невозможно: возникает паралич, но чувствительность может сохраняться.
Постепенно любые движения мышцами становятся для пациента все труднее, становится тяжело долго говорить, повышается утомляемость. Наблюдается характерный симптом - опущение верхнего века. Болезнь может привести к слабости диафрагмы и дыхательных мышц, вследствие чего дыхание становится невозможным.
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Нервная ткань – совокупность связанных между собой нервных клеток (нейронов, нейроцитов) и вспомогательных элементов (нейроглии), которая регулирует деятельность всех органов и систем живых организмов. Это основной элемент нервной системы, которая делится на центральную (включает головной и спинной мозг) и периферическую (состоящую из нервных узлов, стволов, окончаний).
Основные функции нервной ткани
- Восприятие раздражения;
- формирование нервного импульса;
- быстрая доставка возбуждения к центральной нервной системе;
- хранение информации;
- выработка медиаторов (биологически активных веществ);
- адаптация организма к переменам внешней среды.
Свойства нервной ткани
- Регенерация — происходит очень медленно и возможна только при наличии неповрежденного перикариона. Восстановление утраченных отростков идет путем прорастания.
- Торможение — предотвращает возникновение возбуждения или ослабляет его
- Раздражимость — ответ на влияние внешней среды благодаря наличию рецепторов.
- Возбудимость — генерирование импульса при достижении порогового значения раздражения. Существует нижний порог возбудимости, при котором самое маленькое влияние на клетку вызывает возбуждение. Верхний порог – это величина внешнего воздействия, которая вызывает боль.
Строение и морфологическая характеристика нервных тканей
Основная структурная единица – это нейрон. Он имеет тело – перикарион (в котором находятся ядро, органеллы и цитоплазма) и несколько отростков. Именно отростки являются отличительной чертой клеток этой ткани и служат для переноса возбуждения. Длина их колеблется от микрометров до 1,5м. Тела нейронов также различных размеров: от 5 мкм в мозжечке, до 120 мкм в коре головного мозга.
До недавнего времени считалось, что нейроциты не способны к делению. Сейчас известно, что образование новых нейронов возможно, правда только в двух местах – это субвентрикулякная зона мозга и гиппокамп. Продолжительность жизни нейронов ровна длительности жизни отдельного индивидуума. Каждый человек при рождении имеет около триллиона нейроцитов и в процессе жизнедеятельности теряет каждый год 10млн клеток.
Отростки делятся на два типа – это дендриты и аксоны.
Строение аксона. Начинается он от тела нейрона аксонным холмиком, на всем протяжении не разветвляется и только в конце разделяется на ветки. Аксон – это длинный отросток нейроцита, который выполняет передачу возбуждения от перикариона.
По количеству отростков нейроциты делятся на:
- униполярные (есть только один отросток, аксон);
- биполярные (присутствует и аксон, и дендрит);
- псевдоуниполярные (от некоторых клеток в начале отходит один отросток, но затем он делится на два и по сути является биполярным);
- мультиполярные (имеют множество дендритов, и среди них будет лишь один аксон).
Мультиполярные нейроны превалируют в организме человека, биполярные встречаются только в сетчатке глаза, в спинномозговых узлах – псевдоуниполярные. Монополярные нейроны вовсе не встречаются в организме человека, они характерны только для малодифференцированной нервной ткани.
Нейроглия
Нейроглия – это совокупность клеток, которая окружает нейроны (макроглиоциты и микроглиоциты). Около 40% ЦНС приходится на клетки глии, они создают условия для выработки возбуждения и его дальнейшей передачи, выполняют опорную, трофическую, защитную функции.
Клетки нейроглии
Макроглия:
Эпендимоциты – образуются из глиобластов нервной трубки, выстилают канал спинного мозга.
Астроциты – звездчатые, небольших размеров с многочисленными отростками, которые образуют гематоэнцефалический барьер и входят в состав серого вещества ГМ.
Олигодендроциты – основные представители нейроглии, окружают перикарион вместе с его отростками, выполняя такие функции: трофическую, изолирования, регенерации.
Нейролемоциты – клетки Шванна, их задача образование миелина, электрическая изоляция.
Микроглия – состоит из клеток с 2-3 ответвлениями, которые способны к фагоцитозу. Обеспечивает защиту от чужеродных тел, повреждений, а также удаление продуктов апоптоза нервных клеток.
Нервные волокна — это отростки (аксоны или дендриты) покрытые оболочкой. Они делятся на миелиновые и безмиелиновые. Миелиновые в диаметре от 1 до 20 мкм. Важно, что миелин отсутствует в месте перехода оболочки от перикариона к отростку и в области аксональных разветвлений. Немиелинизированные волокна встречаются в вегетативной нервной системе, их диаметр 1-4 мкм, перемещение импульса осуществляется со скоростью 1-2 м/с, что намного медленнее, чем по миелинизированых, у них скорость передачи 5-120 м/с.
Нейроны подразделяются за функциональными возможностями:
- Афферентные – то есть чувствительные, принимают раздражение и способны генерировать импульс;
- ассоциативные — выполняют функцию трансляции импульса между нейроцитами;
- эфферентные — завершают перенос импульса, осуществляя моторную, двигательную, секреторную функцию.
Вместе они формируют рефлекторную дугу, которая обеспечивает движение импульса только в одном направлении: от чувствительных волокон к двигательным. Один отдельный нейрон способен к разнонаправленной передачи возбуждения и только в составе рефлекторной дуги происходит однонаправленное течение импульса. Это происходит из-за наличия в рефлекторной дуге синапса – межнейронного контакта.
Синапс состоит из двух частей: пресинаптической и постсинаптической, между ними находится щель. Пресинаптическая часть – это окончание аксона, который принес импульс от клетки, в нем находятся медиаторы, именно они способствуют дальнейшей передачи возбуждения на постсинаптическую мембрану. Самые распространённые нейротрансмитеры: дофамин, норадреналин, гамма аминомасляная кислота, глицин, к ним на поверхности постсинаптической мембраны находятся специфические рецепторы.
Химический состав нервной ткани
Вода содержится в значительном количестве в коре головного мозга, меньше ее в белом веществе и нервных волокнах.
Белковые вещества представлены глобулинами, альбуминами, нейроглобулинами. В белом веществе мозга и аксонных отростках встречается нейрокератин. Множество белков в нервной системе принадлежит медиаторам: амилаза, мальтаза, фосфатаза и др.
В химический состав нервной ткани входят также углеводы – это глюкоза, пентоза, гликоген.
Среди жиров обнаружены фосфолипиды, холестерол, цереброзиды (известно, что цереброзидов нет у новорожденных, их количество постепенно вырастает во время развития).
Микроэлементы во всех структурах нервной ткани распределены равномерно: Mg, K, Cu, Fe, Na. Их значение очень велико для нормального функционирования живого организма. Так магний участвует в регуляции работы нервной ткани, фосфор важен для продуктивной умственной деятельности, калий обеспечивает передачу нервных импульсов.
Сложность и многообразие нервной системы зависит от взаимодействия между нейронами, которые, в свою очередь, представляют собой набор различных сигналов, передаваемых в рамках взаимодействия нейронов с другими нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов, генерирующих электрический заряд, который движется вдоль нейрона.
Строение
Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.
Аксон обычно — длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.
Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.
Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.
Си́напс — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона, другие — гиперполяризацию; первые являются возбуждающими, вторые — тормозящими. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.
Классификация
На основании числа и расположения дейндритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.
Безаксонные нейроны - небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.
Униполярные нейроны - нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.
Биполярные нейроны - нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
Мультиполярные нейроны - Нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе
Псевдоуниполярные нейроны - являются уникальными в своём роде. От тела отходит один остросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (т. е. находится вне тела клетки).
По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).
Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.
Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны - ультиматные и предпоследние – неультиматные.
Ассоциативные нейроны (вставочные или интернейроны) - эта группа нейронов осуществляет связь между эфферентными и афферентными, их делят на комисуральные и проекционные (головной мозг).
Нервные клетки бывают звездчатые и веретенообразные, пирамидальные, зернистые, грушевидные и т.д.
Развитие и рост нейрона
Нейрон развивается из небольшой клетки — предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным. [1] (рус.) ) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении — некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.
Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона.
Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста — это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.
Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.
См. также
- Нервные волокна
- Аксон
- Дендрит
- Синапс
- Компьютер
- Искусственный нейрон
- Нейронная сеть
Сома · Аксон (Аксонный холмик, Терминаль аксона, Аксоплазма, Аксолемма, Нейрофиламенты)
Структура нервной системы
Нервная система содержит две основных категории, или типа, клеток: нейроны и глиальные клетки.
Сравнительная анатомия и эволюция
Губки не имеют никаких клеток, соединенных друг с другом посредством синаптической щели, то есть, не имеют нейронов, и, следовательно, не имеют нервной системы. Они, однако, имеют гомологи многих генов, которые играют ключевую роль в синаптической функции. Недавние исследования показали, что клетки губок экспрессируют группу белков, которые группируются, формируя структуру, напоминающую постсинаптическую плотность (часть синапса, передающую сигналы). Тем не менее, функция этой структуры в настоящее время неясна. Хотя клетки губок не демонстрируют синаптической передачи, они общаются друг с другом с помощью волн кальция и других импульсов, которые опосредуют некоторые простые действия, такие как сжатие всего организма. 10)
Медузы, гребневики и связанные с ними животные имеют диффузные нервных сети, а не центральную нервную систему. У большинства медуз, нервная сеть распределяется более или менее равномерно по всему телу; у гребневиков она сосредоточена вблизи рта. Нервные сети состоят из сенсорных нейронов, которые принимают химические, тактильные и визуальные сигналы; двигательных нейронов, которые могут активировать сокращения стенок организма; и промежуточных нейронов, которые обнаруживают паттерны активности в сенсорных нейронах и, в ответ, посылают сигналы в группы двигательных нейронов. В некоторых случаях, промежуточные нейроны группируются в дискретные ганглии. Развитие нервной системы у радиальных относительно неструктурировано. В отличие от билатерий, радиальные имеют только два изначальных слоя клеток, энтодерму и эктодерму. Нейроны генерируются из специального набора эктодермальных клеток-предшественников, которые также служат в качестве предшественников для любого другого эктодермального типа клеток. 11)
Членистоногие, такие как насекомые и ракообразные, имеют нервную систему, состоящую из ряда ганглий, соединенных вентральной нервной цепочкой, состоящей из двух параллельных связок, проходящей вдоль живота. Как правило, каждый сегмент тела имеет по одном ганглии на каждой стороне, хотя некоторые ганглии сплавлены, образуя мозг и другие крупные ганглии. Сегмент головки содержит мозг, также известный как надглоточный ганглий. В нервной системе насекомых, мозг анатомически делится на протоцеребрум, дейтоцеребрум и триоцеребрум. Сразу за мозгом располагается подглоточный ганглий, который состоит из трех пар сплавленных ганглиев. Он контролирует ротовые, слюнные железы и некоторые мышцы. Многие членистоногие имеют хорошо развитые органы чувств, в том числе, сложные глаза для зрения и усики для обоняния и ощущения феромонов. Сенсорная информация, поступающая от этих органов, обрабатывается мозгом насекомых. У насекомых, многие нейроны имеют клеточные тела, которые расположены на краю мозга и являются электрически пассивными – клетки тела служат только для обеспечения поддержки обмена веществ и не участвуют в передаче сигналов. Протоплазматическое волокно обильно проходит от тела и ветвей клеток, при этом некоторые части передают сигналы, в то время как другие части принимают сигналы. Таким образом, большинство частей мозга насекомого имеют пассивные клеточные тела, расположенные по периферии, в то время как обработка нервного сигнала происходит в волокнах протоплазмы, называемых нейропилем, в передней части. 15)
Функция
Развитие
Патология
Центральная нервная система защищена основными физико-химическими барьерами. Физически, головной и спинной мозг окружены жесткими менингеальными оболочками, и заключены в костях черепа и позвонках, которые объединяются, формируя сильную физическую защиту. Химически, мозг и спинной мозг изолированы так называемым гематоэнцефалическим барьером, который предотвращает перемещение большинства видов химических веществ из кровотока во внутреннюю часть центральной нервной системы. Эти средства защиты делают во многих отношениях ЦНС менее восприимчивой, чем ПНС; обратной стороной, однако, является то, что повреждение центральной нервной системы, как правило, имеют более серьезные последствия. Хотя нервы, как правило, лежат глубоко под кожей, за исключением нескольких участков, таких как локтевой нерв около локтевого сустава, они все еще относительно подвержены физическим повреждениям, которые могут причинить боль, вызвать потерю чувствительности, или потерю мышечного контроля. Повреждение нервов может также быть вызвано припухлостью или гематомой в местах, где нерв проходит через плотный костяной канал, как это происходит при кистевом туннельном синдроме. Если полностью перерезать нерв, он будет часто регенерировать, но у длинных нервов этот процесс может занять несколько месяцев. В дополнение к физическому повреждению, периферическая невропатия может быть вызвана многими другими медицинскими проблемами, в том числе, генетическими заболеваниями, метаболическими заболеваниями, такими как диабет, воспалительными состояниями, такими как синдром Гийена-Барре, витаминной недостаточностью, инфекционными заболеваниями, такими как лепра или опоясывающий лишай, или отравлением токсинами, такими как тяжелые металлы. Во многих случаях, нет никаких причин, которые могут быть идентифицированы, и называться идиопатическими. Для нервов также возможна временная потеря функции, в результате приводящая к нечувствительности – общие причины такой нечувствительности включают в себя механическое давление, понижение температуры или химическое взаимодействие с местными обезболивающими препаратами, такими как лидокаин. Физическое повреждение спинного мозга может привести к потере чувствительности или нарушению движений. Если травма позвоночника вызывает только отеки, симптомы могут быть временными, однако, если нервные волокна в позвоночнике фактически уничтожены, потеря функции, как правило, является постоянной. Экспериментальные исследования показали, что спинномозговые нервные волокна пытаются повторно расти таким же образом, как и нервные волокна, но в спинном мозге разрушение ткани обычно производит рубцовую ткань, которая не может быть пронизана заново растущими нервами.
Нервная система управляет всеми системами организма. Ее структурной и функциональной единицей является нейроцит (нейрон) — нервная клетка. У каждой нервной клетки есть несколько ответвлений (дендритов), проводящих сигнал, который возникает на их чувствительном окончании. С помощью этих отростков нейроны вступают в контакт друг с другом и передают нервные импульсы от центральной нервной системы к тканям органов и обратно.
Нервные волокна в спинном и головном мозге составляют основной объем белого вещества. Нервы в виде нитевидных образований имеют разную толщину и длину. Афферентные волокна передают импульс от рецептора в центральный отдел нервной системы, от нее сигнал идет к внутренним органам по эффекторным волокнам. В центральном отделе находятся и нервные ганглии — группы клеток, отвечающих за периферию (часть нервной системы вне головного и спинного мозга). Сигнал, поступивший на ганглии, распространяется на нейроциты. Сплетения, где происходит обмен сигналом между нервами, пучками и волокнами, называются нервными.
Головной мозг расположен в черепной коробке, разделен на два полушария (правое и левое) и покрыт корковым веществом (корой головного мозга). В головном мозге выделяют несколько отделов:
Головной мозг домашней кошки весит около 30 г — это меньше, чем у ее ближайших диких сородичей
Головной мозг домашней кошки весит около 30 г — это меньше, чем у ее ближайших диких сородичей большой мозг;
- конечный мозг;
- промежуточный мозг;
- средний мозг;
- ромбовидный мозг;
- задний мозг (мозжечок и мост);
- продолговатый мозг.
Каждый отдел имеет свои функции, часть которых достаточно хорошо изучена, а часть остается загадкой для ученых. Так, мозжечок отвечает за координацию движений и равновесие, гипоталамус регулирует обмен веществ, продолговатый мозг координирует работу дыхательной и кровеносной систем. В головном мозге собирается и анализируется информация, поступающая от органов чувств, внутренних органов и мышц.
У домашних кошек легко формируются условные рефлексы
Мозг кошки достаточно хорошо развит, поэтому эти животные могут не только выполнять действия, обусловленные инстинктами, но и обучаться новому. Кошек можно научить откликаться на кличку, выполнять некоторые команды. Хотя они не настолько хорошо поддаются дрессировке, как собаки, это не означает, что они глупее.
Головной мозг заключен в три оболочки (твердую, паутинную и мягкую). Между твердой и паутинной оболочками находится пространство, заполненное спинномозговой жидкостью, предохраняющей мозг от ударов.
У кошек хорошо развиты зрительные доли головного мозга
Спинной мозг располагается в позвоночнике, состоит из серого и белого веществ и подразделяется на три отдела (шейный, грудной и пояснично-крестцовый). Спинной мозг кошки имеет длину около 40 см и весит 8–9 г. Он выполняет две функции:
- рефлекторную (осуществляет двигательные рефлексы скелетной мускулатуры и управляет вегетативными рефлексами. Нейроны спинного мозга иннервируют мышцы туловища, конечностей, шеи, дыхательные мышцы — диафрагму и межреберные мышцы, внутренние органы и ткани);
- проводниковую, или проводящую (проводит нервные импульсы от рецепторов внутренних органов, мышц и кожи, а также нервные импульсы от головного мозга в обратном направлении). Воспаление спинного мозга или его механическое повреждение приводит к нарушению двигательной активности животного и работы внутренних органов.
Периферическая нервная система состоит из черепных и спинномозговых нервов с их корешками, нервных сплетений, ганглиев и нервных окончаний, располагающихся в органах и тканях. Периферическая нервная система разделяется на вегетативную и соматическую.
Вегетативная, или автономная, нервная система имеет центры в спинном и головном мозге, а также нервные узлы, расположенные вне их. Она разделяется на две части:
- симпатическую (иннервирует гладкие мышцы сосудов, внутренние органы, железы. Отвечает за расширение зрачка, увеличение частоты сердечных сокращений, расширение бронхов, усиление секреции адреналина и норадреналина);
- парасимпатическую (иннервирует легкие, бронхи, сердце, пищевод, желудок, толстую и тонкую кишку, радужную оболочку, слезную, подчелюстную, подъязычную, околоушную железы. Ее действие обратно функционально действию симпатической системы: она сужает зрачок и коронарные сосуды, тормозит перистальтику, уменьшает частоту и силу сердечных сокращений).
Вегетативная нервная система контролирует и поддерживает нужную температуру тела, ритм сердца, желудочную секрецию, выведение продуктов обмена веществ, секрецию гормонов. Она называется автономной, поскольку все перечисленные действия осуществляются без волевого усилия животного
Соматическая нервная система отвечает за осознанное управление скелетными мышцами. От ее центра, расположенного в головном мозге, отходят двигательные нервы, которые достигают органов, не прерываясь нервными узлами. Поэтому скорость проведения нервных импульсов по соматическим нервам в десятки раз выше, чем по вегетативным. Это обеспечивает быстрые и целесообразные движения мышц, когда животному нужно прыгнуть, схватить добычу и т. д.
Деятельность симпатической нервной системы активизируется в стрессовых ситуациях
Деятельность нервной системы регулируется рефлексами. При рождении котенок получает набор стандартных реакций на внешние и внутренние раздражители. По мере роста кошка приобретает условные рефлексы. Так, животное ходит в лоток и точит когти в строго определенных местах в квартире. Кошки быстро учатся реагировать на большинство раздражителей, обладают хорошим ассоциативным восприятием и памятью.
Читайте также: