Лучевое исследование костей у детей
Рентгенография по-прежнему является ведущей в распознавании заболеваний и повреждений костей и суставов. Это наилучший метод визуализации костной ткани.
На рентгенограмме тень кости выделяется на фоне менее интенсивных теней мягких тканей. Корковый слой и костномозговой канал четко очерчены, а губчатое вещество образует отчетливый структурный трабекулярный рисунок. В свою очередь, тень мягких тканей представляется не гомогенной, и в пределах ее дифференцируются более плотные мышечные массы.
Рентгеновский снимок представляет собой своеобразное плоскостное суммарное изображение кости, отдельные элементы которой наслаиваются друг на друга и в определенной мере искажают анатомическую картину. Поэтому при исследовании костно-суставной системы рентгенография, как правило, производится не менее чем в двух взаимно перпендикулярных проекциях, позволяющих путем сопоставления воссоздать объемную картину изучаемых костей. Для этого разработаны стандартные типичные укладки, соответствующие определенным анатомическим областям скелета.
Патологические процессы вызывают в кости ряд изменений:
1) величины (длина, толщина);
5) целости (деструкция, перелом);
6) нарушение суставных соотношений (вывихи);
7) соединений костей и др.
Все эти изменения отчетливо отображаются на рентгенограммах.
Рентгеновское излучение поглощается, главным образом, плотными частями кости, содержащими соли кальция, т.е. костными балками. Надкостница, эндост, костный мозг, сосуды и нервы, суставной и ростковый хрящ не дают в норме различимой тени на снимках (Рис. 1).
Рентгеновская томография (линейная томография) оказывается полезной при исследовании отделов скелета, имеющих сложное анатомическое строение – череп, позвоночник, крупные суставы. Здесь изображения отдельных костей и их частей накладываются друг на друга. Линейная томография позволяет получить изолированное изображение нужного отдела той или иной кости (Рис. 2).
Компьютерная томография (КТ) имеет огромные возможности по сравнению с обычной томографией для исследования скелета. Метод позволил получить изображение деталей, которые были не доступны классическому рентгенологическому исследованию. На компьютерных томограммах картина структуры костей, их тонкое строение практически соответствует тому, что мы видим при изучении анатомического распила. Аксиальная плоскость изображения устраняет неудобства сложного взаимного расположения костей и суставов. Кроме того, компьютерные томографы современных конструкций позволяют получать трехмерное изображение, что важно для полного представления о пространственном соотношении костей и суставов. Поэтому компьютерную томографию скелета назначают в случаях, если информация, полученная в результате обычного рентгенологического исследования, оказывается недостаточной или не соответствует данным клиники. При КТ мы можем обнаружить такие изменения структуры и контуров костей, которые раньше были невозможными (сложные переломы, ранние проявления заболевания).
Рис. 1. Рентгенограмма и схема коленного сустава в прямой и боковой проекциях. Так как рентгеновское излучение поглощается главным образом плотными частями кости, содержащими соли кальция, т.е. костными балками, на рентгенограммах отражены только плотные элементы сустава (сравните со схемой). Надкостница, эндост, костный мозг, сосуды и нервы, суставной и ростковый хрящ не дают в норме различимой тени на снимках.
АБ Рис. 2. Латеральная рентгенограмма черепа (2А) и линейная томограмма черепа на уровне пазухи основной кости (стрелка на рис. 2Б). Череп имеет сложное анатомическое строение. Изображения отдельных костей и их частей накладываются друг на друга, в том числе кости, образующие стенки воздушной полости основной кости. Линейная томография позволяет получить изолированное изображение и увидеть четко полость и образующие ее кости.
АБ
Рис. 3. Рентгенограмма (А) и компьтерная томограмма (Б) коленного сустава пациента с травмой. Компьютерная томография позволяет подтвердить скопление крови в суставе (стрелки). Уровень жидкости виден и на рентгенограмме (стрелки), но недостаточно отчетливо.
Компьютерная томография дала возможность получить изображение мягких тканей – связок, сухожилий, мышц, распознать внутрисуставные повреждения, увидеть скопление гноя, кровоизлияния и проч. (Рис. 3).
Магнитно-резонансная томография (МРТ) обладает преимуществами для изучения мягкотканных элементов опорно-двигательного аппарата по сравнению с КТ (Рис. 4).
На магнитно-резонансных томограммах более четко различаются хрящи, мышцы, суставные сумки, при исследовании позвоночника можно изучать структуру межпозвоночного диска и корешков спинномозговых нервов, кроме того, МРТ не связана с лучевой нагрузкой.
Метод магнитно-резонансной томографии основан на принципах ядерно-магнитного резонанса (ЯМР) – методе спектроскопии, используемом учеными для получения данных о химических и физических свойствах молекул. Основное преимущество МРТ перед рентгенографическим методом при диагностике заболеваний опорнодвигательного аппарата состоит, во-первых, в получении томографических изображений в аксиальной, коронарной и сагиттальной плоскостях, а также трехмерных изображений исследуемой области тела, во вторых, в высоком контрастном разрешении метода. По сравнению с другими диагностическими методами исследования МРТ характеризуется самой высокой чувствительностью и достоверностью получаемого изображения. Этот метод исследования гораздо более чувствителен, чем рентгенография и ультразвуковая диагностика. В целом, в отличие от других методов визуализации, с помощью МРТ значительно легче различить здоровую и пораженную ткань. МРТ позволяет получить очень четкую, контрастную картину преимущественно мягких тканей, расположенных вокруг костей, поэтому в первую очередь она часто используется при исследовании мягкотканных структур суставов, позвоночника и межпозвонковых дисков, мягких тканей конечностей. Метод также обеспечивает великолепный обзор связок сустава и позволяет непосредственно оценить структуру хряща.
Возможность получения изображений позвоночника в сагиттальной, коронарной и аксиальной плоскостях позволяет считать МРТ идеальным методом для выявления деформаций межпозвонковых дисков (протрузий диска). На МРТ-изображениях можно оценить целостность фиброзного кольца и задней продольной связки, определить степень протрузии диска, сдавливания оболочек и нервных корешков. И, наконец, еще одним преимуществом МРТ при исследовании спинного мозга является ее способность выявлять опухоли внутри спинномозгового канала. Они обнаруживаются на стандартных МРТ-срезах, но для уточнения можно воспользоваться внутривенным контрастированием солями редкоземельного металла гадолиниума.
Возможностью непосредственной визуализации сухожилий, связок, суставных хрящей и синовиальных сумок обусловлено широкое применение МРТ для исследования других суставов. Вот только некоторые из них: плечевой сустав (для определения надостных разрывов, нестабильности и т. п.), лучезапястный (визуализация треугольного хряща и разрывов сухожилий внутри кисти) и височнонижнечелюстной сустав (для определения неровностей суставных поверхностей и дегенерации/дислокации диска).
У взрослых костный мозг в основном состоит из жировой ткани. Жир дает яркий сигнал, поэтому любое местное изменение, проявляющееся темным сигналом, определяется с легкостью.
МРТ – лучший метод для диагностики локальных поражений костного мозга; более чувствительный и специфичный, чем сцинтиграфия костей, при определении метастазов, остеонекроза или остеохондроза, а также переломов, не видимых на обычных рентгенограммах.
АБ
ВГ Рис. 4. T1 – сагиттальные (АиБ), аксиальная (В) и коронарная (Г) магнитно-резонансные томограммы коленного сустава. Сравните с рисунком и схемами. 1. Обратите внимание, как отчетливо определяются мягкотканные элементы сустава. На рис.4А обведены крестовидные связки: передняя (серым цветом) и задняя (белым цветом). На рис.4Б отмечены медиальный мениск (белым цветом) и латеральный мениск (серым цветом). Кость отображается на данном типе изображений белым цветом – это изображение костного мозга, кортикальная кость визуализируется как черная полоса.
Общие показания к проведению МРТ суставови опорно-двигательного аппарата:
1). спортивная и неспортивная травма,
2). опухоли костей и мягких тканей,
3). дегенеративные заболевания суставов,
4). хронические артриты, 5). грыжа межпозвонковых дисков,
6). стрессовые переломы.
Наиболее часто исследуемый на МРТ сустав – коленный.
Всегда можно выявить или исключить повреждение внутренних структур колена (суставного хряща, менисков, связок). Проведение предварительно МРТ-исследования позволяет врачу-специалисту более взвешенно решить вопрос о необходимости проведения, например, артроскопической операции.
Диагностика воспалительных, опухолевых поражений сустава должна проводиться исключительно с помощью метода МРТ.
Как проводится МРТ?
Технология МРТ достаточно сложна: используется эффект резонансного поглощения атомами электромагнитных волн. Человека помещают в магнитное поле, которое создает аппарат. Молекулы в организме при этом разворачиваются согласно направлению магнитного поля. После этого радиоволной проводят сканирование. Изменение состояния молекул фиксируется на специальной матрице и передается в компьютер, где проводится обработка полученных данных. В отличие от компьютерной томографии МРТ позволяет получить изображение патологического процесса в разных плоскостях.
Магнитно-резонансный томограф по своему внешнему виду похож на компьютерный. Исследование проходит так же, как и компьютерная томография. МРТ требует больше времени, чем КТ, и обычно занимает не менее 1 часа.
Безопасность метода МРТ.
В настоящее время о вреде магнитного поля ничего не известно. Однако большинство ученых считают, что в условиях, когда нет данных о его полной безопасности, подобным исследованиям не следует подвергать беременных женщин. По этим причинам, а также в связи с высокой стоимостью МРТ, исследования назначаются по строгим показаниях в случаях спорного диагноза или безрезультатности других методов исследований. МРТ не может также проводиться у тех людей, в организме которых находятся различные металлические конструкции -искусственные суставы, водители ритма сердца, дефибрилляторы, ортопедические конструкции, удерживающие кости и т.п.
Ультразвуковое исследование (сонография)(УЗИ) имеет свои возможности в изучении скелета, особенно суставов и мягких тканей, окружающих кость. С помощью сонографии стали видимыми мышцы, связки, сухожилия, суставные хрящи. Теперь можно без воздействия ионизирующего излучения дать заключение о разрыве сухожилия, связки, наличии выпота в полости сустава, абсцессе и гематоме мягких тканей, околосуставной кисте и пр. Сонография оказалось очень полезной при исследовании суставов у детей. У ребенка концы костей еще полностью или частично состоят из хрящевой ткани и не получают отображения на рентгенограммах. Именно ультразвуковое исследование помогает решить вопрос о том, правильно ли сформирован сустав у новорожденного, что так важно для своевременного лечения (Рис. 5).
АБ
В
Рис. 5. Рентгенограмма таза и тазобедренных суставов ребенка в возрасте 1 мес. (5А), на схеме (5Б) отражены визуализируемые анатомические структуры (сравните с возможностями ультразвукового исследования (5В) в визуализации элементов тазобедренного сустава у новорожденного, основное преимущество которого в отсутствии воздействия ионизирующей радиации на новорожденного! На схеме (5Б) цифрами обозначены: 1 – диафиз бедренной кости, 2 – центр окостенения подвздошной кости, 3 – крестцовые позвонки, 4 – край вертлужной впадины, 5 – ядро окостенения головки бедренной кости, 6 – защитная пластинка на половые органы, 7 – центр окостенения лобковой кости, 8 – центр окостенения седалищной кости, 9 – линии для оценки врожденного вывиха и/или подвывиха в тазобедреннм суставе. На ультразвуковой томограмме (5В) цифрами обозначены: 1 – подвздошная кость, 2 – головка бедренной кости, 3 – край вертлужной впадины, 4 – проксимальный отдел диафиза бедренной кости.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
В возрасте 3 - 6 лет суставной хрящ принимает активное участие в росте костного отдела эпифиза. Начиная с 10 и до 18 лет преобладают процессы уменьшения массы росткового хряща и продолжаются изменения, направленные в сторону приспособления суставного хряща к новым возрастным функциональным нагрузкам. Костно-суставная система достигает полной дифференцировки к 20 - 25 годам жизни человека.
Череп у новорожденного имеет большой свод и малое основание. В лобной и затылочной костях сохраняются швы, которые нередко зарастают только к 10 годам. Основная кость новорожденного состоит из трех, а затылочная - из четырех частей. Нижняя челюсть разделена соединительнотканной прослойкой на две части. В определенных местах черепных швов сохраняются участки соединительной ткани - роднички. Различают передний (большой, лобный) родничок на месте соединения лобной и теменных костей: задний (малый, затылочный) в области соединения теменных и затылочной костей: две пары боковых родничков - передние боковые (клиновидные) и задние боковые (сосцевидные). Передний родничок зарастает к 2 годам, остальные - в первые месяцы жизни ребенка. Внутренняя поверхность костей свода черепа у новорожденного гладкая (рис. 82) и только иногда на рентгенограммах могут быть выявлены просветления, которые обусловлены пахионовыми грануляциями и венозными выпускниками.
До года жизни ребенка рисунок пальцевидных вдавлений - костное отображение рельефа головного мозга и отпечатки сосудистых борозд слабо выражены и появляются в основном только после уплотнения швов и закрытия родничков.
Турецкое седло у детей раннего возраста плоское. Позади пирамид височных костей рентгенологически имеется просветление, соответствующее сигмовидному синусу, а сзади венечного шва выявляется такое же разрежение ткани за счет основотеменного синуса. Примерно к 7 годам формирование черепа заканчивается.
Позвоночник. В каждом позвонке развиваются три ядра окостенения, из которых одно находится в теле его и два - в полудужках. Слияние костных частей тел позвонков происходит после рождения ребенка. Обе половины дужек в разных отделах позвоночника срастаются в период от 1 года до 10 - 12 лет, а тела позвонков и их дужки соединяются к 3 - 6 годам. На рентгенограммах у детей раннего возраста форма позвонков овальная; высота межпозвонкового хрящевого диска достигает высоты тела позвонка. К 3 годам жизни форма тени позвонков начинает приближаться к четырехугольной. Концы остистых и поперечных отростков, а также наружные отделы замыкающих пластинок тел позвонков долго сохраняют хрящевое строение, поэтому рентгенологически здесь отмечаются просветления. В возрасте 9 - 11 лет у девочек и 10 - 12 лет у мальчиков в этих местах появляются добавочные точки окостенения в виде округлых свободных костных фрагментов. В грудном отделе позвоночника четыре верхних позвонка шире всех остальных грудных позвонков. В поясничном отделе позвоночника рентгенологически выявляются крупные тела позвонков и невысокие по сравнению с ними межпозвонковые пространства. Крестец у ребенка первого года жизни состоит из тела и боковых масс, которые срастаются к 5 годам. Иногда между боковыми массами и бугристостью подвздошных костей определяются добавочные ядра окостенения. Между отдельными крестцовыми позвонками долго сохраняются межпозвонковые хрящевые диски. В центре тел позвонков вдоль всего позвоночного столба могут выявляться на рентгенограммах просветления, морфологической основой которых являются проходящие здесь межсегментарные сосудистые борозды. Изгибы позвоночника у новорожденного не выражены. Когда ребенок начинает держать голову, появляется шейный лордоз и одновременно развивается грудной кифоз. При переходе ребенка в выпрямленное положение создается поясничный лордоз. Окончательное формирование шейного и грудного изгибов заканчивается к 7 годам, поясничного - к 15 - 16 годам.
Ребра. Окостеневают из нескольких точек. На первом году жизни различают тело ребра и добавочные точки окостенения, расположенные в области головки, бугорка и нижней поверхности ребра, которые могут иногда сохраняться до 16 лет.
Грудина. У новорожденного она разделяется хрящом на 7 сегментов. К 11 годам количество их уменьшается до 3 - 4. Рукоятка грудины на рентгенограммах у детей относительно крупнее, чем у взрослых. По верхнему ее краю отмечается выраженное углубление. Нередко рентгенологически определяются округлые участки просветлений в местах сохранения необызвествленной хрящевой ткани.
Лопатка. Развивается из трех основных и нескольких добавочных точек окостенения. При этом угол лопатки, эпифизарные части плечевого и клювовидного отростков долго сохраняют хрящевое строение. Только к 11 годам полностью окостеневает эпифиз клювовидного отростка, а к 14 годам появляются ядра окостенения в плечевом отростке и в нижнем углу лопатки. Нередко на рентгенограммах ядро окостенения в плечевом отростке представлено не одной точкой, а 2 - 5 мелкими костными ядрышками.
Плечевая кость. Имеет самостоятельное ядро окостенения в головке. При этом такие же точки окостенения имеют большой и малый бугорки плечевой кости. Обычно до 3 лет они существуют как отдельные костные образования и хорошо определяются рентгенологически. После 7 лет у девочек и 8 лет у мальчиков проксимальный эпифиз плечевой кости представлен на рентгенограммах уже единым костным образованием. Синостоз в области эпиметафизарного хряща происходит у девочек в 14 - 15 лет, а у мальчиков примерно на 1,5 - 2 года позже. В дистальном отделе плечевой кости к 1,5 годам жизни ребенка появляется точка окостенения в головчатом возвышении. Примерно к 5 годам у девочек и к 7 годам у мальчиков рентгенологически выявляются точки окостенения в головке лучевой кости и во внутреннем надмыщелке плечевой кости. Формирование ядра окостенения в блоке плечевой кости происходит па 2 года позже. Наружный надмыщелок появляется у девочек к 9 годам, у мальчиков - на 1 год позже. Локтевой отросток, как правило, имеет 2 - 3 точки окостенения, развивающиеся одна за другой, начиная с 7 лет у девочек и на 1 год позже у мальчиков. Все синостозы в дистальных отделах плечевой кости заканчиваются к 15 - 16 годам у девочек и к 17 - 18 годам у мальчиков.
Кисть и предплечье. В костях кисти и предплечья имеется определенная последовательность появления ядер окостенения. На первом этапе развиваются точки окостенения, которые характерны для детей до 3-летнего возраста. Ранее всех, а именно на 5-м месяце жизни ребенка, определяются на рентгенограммах центры окостенения в головчатой и крючковатой костях. В дальнейшем окостеневает дистальный эпифиз лучевой кости, эпифизы фаланг и пястных костей. Примерно к концу 3-го года формируются ядра окостенения в трехгранной и полулунной костях. После 4 лет наступает как бы второй этап окостенения, во время которого все остальные кости запястья приобретают центры костесозидания. В это же время окостеневает и дистальный эпифиз локтевой кости с шиловидным отростком, развиваются сесамовидные кости. В среднем к 7 годам окостенение заканчивается, однако гороховидная кость нередко окончательно формируется только к 13 - 14 годам. В коротких трубчатых костях кисти только один из двух эпифизов имеет точку окостенения. Так, в фалангах и 1 пястной кости ядра костеосозидания появляются в проксимальном эпифизе. Во всех остальных пястных костях они образуются в дистальных эпифизах. Тем не менее иногда может происходить развитие добавочных точек окостенения (псевдоэпифизы), которые появляются в противоположных концах костей. Обычно псевдоэпифизы отмечаются у девочек только до 12 - 13 лет, а у мальчиков - до 14 - 15 лет.
Синостозы эпиметафизарных зон коротких трубчатых костей кисти развиваются также в определенной последовательности. Раньше всего появляется костное слияние в 1 пястной кости; в дальнейшем наступает заращение росткового хряща во всех фалангах и остальных пястных костях. Позже описанного происходит синостоз в локтевой кости и только в последнюю очередь - в лучевой.
Кости таза. На рентгенограммах у детей раннего возраста они отличаются тем, что крылья подвздошных костей плоские, подвздошные ямки выражены слабо. Вертлужные впадины мелкие, своды их из-за неравномерного обызвествления грубоволокнисты. К 8 годам в своде вертлужной впадины и в V-образном хряще появляется множество добавочных точек окостенения. Поэтому нередко у детей в возрасте 12 - 14 лет рентгенологически можно наблюдать развитие дополнительных костей, одна из которых имеет треугольную форму и располагается между подвздошной и седалищной костями; другая овальной формы и занимает место между подвздошной и лонной костями. В костях таза длительно сохраняются апофизы, например в 12 - 14 лет развиваются апофизы бугров седалищных костей. Вдоль крыльев подвздошных костей и у верхне-задней части вертлужной впадины апофизарные точки окостенения выявляются даже в 14 - 15-летнем возрасте. Нередко на рентгенограммах имеются просветления в центре крыла подвздошной кости и по нижнему контуру вертлужной впадины, обусловленные как конституциональным строением, так и проекциями крупных сосудов.
Бедренная кость и кости голени. У новорожденного они представлены полностью развитыми диафизами, в то время как проксимальный эпифиз бедренной кости проявляется только точкой окостенения, возникающей в среднем на 5-м месяце жизни ребенка. Вначале она фрагментирована, однако в 2 года представлена уже единым и крупным образованием. В возрасте 2 - 3 лет появляется точка окостенения большого вертела и только в 8 - 9 лет у девочек и 10 - 11 лет у мальчиков возникает центр окостенения в малом вертеле.
Синостоз вертелов происходит у девочек в 17 - 18 лет, а у мальчиков на 1 - 1,5 года позже. Обычно в эти же сроки синостозирует эпифиз головки с диафизом бедренной кости.
Точка окостенения в дистальном эпифизе бедра появляется первой из всех точек окостенения скелета. Считается, что при наличии данной точки окостенения и при этом только с поперечным ее размером в 5 - 7 мм новорожденного можно отнести к доношенным. В течение первых лет жизни ребенка дистальный эпифиз бедра оформляется в виде двух костных мыщелков и межмыщелковой ямки. Иногда во внутреннем мыщелке бедра могут появляться мелкие добавочные точки окостенения.
Синостозирование дистального эпифиза при отсутствии отклонений в половом развитии происходит у девочек к 16 годам, а у мальчиков - к 17 - 18 годам.
Надколенник. Окостеневает за счет многих центров окостенения, которые появляются на рентгенограммах в разные сроки жизни ребенка. Основные точки окостенения возникают в среднем у девочек в 4 года и у мальчиков в 5 лет.
В проксимальном эпифизе большеберцовой кости ядро окостенения формируется незадолго до рождения ребенка и обусловливает развитие не только костного массива самого эпифиза, но и обоих мыщелков. Выемка на месте будущей бугристости кости возникает у девочек в 1,5 года и у мальчиков в 2 года. В дальнейшем к 13 - 14 годам в этом месте рентгенологически определяются 2 - 3 костных ядра, которые полностью синостозируют с костью к 15 годам. Ядро окостенения дистального эпифиза большеберцовой кости образуется на первом году жизни ребенка, а внутренняя лодыжка окостеневает полностью только в 8 - 9 лет.
В проксимальном эпифизе малоберцовой кости ядро окостенения развивается до 5 лет, а в наружной лодыжке дистального эпифиза - к 2 годам.
Стопа. У ребенка первого года жизни она имеет развитые центры окостенения в таранной, пяточной и кубовидной костях. В таранной кости примерно к 10 годам появляется видимое на рентгенограммах добавочное ядро окостенения, из которого формируется задний ее отросток. Ладьевидная кость образуется из нескольких ядер окостенения, полностью синостозирующих к 5 годам. В 1 и 2 клиновидных костях ядра окостенения возникают в конце 1 - 2 года жизни ребенка. Апофиз пяточной кости рентгенологически различим в 6 - 10 лет, а слияние его с основной костью заканчивается к 13 - 16 годам. Среди коротких трубчатых костей стопы раньше всего окостеневают диафизы плюсневых костей. Все фаланги и 1 плюсневая кость имеют самостоятельные точки окостенения в проксимальном эпифизе. В остальных плюсневых костях первичные точки окостенения появляются только в дистальных эпифизах. В 1 плюсне-фаланговом суставе на рентгенограммах выявляются две самостоятельные сесамовидные косточки - медиальная и латеральная, которые окостеневают у девочек к 10 годам и у мальчиков к 14 годам. Синостоз эпифизов плюсневых костей происходит у девочек в 15 - 16 лет, у мальчиков - в 17 - 19 лет.
Отдельные этапы развития костей скелета и анатомические особенности строения костно-суставного аппарата иллюстрируют рис. 83 и табл. 2 и 3.
Костная система у детей - исследования
Методика исследования костной системы у детей
Расспрос ребенка
При заболеваниях костной системы и суставов наиболее часто дети предъявляют жалобы на боли в костях и суставах, деформацию костей или суставов, ограничение подвижности.
При болевом синдроме следует уточнить локализацию боли (кости, суставы), остроту (острая или тупая), интенсивность, характер (тянущая, ноющая, пульсирующая и т.д.), длительность и время появления (постоянная, периодическая, утренняя, в конце дня, ночная), провоцирующие факторы (ходьба, движения в суставах, поднятие тяжестей и др.).
При деформациях костей или суставов необходимо уточнить давность их появления.
При сборе анамнеза следует оценить отягощённость семейного анамнеза по заболеваниям костной системы и суставов, ревматическим и инфекционным заболеваниям; уточнить связь начала заболевания с каким-либо предшествующим воздействием (травмой, инфекционным заболеванием и др.).
Костная система у детей - осмотр
Осмотр костной системы и суставов следует проводить в положении стоя, лёжа и в движении, последовательно сверху вниз: голова, затем туловище (грудная клетка, позвоночник), верхние и нижние конечности.
Осмотр головы у детей
При осмотре головы оценивают следующие параметры:
Форма черепа. У здорового ребёнка она обычно округлая. Вытянутый, продолговатый череп называют башенным. У новорождённых деформация черепа в виде черепицеобразного расположения костей черепа относительно друг друга может быть следствием прохождения головки ребёнка через родовые пути. При увеличении лобных бугров, обусловленном гиперплазией остеоидной ткани (например, при рахите), формируется "олимпийский лоб", при одновременном увеличении теменных бугров голова при взгляде сверху имеет квадратную форму. Нередко выявляют уплощение и скошенность затылочной кости.
Симметричность (в норме череп симметричный). У новорождённого может быть асимметричное выбухание и тестоватой консистенции припухлость над одной или несколькими костями черепа - родовая опухоль; плотная ограниченная припухлость может быть обусловлена кефалогематомой.
Размеры головы. Уменьшение размеров головы носит название микроцефалии, увеличение - макроцефалии.
Состояние верхней и нижней челюстей, количество и состояние зубов, особенности прикуса. Молочный прикус в норме ортогнатический, постоянный прикус - ортогнатический или прямой.
Осмотр грудной клетки у детей
При осмотре грудной клетки оценивают следующие параметры:
Форму (цилиндрическая, бочкообразная, коническая) и симметричность. Возможны следующие виды деформации грудной клетки: килевидная ("куриная грудь") с выбуханием грудины, воронкообразная ("грудь сапожника") с западением грудины. Также отмечают наличие харрисцровой борозды (западение по линии прикрепления диафрагмы) и др.
Эпигастральный угол позволяет определить конституциональный тип: нормостенический (угол примерно равен 90°), гиперстенический (угол тупой), астенический (угол острый).
Осмотр позвоночника у детей
При осмотре позвоночника обращают внимание на следующие параметры:
Физиологические изгибы и их выраженность (возможно как увеличение, так и уменьшение лордоза или кифоза, формирование горба), наличие боковых изгибов позвоночника (сколиоза), изменение осанки. Форма позвоночника меняется при аномалиях развития скелета, рахите, травме, туберкулёзном поражении позвонков и др. Тугоподвижность позвоночника возникает при ювенильном спондилоартрите.
Симметричность расположения лопаток, гребней подвздошных костей, ключиц, треугольников талии (асимметрия может свидетельствовать о наличии сколиоза и другой патологии).
Осмотр конечностей у детей
При осмотре конечностей оценивают следующие параметры:
Правильность контуров и симметричность, что позволяет выявить костные деформации, наличие переломов, ложных суставов и др.
Относительную длину (пропорциональность по отношению к туловищу).
Форму: может быть вальгусное (Хобразное) или варусное (Ообразное) искривление нижних конечностей.
Состояние суставов (форму, наличие припухлости, гиперемии и др.). Различают дефигурацию - обратимое изменение, связанное с внутрисуставным выпотом и/или утолщением (воспалением) синовиальной оболочки - и деформацию - стойкое изменение формы сустава, обусловленное пролиферативными и деструктивными процессами, развитием подвывиха, контрактуры, анкилоза сустава.
Осмотр кисти ребенка
Осмотр кисти позволяет обнаружить характерные деформации:
- "веретенообразную" - при поражении проксимальных межфаланговых суставов;
- "сосискообразную" - при воспалении преимущественно дистальных межфаланговых суставов, сопровождающиеся гиперемией и отёчностью пальцев.
Изменения в виде "муляжной кисти" - сгибательные контрактуры пальцев, склеродактилия, истончение концевых фаланг пальцев, характерны для склеродермии. Узкие удлинённые кисти с необычайно длинными и тонкими пальцами (арахнодактилия или "паучьи пальцы") характерны для синдрома Марфана.
При осмотре лучезапястных суставов можно выявить деформацию типа "ласты моржа" со сглаженностью контуров и возможной девиацией кнаружи.
Осмотр стопы ребенка
При осмотре стопы можно отметить уплощение продольного или поперечного её сводов - плоскостопие; до 2 лет плоскостопие считают физиологическим, а у более старших детей - патологическим. "Конская стопа" с подъёмом пятки и опущением переднего отдела стопы развивается вследствие контрактуры ахиллова сухожилия. Возможна вальгусная или варусная деформация стопы.
От состояния позвоночника и суставов нижних конечностей зависит походка больного. При анталгической походке происходит быстрый перенос веса тела с больной ноги на здоровую при наличии боли в нижнем отделе позвоночника, поражении тазобедренного, коленного суставов или стопы. При болезненности в области пятки ребёнок встаёт на носок или на всю стопу, при поражении среднего отдела стопы - на латеральную поверхность, поражение передних отделов стопы сопровождается наклоном вперёд, укорочением шага. "Утиная походка" (в перевалку) может возникать при двустороннем поражении тазобедренных суставов.
Костная система у детей - пальпация
Пальпация костной системы позволяет оценить плотность костной ткани и её цельность, гладкость поверхности костей, выявить болезненность в костях и уточнить её локализацию, оценить состояние суставов.
Пальпация костей у детей
Пальпация головы позволяет судить о плотности костей черепа, состоянии швов и родничков. Можно выявить краниотабес - патологическое размягчение теменных и затылочной костей; определить состояние и размеры большого родничка (измерение производят между средними точками противостоящих краёв).
При пальпации рёбер у здоровых детей ощущается едва заметное утолщение в области перехода костной части в хрящевую. Значительные утолщения ("чётки") связывают с рахитом, как и утолщения в области эпифизов лучевых и малоберцовых костей ("браслетки") и фаланг пальцев ("нити жемчуга").
При пальпации позвоночника болезненность может быть связана с воспалительными или дистрофическими изменениями в позвонках, межпозвонковых дисках, окружающих мышечных тканях. Позвоночник пальпируют для выявления западений или выпячиваний отдельных остистых отростков, что может произойти в результате сплющивания тела позвонка, обусловленного механическими или метаболическими факторами, инфекционным или опухолевым процессом. Аномальное расположение одного позвонка по отношению к смежному свидетельствует о подвывихе или спондилолистезе.
Пальпация суставов у детей
При пальпации суставов выявляют болезненность, повышение местной температуры, скопление избыточного количества жидкости (феномен флюктуации). Величину суставов измеряют сантиметровой лентой на одинаковом уровне у парных суставов и сравнивают показания между собой. Необходимо определить объём пассивных и активных движений в суставах. Ориентировочно функцию суставов костной системы можно оценить, предложив больному выполнить определённые действия:
- для оценки функции позвоночника следует выполнить наклоны головы вперёд (коснуться подбородком груди) и назад, коснуться ухом плеча, совершить повороты головы в стороны, выполнить наклоны вперёд (коснуться пальцами рук пола), назад, в стороны;
- височнонижнечелюстной сустав - максимально широко открыть рот, выдвинуть нижнюю челюсть вперёд, совершить её движения из стороны в сторону;
- плечевой сустав костной системы - поднять руки над головой, перед собой и по бокам, коснуться кистью противоположной лопатки за спиной, достать кистью противоположное ухо, проведя руку за головой;
- лучезапястный сустав - сложить ладони и согнуть их под прямым углом к предплечьям, сложить кисти рук тыльной стороной и согнуть их под прямым углом к предплечьям;
- межфаланговые суставы - сжать кисть в кулак;
- крупные суставы нижних конечностей - присесть на корточки, сесть на колени, коснувшись при этом ягодицами пяток;
- тазобедренный сустав - привести колено к груди, развести согнутые в коленях и тазобедренных суставах ноги, выполнить ротационные движения, для определения подвывиха одного или обоих бёдер дополнительно выявляют симптом скольжения - при потягивании за ногу происходит смещение головки бедренной кости относительно таза;
- коленный сустав - привести пятку к ягодице, выпрямить ногу;
- голеностопный сустав костной системы - произвести сгибание и разгибание;
- межфаланговые суставы пальцев ног - произвести сгибание и разгибание. Более точно амплитуду активных и пассивных движений определяют с помощью угломера (гониометра). Наличие боли, мышечного напряжения или ограничения подвижности позволяют заподозрить патологию суставов. Гипермобильность суставов характерна для некоторых дисплазий соединительной ткани.
Дополнительные исследования костной системы
Из дополнительных методов исследования костной системы у детей наиболее часто используют рентгенографию, позволяющую выявить аномалии развития и переломы костей, воспалительные, опухолевые и дегенеративные процессы в костях или суставах, оценить темпы оссификации (костный возраст). В последние годы для оценки состояния костей и суставов стали использовать УЗИ, КТ и МРТ.
Нередко для диагностики заболеваний костной системы прибегают к лабораторным, в частности биохимическим исследованиям. При метаболических заболеваниях костей исследуют концентрации ионов кальция и фосфора в сыворотке крови, а также их выведение с мочой. Активность перемоделирования и резорбции костной ткани отражает активность щелочной фосфатазы в сыворотке крови, а также концентрация оксипролина в крови и моче.
Для уточнения причин артрита проводят исследование синовиальной жидкости и биопсию синовиальной оболочки сустава. Опухоли костей диагностируют также с помощью биопсии.
Семиотика поражений костной системы и суставов
Поражения костной системы и суставов у детей могут быть связаны с аномалией развития самой костной системы, нарушением функций других систем, участвующих в костеобразовании (эндокринной, почечной) и воздействием внешней среды (травмой, инфекцией, нарушением поступления необходимых микроэлементов).
Читайте также: