Лактозный оперон у кишечной палочки
Регуляция активности генов у прокариот на примере лак-оперона
С-ва ген кода
Ген код - это принцип записи инф о последовательности аминокислот в полипептиде в виде последовательности нуклеотидов в молекуле Ирнк.
генетич код триплетен.
Триплеты в молекле иРНК наз кодонами, а комплементарные им тирплеты в молекуле тРНК- антиколонами.
свойства ген кода
1 . Триплетность.одну аминокислоту кодируют три рядом расположенных нуклеотида.
2. Неперекрываемость.каждый нуклеотид входит в состав только одного кодона.
3.Вырожденность (избыточность).один смысловой элемент (аминокислота) шифруется несколькими кодонами.
4. Специфичность (однозначность).каждый отдельный кодон кодирует только один аминокислотный остаток в молекуле полипептида.
5. Непрерывность.каждый нуклеотид принадлежит какому либо триплету т.е между кодонами иРНК нет нуклеотидов, не входящих в последовательность кодонов данного гена.
6. Коллинеарность.кодоны нуклеотдиных кислот и соответствующие им аминокислоты полипептидов расположены в одинаковом линейном порядке.
7. Однонаправленность. Считавание кода начинается с определяемой кодоном – инициатором точки и идёт в одном направлении в пределах данного гена от 5'концу к 3'концу.
8. Универсальность.ген код одинаков для всез организмов.
активность генов проявляется на уровне определяемых ими фенотипических эффектах. Мерой активности генов служит функциональная активность белков, контролируемых этими генами.
В механизме регуляции активности генов прокариот большую роль играют особые гены-регуляторы, контролирующие синтез регуляторных белков.
Такие белки, соединяесь с последовательностями промоторов реагируемых генов, способны подавлять или активировать их транскрипцию.
Регуляторные белки, подавляющие транскрипцию структурных генов, наз репрессорами.
Последовательности нуклеотидов регуляторных генов, с которыми взаимодействуют белки репрессоры, получили название операторов.
Регуляция, связанная с подавлением транскрипции, наз негативной.
Регуляторные белки, активирующие транскрипции. структурных генов, наз активаторами. Регуляция, связанная с активацией транскрипции получила наз – позитивной.
Лактозный оперон E coil включ след элементы: 3 гена, кодирующих белки ферменты: B-галактозидазу, пермеазу и трансацетилазу, участвующие в метаболизме лактозы и транспорте её в клетку, и регуляторной области. Регуляторная область, в свою очередь, сост из промотора, оператора- последовательности нуклеотидов для связ белка репрессора, а также последовательности нуклеотидов для связ белка активатора. Активность генов контролир регуляторным геном Lac1.
Если клетки E.coli перенести на среду, содержащую только лактозу, то проникая внутрь клеток небольшая часть ее превращается в аллолактозу, которая связываясь с белком -репрессором, инактивируст его. В результате РНК-полимераза осуществляет транскрипцию полицистронной мРНК для синтеза всех ферментов, необходимых для транспорта и метаболизма лактозы.
В данном случает осуществляется негативная регуляция генов оперона. При этом аллолактоза служит ИНДУКАТОРОМ генов лак-оперона, кодирующего белки, участвующие в транспорте и метаболизме лактозы.
При культивировании кишечной палочки на среде, содержащей как лактозу, так и глюкозу клетки Е coli, используют для гликолиза в основном глюкозу. Указанная особенность метаболизма обусловливается наличием у Е coli механизма положительной регуляции активности генов lac оперона.
50. общая схема регуляции генов у эукариот
1) осуществление транскрипции эукриотических генов возможно лишь при декомпактизации хроматина: 2) регуляция активности генов у эукариот осуществляется на всех уровнях реализации наследственной информации: на уровне транскрипции, РНК -процессннта альтернативный сплайсинг), транспорта зрелой мРНК из ядра в цитоплазму, трансляции и посттрансляционных преобразований белков ( химическая модификация и разрушение функционально активного полипептида) 3)активность каждою структурного гена контролируется многими генами-регуляторами, а эффекторами часто служат гормоны.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Геном современных прокариотических клеток характеризуется относительно ʜебольшими размерами. У кишечной палочки (Е. coli) он предϲҭавлен кольцевой молекулой ДНК длиной около 1 мм, кот-я содержит 4·106 пар нуклеотидов, образующих около 4000 генов. Оϲʜᴏвная маϲса ДНК прокариот (около 95%) активно траʜскрибируется в каждый даʜный момент времени. Как было сказаʜо выше, геном прокариотической клетки оргаʜизоваʜ в виде нуклеоида - комплекса ДНК с ʜегистоҥовыми белками.
Характеризуя наϲледственный материал прокариотической клетки в целом, ʜеобходимо оҭᴍетить, что он заключен ʜе только в нуклеоиде, но также присутствует в цитоплазме в виде ʜебольших кольцевых фрагментов ДНК - плазмид.
Плазмиды - это широко раϲпростраʜенные в живых клетках вʜехромосомные геʜетические элементы, способные существовать и размножаться в клетке автоҥомно от геномной ДНК. Описаʜы плазмиды, которые реплицируются ʜе автоҥомно, а только в соϲҭаве геномной ДНК, в которую они включаются в определенных учаϲтках. В ϶ҭᴏᴍ случае их называют эписомами.
В прокариотических (бактериальных) клетках обнаружены плазмиды, которые ʜесут наϲледственный материал, определяющий такие свойства, как способность бактерий к конъюгации, а также их устойчивость к ʜекоторым лекарственным веществам.
Оперон — функциональная единица генома у прокариот, в состав которой входят цистроны (гены, единицы транскрипции), кодирующие совместно или последовательно работающие белки и объединенные под одним (или несколькими) промоторами.
Опероны по количеству цистронов делят на моно-, олиго- и полицистронные, содержащие, соответственно, только один, несколько или много цистронов (генов). Концепцию оперона для прокариот предложили в 1961 году французские ученые Жакоб и Моно, за что получили Нобелевскую премию в 1965 году.
Лактозный оперон (lac оперон) — полицистронныйоперон бактерий, кодирующий гены метаболизмалактозы.
Регуляция экспрессии генов метаболизма лактозыу кишечной палочки (Escherichia coli) была впервые описана в 1961 году учеными Ф. Жакобом и Ж. Моно [1] (получившими в 1965 году Нобелевскую премию совместно с А. Львовым). Бактериальная клетка синтезирует ферменты, принимающие участие в метаболизме лактозы, лишь в том случае, когда лактоза присутствует в окружающей среде и клетка испытывает недостаток глюкозы.
Лактозный оперон (lac operon) состоит из трех структурных генов, промотора, оператора и терминатора. Принимается, что в состав оперона входит также ген-регулятор, который кодирует белок-репрессор.
Структурные гены лактозного оперона — lacZ, lacYи lacA:
· lacZ кодирует фермент β-галактозидазу, которая расщепляет дисахарид лактозу на глюкозу и галактозу,
· lacY кодирует β-галактозид пермеазу, мембранный транспортный белок, который переносит лактозу внутрь клетки.
· lacA кодирует β-галактозид трансацетилазу, фермент, переносящий ацетильную группу от ацетил-КoA на бета-галактозиды.
Для катаболизма лактозы необходимы только продукты генов lacZ и lacY, роль продукта гена lacAне ясна. Возможно, что реакция ацетилирования дает бактериям преимущество при росте в присутствии определенных неметаболизируемых аналогов бета-галактозидов, поскольку эта модификация ведет к их детоксикации и выведению из клетки.
РНК-полимераза начинает транскрипцию с промоторного района, который перекрывается с операторным районом. В отсутствие или при низкой концентрации лактозы в клетке белок-репрессор, который является продуктом моноцистронногооперона LacI, обратимо соединяется с операторным районом и препятствует транскрипции. Таким образом, в отсутствие лактозы в клетке ферменты для метаболизма лактозы не синтезируются.
Даже в случае, когда в плазматической мембране клетки отсутствует фермент β-галактозидпермеаза, лактоза из окружающей среды может попадать в клетку в небольших количествах. В клетке две молекулы лактозы связываются с белком-репрессором, что приводит к изменению его конформации и далее к диссоциации белка-репрессора от операторного участка. Может осуществляться транскрипция генов лактозного оперона. При снижении концентрации лактозы новые порции белка-репрессора взаимодействуют с операторными последовательностями и препятствуют транскрипции. Данный механизм регуляции активности лактозного оперона называют позитивной индукцией. Веществом-индуктором служит лактоза; при её связывании с белком-репрессором происходит его диссоциация от операторного участка.
Итак, ферменты для усвоения лактозы синтезируются в клетке кишечной палочки при двух условиях:
1. наличие лактозы;
2. отсутствие глюкозы.
Регуляция работы лактозного оперона в зависимости от концентрации лактозы происходит по принципу отрицательной обратной связи: чем больше лактозы — тем больше ферментов для её катаболизма (положительная прямая связь); чем больше ферментов — тем меньше лактозы, чем меньше лактозы — тем меньше производится ферментов (двойная отрицательная обратная связь).
Триптофа́новый оперо́н — оперон, содержащий гены ферментов, задействованных в биосинтезеаминокислоты триптофан. Триптофановый оперон имеется у многих бактерий, впервые был описан у Escherichia coli. Триптофановый оперон является важной экспериментальной моделью для изучения регуляции экспрессии генов.
Триптофановый оперон был описан в 1953 году Жаком Моно и сотрудниками. Он стал первым опероном, для которого была показана регуляция посредством репрессии. В то время как лактозный оперон активируется веществом, на утилизацию которого он направлен (лактозой), триптофановый оперон подавляется триптофаном — соединением, за биосинтез которого ответственен данный оперон. Он содержит 5 структурных генов (цистронов): trpE, trpD, trpC, а также trpB и trpA, кодирующие субъединицы триптофансинтазы[en]. На значительном расстоянии от оперона находится ген trpR, кодирующий белок, подавляющий экспрессию триптофанового оперона. Продукт этого гена в присутствии триптофана связывается с оператором и блокирует транскрипцию оперона. В отличие от lac-оперона, в состав trp-оперона входит особая последовательность — аттенюатор[en], необходимая для тонкой регуляции транскрипции оперона.
Регуляция триптофаного оперона регулируется двумя способами: с помощью белка-репрессора (репрессия), а также с помощью особой последовательности — аттенюатора. При этом в каждом из этих случаев регуляция осуществляется по принципу отрицательной обратной связи.
Структура триптофанового белка-репрессора
Белок-репрессор (триптофановый репрессор) имеет молекулярную массу 58 кДа, кодируется геном trpR, расположенным на значительном расстоянии от самого оперона. Ген trpR непрерывно экспрессируется на невысоком уровне, образуя мономеры, которые затем объединяются в тетрамеры. В отсутствие триптофана эти тетрамеры неактивны и распадаются в нуклеоплазме. Однако если концентрация триптофана в клетке высока, то тетрамеры связываются с триптофаном. При этом происходит изменение конформации репрессора, позволяющее ему связаться с оператором. В данном случае существенно, что в триптофановом опероне нуклеотидные последовательности оператора и промотора перекрываются, так что присоединение комплекса L-триптофан•белок-репрессор автоматически блокирует связывание РНК-полимеразы с промотором. Таким образом, транскрипция триптофанового оперона блокируется[1].
Аттенюация является вторым механизмом регуляции trp-оперона. Этот способ регуляции возможен потому, что у прокариот, лишённых ядра, процессы транскрипции и трансляции не разделены во времени и пространстве, как у эукариот, и идут одновременно: пока РНК-полимераза синтезирует мРНК, синтезированный участок этой мРНК транслируется рибосомой. В связи с этим процесс трансляции может оказывать непосредственное влияние на транскрипцию оперона.
Сразу после оператора в триптофановом опероне располагается последовательность длиной 162 п. н.[2], получившая название лидерной последовательности. Она кодирует так называемый лидерный пептид, который получил такое название, поскольку с полицистронной мРНК триптофанового оперона этот пептид синтезируется первым. В состав лидерной последовательности входит особая аттенюаторнаяпоследовательность (аттенюатор), которая, влияя на вторичную структуру синтезируемой мРНК, способна вызывать преждевременную терминацию транскрипции. Аналогичная последовательность имеется также у бактерий рода Salmonella[3].
В trp-опероне Escherichia coli аттенюатор имеет 4 области с обращёнными повторами[en]. Транскрипция аттенюатора приводит к образованию шпилек в мРНК. Возможны 3 варианта шпилек, а именно между последовательностями: 1—2, 2—3, 3—4. При этом образование шпильки 1—2 блокирует образование шпильки 2—3, а образование шпильки 2—3, в свою очередь, препятствует образованию шпильки 3—4. Только шпилька 3—4 является терминаторной, то есть при её образовании РНК-полимераза с высокой вероятностью диссоциирует от ДНК, и транскрипция прерывается.
Схожий механизм аттенюации имеет место при синтезе других аминокислот: гистидина, фенилаланина и треонина[4]. В аттенюаторе гистидинового оперона Escherichia coliимеется 7 гистидиновых кодонов, фенилаланинового — 7 фенилаланиновых кодонов[5].
Фенотипическая (ненаследственная) изменчивость. Модификации. Нормы реакции. Фенокопии. Примеры.
Под действием определённых условий окружающей среды на организм изменяется течение ферментативных реакций(активность ферментов) и может происходить синтез специализированных ферментов, некоторые из которых (МАР-киназа и др.) ответственны за регуляцию транскрипции генов, зависящую от изменений окружающей среды. Таким образом, факторы окружающей среды способны регулировать экспрессию генов, то есть интенсивность выработки ими специфических белков, функции которых отвечают специфическим факторам окружающей среды.
МОДИФИКАЦИЯ (от лат. modus — мера, вид и facio — делаю)— фенотипическое изменение организма под воздействием факторов внешней среды, Модификации не затрагивают структуру гена, меняется лишь уровень его экспрессии. Чаще всего модификации носят адаптивный характер. Например, изменение размера листовой пластинки в зависимости от освещенности. Неадаптивные модификации называются морфозами и представляют собой аномалии или уродства (см. Морфоз). Предел модификационной изменчивости называется нормой реакции. Чем шире норма реакции, тем выше адаптивные возможности организма. Более широкой нормой реакции обладают количественные признаки, развитие которых определяется несколькими генами (полигенно). Существуют длительные модификации, которые сохраняются на протяжении ряда поколений даже в отсутствии вызвавшего их фактора. Механизм длительных модификаций пока не установлен.
Пример модификации у человека - развитие мускалатуры
Предел проявления модификационной изменчивости организма при неизменном генотипе — норма реакции. Норма реакции обусловлена генотипом и различается у разных особей данного вида. Фактически норма реакции — спектр возможных уровней экспрессии генов, из которого выбирается уровень экспрессии, наиболее подходящий для данных условий окружающей среды. Норма реакции имеет пределы или границы для каждого биологического вида (нижний и верхний) — например, усиленное кормление приведёт к увеличению массы животного, однако она будет находиться в пределах нормы реакции, характерной для данного вида или породы. Норма реакции генетически детерминирована и наследуется. Для разных признаков пределы нормы реакции сильно различаются. Например, широкие пределы нормы реакции имеют величина удоя, продуктивность злаков и многие другие количественные
Границы модификационной изменчивости определяет норма реакции. Она контролируется генотипом и наследуется. Если признак имеет узкую норму реакции, он изменяется незначительно (например, жирность молока у крупного рогатого скота). Признак с широкой нормой реакцииизменяется в широких пределах (например, масса тела).
признаки, узкие пределы — интенсивность окраски большинства животных и многие другие качественные признаки.
Тем не менее, для некоторых количественных признаков характерна узкая норма реакции (жирность молока, число пальцев на ногах у морских свинок), а для некоторых качественных признаков — широкая (например, сезонные изменения окраски у многих видов животных северных широт). Кроме того, граница между количественными и качественными признаками иногда весьма условна.
При фенокопиях измененный под действием внешних факторов признак копирует признаки другого генотипа (пример: прием алкоголя во время беременности приводит к комплексу нарушений, которые могут копировать симптомы болезни Дауна).
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Согласованная регуляция групп родственных генов
У бактерий гены, кодирующие белки одного и того же метаболического пути или определяющие близкородственные функции, часто регулируются согласованно. Это значит, что их экспрессия начинается и заканчивается или согласованно продолжается в ответ на один и тот же регуляторный сигнал. Гены, подчиняющиеся согласованной регуляции, в геноме часто бывают сцеплены и транскрибируются с промотора, находящегося на 5'-конце такой группы генов (кластера), в виде единственной молекулы РНК, называемой полицистронным(или полигенным) транскриптом. Группа координированно экспрессирующихся генов называется опероном. Так три гена, кодирующие ферменты, ответственные за метаболизм галактозы, организованы в оперон с промотором (Р) и примыкающим к нему регуляторным сегментом - оператором (О) на 5'-конце транскрибируемой последовательности: galE-galТ-galК (рисунок 3, прилагается).
Позитивная и негативная регуляция
Негативная регуляция инициации транскрипции, или репрессия, осуществляется белками-репрессорами, которые связываются с операторами. Поскольку последовательности оператора и промотора часто перекрываются, связывание репрессоров со своими операторами ограничивает доступ РНК-полимеразы к промотору, подавляя тем самым инициацию транскрипции. Позитивная регуляция может осуществляться путем связывания специфических белков с нуклеотидными последовательностями, расположенными в области промотора. Связанный активаторный белок способствует ассоциации РНК-полимеразы с промотором и, следовательно, увеличивает вероятность инициации транскрипции.
Гены, кодирующие регуляторные белки, которые связываются с операторными или активаторными последовательностями, могут находиться как вблизи контролируемых ими генов, так и далеко от них.
Бактерии Е. coli могут использовать в качестве единственного источника углерода и энергии лактозу, поскольку они способны образовывать в большом количестве β-галакто-зидазу – фермент, расщепляющий лактозу на глюкозу и галактозу. Однако при росте на других источниках углерода в клетках E.coli образуется очень мало β-галактозидазы. Ген, ответственный за синтез β-галактозидазы, называется индуцибельным, поскольку кодируемый им фермент синтезируется только тогда, когда в клетке присутствуют сахара, имеющие β-галактозильные остатки. Помимо β-галактозидазы, β-галактозиды индуцируют образование еще двух белков: β-галактозидпермеазы, необходимой для проникновения β-галактозидов в клетку, и β-галактозидтранс-ацетилазы, фермента с невыясненной пока функцией. В этих трех генах содержится вся информация о белках, кодируемых данным опероном. Они транскрибируются в единую полицистронную РНК, при трансляции которой образуются почти одинаковые количества соответствующих белков. Поэтому можно сказать, что эти три гена экспрессируются согласованно. Со структурными генами lac-оперона связаны несколько типов регуляторных элементов, ответственных за индуцибельность и координированную регуляцию этих генов. Промотор – это нуклеотидная последовательность, с которой связывается РНК-полимераза и начинается транскрипция трех структурных генов. Оператор – это сайт, с которым связывается lac-репрессор, подавляющий транскрипцию lac-оперона. Ген, не входящий в состав lас-оперона, кодирует репрессор полипептидную цепь с мол. массой 37000 Да. Репрессор прочно связывается с оператором, находясь в тетрамерной форме.
Поскольку промоторная и операторная последовательности перекрываются, связывание репрессора с оператором мешает связыванию РНК-полимеразы с промотором, что приводит к блокированию транскрипции структурных генов. Транскрипцию оперона можно индуцировать, если блокировать связывание репрессора с оператором. Такое блокирование происходит при связывании одного из β-галактозидов с той или иной субъединицей репрессора, что уменьшает сродство последнего к оператору. После отсоединения репрессора от промотра полимераза может связаться с промотором и инициировать транскрипцию оперона.
Для экспрессии 1ас-оперона, как и других индуцибельных оперонов, которые осуществляют контроль синтеза ферментов, участвующих в метаболизме сахаров, необходимо не только снять репрессию оперона, но и получить некий сигнал. Таким сигналом служит комплекс циклического AMP(cAMP) с белком-активатором катаболизма (САР, от англ, catabolite activator protein), который связывается со специфической последовательностью, находящейся в самом начале lас-промотора. сАМР, принимающий участие во многих клеточных процессах, образуется из АТР в ответ на самые разные вне- и внутриклеточные события. САР представляет собой димер из идентичных полипептидных цепей. Связывание комплекса САР-сАМР со специфической последовательностью в начале промотора приводит к усилению транскрипции lac-оперона почти в 50 раз. Сам по себе САР не способен к такому связыванию и стимуляции транскрипции. Усиление транскрипции с помощью комплекса САР-сАМР объясняется тем, что, связываясь с ДНК в непосредственной близости от сайта присоединения РНК-полимеразы, он усиливает сродство этого фермента к промотору.
Комплекс САР-сАМР является положительным сигналом при регуляции экспрессии и других оперонов, в частности тех, которые кодируют ферменты расщепления углеводов. Например, для экспрессии аrа- и gаl-оперонов должны произойти дерепрессия с помощью индукторов - арабинозы и галактозы соответственно и связывание комплекса САР-сАМР с областью промотора. Так, у бактерий, растущих на глюкозе, уровень внутриклеточного сАМР и соответственно комплекса САР-сАМР очень низок. Поэтому, если даже в среде присутствует арабиноза или галактоза, в клетках не образуются ферменты, необходимые для утилизации этих cахаров. При уменьшении количества глюкозы уровни сАМР и САР-сАМР увеличиваются и опероны в присутствии необходимых индукторов начинают экспрессироваться. Подобная комбинация позитивной и негативной систем регуляции очень важна, поскольку это предотвращает образование ферментов, потребность в которых в данный момент отсутствует.
Оперон, обеспечивающий у E.coliспособность к сбраживанию молочного сахара – лактозы, состоит из промотора, оператора и трех структурных генов. Ген lac Z кодирует фермент- генгалактозидазу, катализирующую гидролиз лактозы до глюкозы и галактозы; ген lac Y-галактозидпермеазу, обеспечивающую транспорт различных сахаров, включая лактозу, мелибиозу и рафинозу, в клетку; ген lac А –тиогалактозидтрансацетилазу, роль которой обычно в утилизации лактозы не ясна. Все три белка обычно присутствуют в клеткахЕ.coliв следовых количествах. Однако при выращивании бактерий на среде, в которой единственным источником углерода и энергии служит лактоза, количество указанных ферментов увеличивается в 1000 раз.
Ген–регулятор лактозного (lac) оперона, обозначаемый lac 1, кодирует белок–репрессор. В активной форме это тетрамер, образованный четырьмя копиями продукта гена lac 1 – полипептидами, состоящими из 360 аминокислот. Клетки с мутациями в гене lac 1 конститутивны по синтезу ферментов, кодируемых генами lac Z, Y и A.
Конститутивный синтез продуктов этих генов возможен не только в случае lac 1 -мутаций в гене репрессоре, но и в случае мутаций в операторе, обозначаемых О
. Такие мутации всегда цис–доминантны, поскольку, в отличие от гена–репрессора, оператор может влиять на возможность транскрипции структурных генов только тогда, когда он находится непосредственно рядом с промотором. Если в клетке находится индуктор, он конкурирует с оператором за молекулы репрессора, причем репрессор в первую очередь связывается с индуктором.
В качестве индукторов могут служить различные соединения. Лактоза представляет собой индуктор и одновременно субстрат. В нормальных клетках даже в отсутствие индуктора остаточная активность пермеазы и –галактозидазы обеспечивают возможность проникновения в клетку минимального количества лактозы, которая в результате реакции, катализируемой–галактозидазой, переходит в аллолактозу. Последняя связывается с репрессором, обусловливая его отсоединение от оператора, что, в свою очередь, открывает путь РНК–полимеразе для связывания с промотором и транскрипции генов lac Z, Y и A. К соединениям, являющимся только индукторами, но не субстратами, относятся изопропил–D–тиогалактопиранозид (ИПТГ) и тиометил––D–галактопиранозид (ТМГ), часто используемые для исследования регуляции lac–оперона.
Мутации в промоторе в отличие от мутаций в гене–репрессоре и в операторе не влияют на индуцируемость оперона, однако они регулируют уровень его экспрессии, изменяя эффективность присоединения РНК–полимеразы, и тем самым частоту инициации транскрипции lac–оперона.
Наряду с негативной системой регуляции, lac–оперон контролируется и с помощью позитивно действующих элементов. Их обнаружение связано с исследованием феномена Ж. Моно диаусией, суть которого состоит в том, что утилизация лактозы начнется лишь после того, как будет использована вся имеющаяся в среде глюкоза. Этот феномен, как установили Б. Магазаник с соавторами, - одно из проявленийкатаболитной репрессии или глюкозного эффекта, известного еще с 40-х годов и выражающегося в неспособностиE.coli, катаболизировать различные углеводы (лактозу, арабинозу, галактозу и др.) в присутствии глюкозы, как более эффективного источника энергии.
Расшифровать механизм глюкозного эффекта сумели Р. Перлман и А. Пастан, обнаружившие, что транскрипция lac–оперона контролируется двумя элементами: небольшой молекулой–эффектором, циклическим аденозинмонофосфатом (цАМФ) и белком–активатором САР (от первых букв англ. Catabolite fctivator protein– белок-активатор катаболизма), называемым также белком–рецептором цАМФ. У эукариот цАМФ является медиатором действия гормонов. Оказалось, что добавление цАМФ к растущим в среде с глюкозой клеткам E .coliхотя и замедляет скорость их роста, но снимает катаболическую репрессию, обусловливая тем самым возможность экспрессии лактозного оперона в условиях одновременного присутствия в среде лактозы и глюкозы. Позднее была показана обратная зависимость между содержанием в клетке цАМФ и глюкозы: глюкоза подавляет активность фермента, синтезирующего цАМФ из АТФ. Этот фермент, названныйаденилатциклазой, кодируется геномсуа.
В структуре промотора lac–оперона выявлено два сайта связывания. Один из них взаимодействует с РНК – полимеразой, другой – с комплексом САР–цАМФ. Присоединение комплекса САР–цАМФ к своему сайту на промоторе – условие индукции оперона. Следовательно, этот комплекс позитивно контролирует транскрипцию lac–оперона. Белок САР состоит из двух идентичных субъединиц с общей М
около 45000, кодируемых геном САР, илиCRP. Мутации в генесарнарушают участок связывания белка с цАМФ, либо расширяют спектр кофакторов, объединение с которыми обеспечивает индукцию ферментов lac–оперона. У некоторых мутантов в генесартаким кофактором наряду с цАМФ может служить и цГМФ.
В норме, то есть в присутствии глюкозы и в отсутствии цАМФ, белок САР не может объединяться с промотором lac–оперона. В свою очередь, РНК–полимераза не способна эффективно связываться с этим промотором, если к нему не присоединен комплекс САР–цАМФ. Некоторые мутации в промоторе обусловливают независимость экспрессии lac – оперона от глюкозного эффекта, снижая сродство промотора к комплексу САР–цАМФ.
Таким образом, транскрипция lac–оперона на самом деле находится под двойным – негативным и позитивным– контролем. Комплекс САР–цАМФ позволяет РНК–полимеразе присоединиться к матричной ДНК до начала транскрипции. Репрессор – продукт гена lac 1–препятствует инициации синтеза иРНК.
В настоящее время расшифрована полная нуклеотидная последовательность регуляторной области lac–оперона, включающая промотор и оператор. Более того, ДЖ. Шапиро и ДЖ. Беквит с соавторами (1969) сумели выделить чистую ДНК этого оперона, включающую фрагмент гена lac1, полностью промоторную и операторную последовательности, ген lac Z , а также фрагмент гена lac Y. Выяснение структурной организации оператора lac–оперона показало, что существенную роль во взаимодействиях мультимерных белков типа lac–репрессора или РНК–полимеразы с ДНК играют симметричные структуры – палиндромы. Оператор lac–оперона состоит из 26 п.н., из которых 14 представляют собой палиндром: в различных цепях они читаются одинаково, но в противоположных направлениях. Палиндром обнаружен и в участке промотора, связывающемся с комплексом САР–цАМФ.
Читайте также: