Спинальный уровень это взаимодействие сенсорных систем
Для обеспечения нормальной жизнедеятельности организма необходимы постоянство его внутренней среды, связь с непрерывно меняющейся окружающей внешней средой и приспособление к ней. Информацию о состоянии внешней и внутренней среды организм получает с помощью сенсорных систем, которые анализируют (различают) эту информацию, обеспечивают формирование ощущений и представлений, а также специфических форм приспособительного поведения.
При непосредственном воздействии различных факторов окружающей среды с участием сенсорных систем в организме возникают ощущения, которые представляют собой отражения свойств предметов объективного мира. Особенностью ощущений является их модальность, т.е. совокупность ощущений, обеспечива емых какой-либо одной сенсорной системой. Внутри каждой модаль ности в соответствии с видом (качеством) сенсорного впечатления можно выделить разные качества, или валентности. Модальностя ми являются, например, зрение, слух, вкус. Качественные типы модальности (валентности) для зрения — это различные цвета, для вкуса — ощущение кислого, сладкого, соленого, горького.
Деятельность сенсорных систем обычно связывают с возник-' новением пяти чувств — зрения, слуха, вкуса, обоняния и осязания, с помощью которых осуществляется связь организма с внеш ней средой. Однако в реальной действительности их значительно больше.
В основу классификации сенсорных систем могут быть положе ны различные признаки: природа действующего раздражителя, характер возникающих ощущений, уровень чувствительности ре цепторов, скорость адаптации и многое другое.
Наиболее существенной является классификация сенсорных систем, в основе которой лежит их назначение (роль). В связи с этим выделяют несколько видов сенсорных систем.
Внешние сенсорные системы воспринимают и анализируют из менения внешней среды. Сюда следует включить зрительную, слу ховую, обонятельную, вкусовую, тактильную и температурную сенсорные системы, возбуждение которых воспринимается субъективно в виде ощущений.
Внутренние (висцеральные) сенсорные системы воспринимают и анализируют изменения внутренней среды организма, показа телей гомеостазиса. Колебания показателей внутренней среды в пределах физиологической нормы у здорового человека обычно не воспринимается субъективно в виде ощущений. Так, мы не можем субъективно определить величину артериального давления, особенно если оно нормальное, состояние сфинктеров и пр. Однако информация, идущая из внутренней среды, играет важную роль в регуляции функций внутренних органов, обеспечивая приспособление организма к различным условиям его жизнедеятельности. Значение этих сенсорных систем изучается в рамках курса физиологии (приспособительная регуляция деятельности внутрен них органов). Но в то же время изменение некоторых констант внутренней среды организма может восприниматься субъективно в виде ощущений (жажда, голод, половое влечение), формирую щихся на основе биологических потребностей. Для удовлетворе ния этих потребностей включаются поведенческие реакции. На пример, при возникновении чувства жажды вследствие возбужде ния осмо- или волюморецепторов формируется поведение, на правленное на поиск и прием воды.
Сенсорные системы положения тела воспринимают и анализи руют изменения положения тела в пространстве и частей тела друг относительно друга. К ним следует отнести вестибулярную и двигательную (кинестетическую) сенсорные системы. Поскольку мы оцениваем положение нашего тела или его частей друг относительно друга, эта импульсация доходит до нашего сознания. Об этом свидетельствует, в частности, опыт Д. Маклоски, который ученый поставил на самом себе. Первичные афферентные волок на от мышечных рецепторов раздражались пороговыми электрическими стимулами. Увеличение частоты импульсации этих не рвных волокон вызывало у испытуемого субъективные ощущения изменения положения соответствующей конечности, хотя ее по ложение в действительности не изменялось.
Ноцицептивную сенсорную систему следует выделить отдельно в связи с ее особым значением для организма — она несет информацию о повреждающих действиях. Болевые ощущения могут возникать при раздражении как экстеро-, так и интероре цепторов.
С помощью сенсорных систем организм познает свойства предметов и явлений окружающей среды, полезные и негативные стороны их воздействия на организм. Поэтому нарушения функции внешних сенсорных систем, особенно зрительного и слухового, чрезвычайно сильно затрудняют познание внешнего мира (очень беден окружающий мир для слепого или глухого). Однако только аналитические процессы в ЦНС не могут создать реального представления об окружающей среде. Способность сенсорных систем взаимодействовать между собой обеспечивает образное и целостное представление о пред метах внешнего мира. Например, качество дольки лимона мы оце ниваем с помощью зрительной, обонятельной, тактильной и вку совой сенсорных систем. При этом формируется представление как об отдельных качествах — цвете, консистенции, запахе, вкусе, так и о свойствах объекта в целом, т.е. создается определенный целостный образ воспринимаемого объекта. Взаимодействие сенсор ных систем при оценке явлений и предметов лежит также в основе компенсации нарушенных функций при утрате одной из сенсор ных систем. Например, у слепых повышается чувствительность слу ховой сенсорной системы. Такие люди могут определить местопо ложение крупных предметов и обойти их, если нет посторонних шумов за счет отражения звуковых волн от находящегося впереди предмета. Американские исследователи наблюдали за слепым че ловеком, который достаточно точно определял местоположение большой картонной пластинки. Когда испытуемому залепили уши воском, он не смог определить местоположение картона.
Взаимодействия сенсорных систем могут проявляться в виде влияния возбуждения одной системы на состояние возбудимости другой по доминантному принципу. Так, прослушивание музыки может вызвать обезболивание при стоматологических процедурах (аудиоаналгезия). Шум ухудшает зрительное восприятие, яркий свет повышает восприятие громкости звука. Процесс взаимодействия сенсорных систем может проявляться на различных уровнях. Особенно большую роль в этом играют ретикулярная формация ствола мозга, кора большого мозга. Многие нейроны коры обладают спо c обностью отвечать на сложные комбинации сигналов разной мо дальности (мультисенсорная конвергенция), что очень важно для познания окружающей среды и оценки новых раздражителей
Для большинства рецепторов, независимо от их структуры, характерно свойство привыкания к постоянно действующему раздражителю. Это свойство называется адаптацией. Она проявляется, во-первых, в снижении чувствительности к действию раздражителя; во-вторых, в повышении его дифференциальной чувствительности к стимулам, близким по силе к адаптирующему (на фоне длительно действующего раздражителя различается больше градации сравнительно слабых его изменений). Адаптация свойственна для всех рецепторов, за исключением вестибуло- и проприорецепторов. По скорости адаптации различают быстроадаптирующиеся, медленноадаптирующиеся, промежуточные и не адаптирующиеся. При адаптации наблюдается снижение величины генераторного потенциала или полное его исчезновение. При прекращении действия раздражителя адаптация, вызванная его влиянием, исчезает, и чувствительность рецепторов повышается (например, наблюдается обострение слуха, когда в помещении прекращается шум). В основе адаптации рецепторов лежат биофизические процессы: 1) механическая адаптация специализированных покровных тканей - рецепторов (перераспределение капсулы в тельцах Паччини); 2) адаптация собственно рецепторного окончания (снижается проницаемость для ионов Nа, т.е. развивается процесс, подобный натриевой инактивации); 3) адаптация проводникового аппарата, 4) адаптация центрального аппарата.
При поступлении в более высокие уровни нервной системы происходит расширение сферы сигнализации, приходящей от одного рецептора. Например, в зрительной системе сигналы одного рецептора связаны с десятками ганглиозных клеток и могут, в принципе, передавать информацию любым корковым нейронам зрительной коры.
С другой стороны, по мере проведения сигналов происходит сжатие информации. Например, одна ганглиозная клетка сетчатки объединяет информацию от сотни биполярных клеток и десятков тысяч рецепторов, т. е. такая информация поступает в зрительные нервы уже после значительной обработки, в сокращенном виде.
Существенной особенностью деятельности проводникового отдела сенсорных систем является передача без искажений специфической информации от рецепторов к коре больших полушарий.
Большое количество параллельных каналов помогает сохранить специфику передаваемого сообщения, а процессы бокового (латерального) торможения изолировать эти сообщения от соседних клеток и путей.
Одной из важнейших сторон обработки афферентной информации является отбор наиболее значимых сигналов, осуществляемый восходящими и нисходящими влияниями на различных уровнях сенсорных систем.
Такое избирательное повышение активности небольшой территории коры имеет значение в организации акта внимания, выделяя на общем афферентном фоне наиболее важные в данный момент сообщения.
Взаимодействие сенсорных систем
Строение и функции зрительной сенсорной системы. Строение рецепторов, их расположение и функции; возбудимость и адаптация рецепторов. Аккомодация, поле зрения, острота зрения, бинокулярное зрение, цветовое зрение.
Строение органа зрения
1 - роговица; 2 - передняя камера глаза; 3 - хрусталик; 4 - радужная оболочка; 5 - задняя камера глаза; 6 - коньюктива; 7 - латеральная прямая мышца; 8 - белочная оболочка (склера); 9 - собственная сосудистая оболочка (хориоидеа); 10 - сетчатка; 11 - центральная ямка; 12 - зрительный нерв; 13 - углубление диска; 14 - наружная ось глаза; 15 - медиальная прямая мышца; 16 - поперечная ось глазного яблока; 17 - ресничное тело; 18 - ресничный поясок; 19 - зрительная ось (глаза).
6. Строение сетчатки
1 - палочки; 2 - колбочки; 3 - горизонтальная клетка; 4 - биполярные клетки; 5 - амакриновые клетки; 6 - ганглиозные клетки; 7 - волокна зрительного нерва
7. Типы фоторецепторов
Фоторецепторы. К слою пигментного эпителия изнутри примыкает слой зрительных рецепторов: палочек и колбочек. В каждой сетчатке человека находится 6-7 млн. колбочек и 110-125 млн. палочек. Они распределены в сетчатке неравномерно. Центральная ямка сетчатки - фовеа (fovea centralis) содержит только колбочки. По направлению к периферии сетчатки количество колбочек уменьшается, а количество палочек увеличивается, так что на дальней периферии имеются только палочки. Колбочки функционируют в условиях больших освещённостей, они обеспечивают дневное и цветовое зрение; более светочувствительные палочки ответственны за сумеречное зрение.
Цвет воспринимается лучше всего при действии света на центральную ямку сетчатки, в которой расположены почти исключительно колбочки. Здесь же и наибольшая острота зрения. По мере удаления от центра сетчатки восприятие цвета и пространственное разрешение постепенно уменьшается. Периферия сетчатки, на которой находятся исключительно палочки, не воспринимает цвета. Зато световая чувствительность колбочкового аппарата сетчатки во много раз меньше, чем у палочкового. Поэтому в сумерках из-за резкого понижения колбочкового зрения и преобладания периферического палочкового зрения мы не различаем цвет ("ночью все кошки серы").
Орган зрения тесным образом связан с гм: светочувствительная оболочка глаза развивается из мозговой нервной ткани. Орган зрения заключает периферическую часть зрительного анализатора – фоторецепторы. Проводником явл зрительный нерв, центральной частью явл зрительная зона в коре затылочной доли больших полушарий. Зрительный нерв – 2 пара черепно-мозговых нервов, по которым зрительное раздражение, воспринятое чувствительными клетками сетчатки, передаются в гм.
Адаптация глаза — приспособление зрения к различным условиям освещения. Адаптацияпроисходит к изменениям освещённости (различают адаптацию к свету и темноте), цветовой характеристики освещения (способность воспринимать белые предметы белыми даже при значительном изменении спектра падающего света).
Адаптация к свету наступает быстро и заканчивается в течение 5 мин., адаптация глаза к темноте — процесс более медленный. Минимальная яркость, вызывающая ощущение света, определяет световую чувствительность глаза. Последняя быстро нарастает в первые 30 мин. пребывания в темноте, её повышение практически заканчивается через 50—60 мин. Адаптацию глаза к темноте исследуют при помощи специальных приборов — адаптометров.
Адаптация проявляется также в способности зрения частично компенсировать дефекты самого зрительного аппарата (оптические дефекты хрусталика, дефекты сетчатки, скотомы и пр.)
Периферическое зрение (поле зрения) — определяют границы поля зрения при проекции их на сферическую поверхность (при помощи периметра). Поле зрения — пространство, воспринимаемое глазом при неподвижном взгляде. Зрительное поле является функцией периферических отделов сетчатки; его состоянием в значительной мере определяется возможность человека свободно ориентироваться в пространстве.
Изменения поля зрения обуславливаются органическими и/или функциональными заболеваниями зрительного анализатора: сетчатки, зрительного нерва, зрительного пути, ЦНС. Нарушения поля зрения проявляются либо сужением его границ (выражают в градусах или линейных величинах), либо выпадением отдельных его участков (Гемианопсия), появлением скотомы.
Остротой зрения называется максимальная способность глаза различать отдельные детали объектов. Остроту зрения определяют по наименьшему расстоянию между двумя точками, которые глаз различает, т. е. видит отдельно, а не слитно. Нормальный глаз различает две точки, видимые под углом в 1′. Максимальную остроту зрения имеет желтое пятно. К периферии от него острота зрения намного ниже. Полем зрения называется часть пространства, видимая при неподвижном положении глаза. Для черно-белых сигналов поле зрения обычно ограничено строением костей черепа и положением в глазницах глазных яблок. Для цветных раздражителей поле зрения меньше, так как воспринимающие их колбочки находятся в центральной части сетчатки. Бинокулярное зрение. Человек обладает бинокулярным зрением, т.е.зрением двумя глазами.
Вестибулярная сенсорная система. Вестибулярные рецепторы преддверия и полукружных каналов, вестибуло-соматические и вестибуло-вегетативные рефлексы Значение вестибулярной сенсорной системы в управлении движениями.
Вестибулярная сенсорная система служит для анализа положения и движения тела в пространстве. Это одна из древнейших сенсорных систем, развывшаяся в условиях действия силы тяжести на земле. Импульсы вестибулярного аппарата используются в организме для поддержания равновесия тела, для регуляции и сохранения позы, для пространственной организации движений человека. В периферическом отдела вестибулярной системы выделяют преддверье (отолитовый аппарат) и полукружные каналы. Этот отдел локализован в не слуховой части лабиринта внутреннего уха. Преддверье и сообщающиеся с ним три полукружных канала лежат позади и выше улитки. Костный лабиринт содержит жидкость (перилимфу). Внутри костного лабиринта расположен повторяющий его форму перепончатый лабиринт, заполненный эндолимфой.
^ В преддверии перепончатый лабиринт образует два мешочка эллиптический (утрикулюс) и сферический (сакулюс). В мешочках находятся скопления рецепторных клеток (пятна или макулы). При нормальном положении головы пятно эллиптического мешочка расположена приблизительно вертикально, а пятно сферического – горизонтально.
^ Полукружные каналы имеют названия - верхний (передний, вертикальный), нижний (задний, вертикальный), наружный (горизонтальный, латеральный). Они расположены в трех взаимно перпендикулярных плоскостях и включают гладкую и расширенную (ампулярную) части. Два вертикальных канала частично объединенных общей ножкой, а горизонтальный расположен отдельно. Ампулы горизонтального и переднего каналов открываются в переднюю часть преддверия, тогда как ампула заднего канала – в его заднюю часть. В ампуле каждого перепончатого полукружного канала находятся сенсорные области с рецепторными клетками, которые называются пятна (кристы). В результате действия адекватных раздражителей лабиринта (калоризация, вращение) могут возникать различные рефлексы, связанные с теми или иными группами мышц, например: нистагм глаз, который в конечном итоге зависит от сокращений глазных мышц; отклонение рук, зависящее от изменений тонуса мышц руки; падение, связанное с изменением тонуса мышц туловища конечностей. Эти рефлексы объединяются под названием вестибуло-соматических (от греческого слова soma, что значит тело); возможно, что более точно они могли бы быть обозначаемы как преддверно-мышечные. Вестибуло-соматические рефлексы составляют лишь часть рефлексов, наблюдающихся во время раздражения лабиринта или после него; другую часть составляют так называемые вестибуло-вегетативные рефлексы, к которым относятся: а) рефлексы сердечно-сосудистой системы—учащение или замедление пульса, побледнение покровов или гршеремия их; б) рефлексы, связанные с потоотделением—от едва заметного до обильного, охватывающего лицо, конечности; в) рефлексы с блуждающего нерва—тошнота, рвота. Вестибулярный контроль мышечной деятельности зависит от функционального состояния спортсмена. Например, при перетренировке ухудшается переносимость вращательных проб. Выраженные вегетативные реакции на вращательную пробу при высоком уровне тренированности наблюдается значительно реже, чем у малотренированных спортсменов.
Занятия физическими упражнениями, особенно при которых характерны безопорные движения тела и вращательные движения (в гимнастике, акробатике, фигурном катании и др.) повышают возбудимость и функциональную устойчивость вестибулярной сенсорной системы. Повышение ее возбудимости обеспечивает точное положение тела и его изменений в пространстве. Совершенствование функциональной устойчивости вестибулярной сенсорной системы проявляется в уменьшении реакций, возникающих при ее раздражении.
Здесь даны основные разделы общей физиологии сенсорных систем и нейрофизиологической сущности восприятия.
Определение понятия
Сенсорные системы – это воспринимающие системы организма (зрительная, слуховая, обонятельная, осязательная, вкусовая, болевая, тактильная, вестибулярный аппарат, проприоцептивная, интероцептивная).
Итак, сенсорные системы - это информационные входы в нервную систему.
Виды сенсорных систем
1. Слуховая. Адекватный раздражитель - звук.
2. Зрительная . Адекватный раздражитель - свет.
3. Вестибулярная . Адекватный раздражитель - гравитация, ускорение.
4. Вкусовая. Адекватный раздражитель - вкус (горький, кислый, сладкий, солёный).
5. Обонятельная . Адекватный раздражитель - запах.
6. Кинестетическая = о сязательная (тактильная) + температурная (тепловая и холодовая). Адекватный раздражитель - давление, вибрация, тепло (повышенная температура), холод (пониженная температура).
7. Двигательная. Обеспечивает ощущение взаиморас положение частей тела в пространстве, ощущение своего тела ). Именно двигательная сенсорная система позволяет нам дотронуться, например, рукой до своего носа или других частей тела даже с закрытыми глазами.
8. Мышечная (проприоцептивная). Обеспечивае ощущение степени напряжения мышц. Адекватный раздражитель - мышечное сокращение и растяжение сужожилий.
9. Болевая. Адекватный раздражитель - повреждение клеток, тканей или медиаторы боли.
1) Ноцицептивная (болевая).
2) Антиноцицептивная (обезболивающая) .
Восприятие — это перевод характеристик внешнего раздражения во внутренние нервные коды, доступные для обработки и анализа нервной системой ( кодирование ) , и построение нервной модели раздражителя (сенсорного образа).
Восприятие позволяет строить внутренний образ, отражающий существенные характеристики внешнего раздражителя. Внутренний сенсорный образ раздражителя — это нервная модель, состоящая из системы нервных клеток. Важно понять, что эта нервная модель не может полностью соответствовать реальному раздражителю и всегда будет отличаться от него хотя бы в некоторых деталях.
К примеру, кубики на картинке справа образуют модель, близкую к реальности, но не способную в реальности существовать.
А пример слуховой иллюзии, т.е. проявление в сознании нервной модели стимула вместо его реального восприятия, дан в стихотворном виде тут: Шелест листвы.
И.П. Павлов создал учение об анализаторах. Это упрощённое представление о восприятии. Он делил анализатор на 3 звена.
Строение анализатора
Периферическая часть (отдаленная) – это рецепторы, воспринимающие раздражение и превращающие его в нервное возбуждение.
Проводниковый отдел – это проводящие пути, передающие сенсорное возбуждение, рождённое в рецепторах.
Центральный отдел – это участок коры больших полушарий головного мозга, анализирующий поступившее к нему сенсорное возбуждение и строящий за счёт синтеза возбуждений сенсорный образ.
Таким образом, например, окончательное зрительное восприятие происходит в мозге, а не в глазу.
Понятие сенсорная система шире, чем анализатор. Она включает в себя дополнительные приспособления, системы настройки и системы саморегуляции. Сенсорная система предусматривает обратную связь между мозговыми анализирующими структурами и воспринимающим рецептивным аппаратом. Для сенсорных систем характерен процесс адаптации к раздражению.
Адаптация – это процесс приспособления сенсорной системы и ее отдельных элементов к действию раздражителя.
1. Сенсорная система активна , а не пассивна в передаче возбуждения.
2. В состав сенсорной системы входят вспомогательные структуры , обеспечивающие оптимальную настройку и работу рецепторов.
3. В состав сенсорной системы входят вспомогательные низшие нервные центры , которые не просто передают сенсорное возбуждение дальше, а меняют его характеристики и разделяют на несколько потоков, посылая их по разным направлениям.
4. Сенсорная система имеет обратные связи между последующими и предшествующими структурами, передающими сенсорное возбуждение.
5. Обработка и переработка сенсорного возбуждения происходит не только в коре головного мозга, но и в нижележащих структурах.
6. Сенсорная система активно подстраивается под восприятие раздражителя и приспосабливается к нему, т. е. происходит её адаптация .
7. Сенсорная система сложнее, чем анализатор.
Вывод:
Сенсорная система = анализатор + низший нервный центр (или несколько центров) + система регуляции.
Отделы сенсорной системы:
1. Рецепторы. Возможны также вспомогательные структуры (например глазное яблоко, ухо и т.п.).
2. Афферентные (чувствительные) нервные пути (афферентные нейроны).
3. Низшие нервные центры.
4. Высший нервный центр в коре больших полушарий головного мозга.
1. Принцип многоэтажности.
В каждой сенсорной системе существует несколько передаточных промежуточных инстанций на пути от рецепторов к коре больших полушарий головного мозга. В этих промежуточных низших нервных центрах происходит частичная переработка возбуждения (информации). Уже на уровне низших нервных центров формируются безусловные рефлексы, т. е. ответные реакции на раздражение, они не требуют участия коры головного мозга и осуществляются очень быстро.
Например: Мошка летит прямо в глаз - глаз моргнул в ответ, и мошка в него не попала. Для ответной реакции в виде моргания не требуется создавать полноценный образ мошки, достаточно простой детекции того, что объект быстро приближается к глазу.
Одна из вершин многоэтажного устройства сенсорной системы - это слуховая сенсорная система. В ней можно насчитать 6 этажей. Существуют также дополнительные обходные пути к высшим корковым структурам, которые минуют несколько низших этажей. Таким способом кора получает предварительный сигнал для повышения её готовности до основного потока сенсорного возбуждения.
2. Принцип многоканальности.
Возбуждение передается от рецепторов в кору всегда по нескольким параллельным путям. Потоки возбуждения частично дублируются, и частично разделяются. По ним передается информация о различных свойствах раздражителя.
Пример параллельных путей зрительной системы:
1-й путь: сетчатка — таламус - зрительная кора.
2-й путь: сетчатка - четверохолмие (верхние холмы) среднего мозга (ядра глазодвигательных нервов).
3-й путь: сетчатка — таламус - подушка таламуса - теменная ассоциативная кора.
При повреждении разных путей и результаты получаются различные.
Например : если разрушить наружное коленчатое тело таламуса (НКТ) в зрительном пути 1, то наступает полная слепота; если разрушить верхнее двухолмие среднего мозга в пути 2, то нарушается восприятие движения предметов в поле зрения; если разрушить подушку таламуса в пути 3, то пропадает узнавание предметов и зрительное запоминание.
Во всех сенсорных системах обязательно существуют три пути (канала) передачи возбуждения:
1) специфический путь: он ведет в первичную сенсорную проекционную зону коры,
2) неспецифический путь: он обеспечивает общую активность и тонус коркового отдела анализатора,
3) ассоциативный путь: он определяет биологическую значимость раздражителя и управляет вниманием.
В эволюционном процессе усиливается многоэтажность и многоканальность в структуре сенсорных путей.
Иллюстрация принципа многоканальности: Пути сенсорного возбуждения
3. Принцип конвергенции.
Конвергенция — это схождение нервных путей в виде воронки. За счёт конвергенции нейрон верхнего уровня получает возбуждение от нескольких нейронов нижележащего уровня.
Например: в сетчатке глаза существует большая конвергенция. Фоторецепторов несколько десятков млн., а ганглиозных клеток - не более одного млн. Т.е. нервных волокон, передающих возбуждение от сетчатки во много раз меньше, чем фоторецепторов.
4. Принцип дивергенции.
Дивергенция - это расхождение потока возбуждения на несколько потоков от низшего этажа к высшему (напоминает расходящуюся воронку).
5. Принцип обратной связи.
1. Преобразование силы раздражения в частотный код импульсов – универсальный принцип действия любого сенсорного рецептора.
Причём во всех сенсорных рецепторах преобразование начинается с вызванного стимулом изменения свойств клеточной мембраны. Под действием стимула (раздражителя) в мембране клеточного рецептора должны открыться (а в фоторецепторах, наоборот, закрыться) стимул-управляемые ионные каналы. Через них начинается поток ионов и развивается состояние деполярицации мембраны. Смотри: Рецепция и трансдукция
2. Топическое соответствие - поток возбуждения (информационный поток) во всех передаточных структурах соответствует значимым характеристикам раздражителя. Это означает, что важные признаки раздражителя будут закодированы в виде потока нервных импульсов и нервной системой будет построен внутренний сенсорный образ, похожий на раздражитель - нервная модель стимула. "Топическое" - означает "пространственное".
3. Детекция - это выделение качественных признаков. Нейроны-детекторы реагируют на определенные признаки объекта и не реагируют на все остальное. Нейроны-детекторы отмечают контрастные переходы. Детекторы придают сложному сигналу осмысленность и уникальность. В разных сигналах они выделяют одинаковые параметры. К примеру, только детекция поможет вам отделить контуры маскирующейся камбалы от окружающего её фона.
4. Искажение информации об исходном объекте на каждом уровне передачи возбуждения.
5. Специфичность рецепторов и органов чувств. Их чувствительность максимальна к определенному типу раздражителя с определенной интенсивностью.
6. Закон специфичности сенсорных энергий: ощущение определяется не стимулом, а раздражаемым сенсорным органом. Ещё точнее можно сказать так: ощущение определяется не раздражителем, а тем сенсорным образом, который строится в высших нервных центрах в ответ на действие раздражителя. Например, источник болевого раздражения может находиться в одном месте тела, а ощущение боли может проецироваться на совсем другой участок. Или же: один и тот же раздражитель может вызывать очень разные ощущения в зависимости от адаптации к нему нервной системы и/или органа чувств.
7. Обратная связь между последующими и предшествующими структурами. Последующие структуры могут менять состояние предшествующих и менять таким способом характеристики приходящего к ним потока возбужджения.
Адекватный раздражитель – это раздражитель, дающий максимальную ответную реакцию, при минимальной силе раздражения.
Адекватность раздражителя - относительное понятие. Так, например, существует белок туаматин, который имеет молекулярную массу 22 тысячи, состоит из 207 остатков аминокислот и в 8 тысяч раз слаще сахарозы. А ведь именно водный раствор сахарозы принят эталоном сладкого вкуса.
Специфичность сенсорных систем предопределяется их структурой. Структура ограничивает их реакции на один раздражитель и способствует восприятию других.
Подробности по сенсорным системам для докладов и рефератов можно посмотреть тут:
Реброва Н.П. Физиология сенсорных систем: Учебно-методическое пособие. СПб.,Стратегия будущего, 2007. Читать
Общая физиология сенсорных систем
Сенсорная система (по Павлову – анализатор) – это часть нервной системы, состоящую из воспринимающих элементов – сенсорных рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию. Т.е. анализатор имеет:
– периферический отдел (совокупность рецепторов);
– проводниковый отдел (афферентные нейроны и проводниковые пути);
– центральный отдел (участок коры больших полушарий).
Переработка сенсорной информации может сопровождаться, но может и не сопровождаться осознанием стимула. Если осознание происходит, то говорят об ощущении. Понимание ощущения приводит к восприятию.
Общая сенсорная физиология – это общие принципы, лежащие в основе работы сенсорных систем и их результата – субъективного восприятия. Эти 2 аспекта обусловили разные стратегические подходы к исследованию сенсорных функций.
В случае анализа физических и химических параметров работы сенсорных систем говорят о методах объективной сенсорной физиологии. Когда для описания сенсорных функций используются результаты, полученные психологическими методами исследования субъективного восприятия человека, говорят о субъективной сенсорной физиологии.
Общие принципы строения сенсорных систем
По вертикали – образование отделов, состоящих из нескольких нейронных слоев и осуществляющих определенную функцию.
По горизонтали различные свойства рецепторов, нейронов и связей между ними в пределах каждого из слоев.
Основные функции сенсорной системы (операции с сигналами):
1. обнаружение сигналов;
2. различение;
3. передача и преобразование;
4. кодирование;
5. детектирование признаков;
6. опознавание образов.
Обнаружение сигналов.
Начинается в рецепторе, который является преобразователем внешних стимулов в информационную систему кодируемых нервных импульсов.
Рецептор – это специализированная структура (клетка или окончание афферентного нейрона), которая в процессе эволюции приспособилась к восприятию соответствующего раздражителя внутреннего и внешнего мира путем преобразования энергии стимула (раздражителя) в изменение проницаемости своей мембраны.
Афферентные (сенсорные) нейроны – биполярные нервные клетки, выполняющие функцию восприятия и проведения возбуждения от периферических рецепторов в ЦНС. Тело округлой формы находится вне ЦНС, в спинальном ганглии, имеет один отросток который затем Т-образно делится. Один отросток идет на периферию и образует там чувствительные окончания (рецепторы). Другой отросток идет в ЦНС, где ветвится и формирует синаптические окончания на вставочных или эффекторных клетках. Тело афферентной клетки в возбуждении участия не принимает, выполняя трофическую функцию. Терминальная же часть афферентного волокна обеспечивает передачу возбуждения от одного рецептора к нескольким вставочным нейронам.
Классификации рецепторов.
1. По модальности адекватных раздражителей:
– фоторецепторы – воспринимают световую энергию;
– хеморецепторы – реагируют на химические вещества;
– механорецепторы – воспринимают механическую энергию;
– терморецепторы
реагируют на изменение температуры;
– осморецепторы — реагируют на изменение осмотического давления;
– фонорецепторы – регируют на звук.
2. По отношению к внешней среде:
– экстерорецепторы – воспринимают информацию из внешней среды: зрение, слух, обоняние, осязание.
– интерорецепторы – воспринимают информацию от внутренних органов: органы пищеварения, сердечно-сосудистой системы, проприорецепторы мышц и суставов.
– вестибулорецепторы – занимают промежуточное положение, они находятся внутри организма, но возбуждаются внешними факторами.
3. По взаиморасположению раздражителя и рецептора:
– дистантные – воспринимают энергию на расстоянии (зрение, слух, обоняние);
– контактные – непосредственный контакт с раздражителем (вкус).
4. По модальности раздражителя:
– мономодальные (моносенсорвде) – воспринимают один вид энергии (зрение, слух);
– полимодальные (полисенсорные) – воспринимают несколько видов энергии; например, рецепторы роговицы глаза реагируют на изменение температуры и прикосновение;
– ноцицепторы (болевые) рецепторм
5. Гистофизиомогическая (структурно-функциональная):
– первичночувствующие – обоняние, тактильные, проприорецепторы (восприятие стимула осуществляется непосредственно окончанием афферентного нейрона);
– вторичночувствующие: вкус, слух, зрение, вестибулорецепторы (здесь между действующим стимулом и афферентным нейроном располагается специализированная клетка эпителиального происхождения, из которой при раздражении выделяется медиатор, действующий на окончание афферентного нейрона).
6. По степени адаптации:
– быстроадаптирующиеся;
– медленноадаптирующиеся;
– практически неадаптирующиеся:
– терморецепторы гипоталамуса.
7. По характеру ощущений:
– слуховые;
– зрительные;
– обонятельные;
– осязания;
– болевые;
– температурные
Процесс преобразования энергии стимула (сигнала) в изменение проницаемости мембраны с последующим формированием рецепторного потенциала мембраны подучил название трансдукции.
Включает в себя 3 основных этапа:
1. взаимодействие стимула с рецепторной белковой молекулой, которая находится в составе клеточной мембраны рецепторной клетки;
2. внутриклеточные процессы усиления и передачи сенсорного стимула в пределах рецепторной клетки;
3. открывание находящихся в мембране рецептора ионных каналов, через которые начинает течь ионный ток, что, как правило, приводит к деполяризации клеточной мембраны рецепторной клетки (возникает рецепторный потенциал). В фоторецепторах, наоборот, возникает гиперполяризация.
Свойства рецепторного потенциала:
– генерируется в самих нервных окончаниях (а не в окружающих клетках, входящих в структуру сенсорного органа);
– является градуальным (стимулами разной интенсивности деполяризуются или гиперполяризуются неодинаково); амплитуда рецепторного потенциала отражает силу стимуляции, хотя последняя не служит для него источником энергии;
– является локальным – распространяется по мембране электротонически, а не проводится активно;
– подвергается пространственной и временной суммации (два слабых одиночных стимула вместе могут вызвать надпороговую деполяризацию).
В первичночувствующих рецепторах рецепторный потенциал является одновременно и генераторным, тж. вызывает генерацию ПД в наиболее чувствительных участках мембраны.
У вторичночувствующих – рецепторный потенциал вызывает выделение квантов медиатора из пресинаптических окончаний рецепторной клетки. Медиатор изменяет поляризацию ПСМ. Т.е. здесь генераторный потенциал является постсинаптическим потенциалом первого нейрона сенсорной системы.
Трансформация генераторных потенциалов в залпы ПД.
Обычно происходит на первом перехвате Ранвье афферентного нервного волокна. У немиелинизированных афферентов точное место трасформации неизвестно. Генераторный потенциал распространяется электротонически до места генерирования ПД, точно также как синаптический потенциал по телу мотонейрона к аксонному холмику.
Частота импульсации в афферентном нервном волокне пропорциональна величине генераторного потенциала. Такое же перекодирование локального потенциала с переменной амплитудой в проводимый сигнал с переменной частотой происходит в синапсах ЦНС.
Различение сигналов.
Способность замечать различия в свойствах одновременно или последовательно действующих раздражителей. Характеризует то минимальное различие между стимулами, которое сенсорная система может заметить (дифференциальный, или разностный* порог). Различение начинается в рецепторах, но в нем участвуют нейроны всей сенсорной системы.
Различение силы раздражителей.
Закон Вебера:
Порог различия интенсивности раздражителя практически всегда выше ранее действовавшего раздражения на определенную долю.
Так, усиление давления на кожу руки ощущается, если увеличить груз на 3 %. К 100 Г добавить 3 Г, к 200 Г – 6 Г, к 600 Г – 18 Г.
Эта зависимость силы раздражения т ощущения выражается формулой:
d I / I = const
где I – сила раздражения, d I – ощущаемый прирост (порог различия), const – постоянная величина.
Аналогичные соотношения: характерны для зрения, слуха, и других органов чувств человека. Однако спонтанная активность сенсорной системы существенно влияет на абсолютный порог особенно при весьма малых и очень сильных воздействиях. Соответственно, справедливость закона Вебера имеет ограничения. Фехнер обнаружил, что интенсивность ощущения растет не линейно (как у Вебера), а логарифмически:
Е = a log I + b,
где Е – величина ощущения, I – сила раздражения, а и b – константы.
Эта формула описывает психофизический закон Фехнера более известный как закон Вебера-Фехнера – ощущение раздражения увеличивается пропорционально логарифму раздражения.
Пространственное различение.
Основано на распределении возбуждения в слое рецепторов и в нейронных слоях. Если 2 раздражителя возбудили 2 соседних рецептора, то различение этих раздражителей невозможно, и они будут восприняты как единое целое. Необходимо, чтобы между двумя возбужденными рецепторами находился хотя бы один – невозбужденный.
Временное различение раздражений.
Необходимо, чтобы вызванные раздражителями нервные процессы не сливались во времени и чтобы сигнал, вызванный вторым стимулом, не попадал в рефрактерный период от предыдущего раздражения.
Передача и преобразование сигналов.
Эти процессы доносят до высших центров мозга наиболее важную информацию о раздражителе в форме, обеспечивающей надежный и быстрый анализ. Преобразования сигналов могут быть разделены на пространственные и временные.
Пространственные преобразования.
Временные преобразования информации.
Сжатие, временная компрессия сигналов: переход от длительной (тонической) импульсации нейронов на нижних уровнях к коротким (фазическим) разрядам нейронов высоких уровней. Ограничение избыточности информации и выделение существенных признаков сигналов. Избыточность сенсорных сообщений ограничивается путем подавления информации о менее существенных сигналах. Менее важно во внешней среде то, что неизменно, либо изменяется медленно во времени и в пространстве.
Кодирование информации
Преобразование информации в условную форму – код. В сенсорных системах сигналы кодируются наличием или отсутствием электрического импульса в тот или иной момент времени. Такой способ прост и устойчив к помехам.
Особенности кодирования в сенсорных системах,
В отличие от телефонных или телевизионных систем нет декодирования. Множественность 1 перекрытие кодов. Для одного и того же сигнала используется несколько кодов: частотой и числом импульсов в пачке, числом возбужденных нейронов и их локализацией в сдое.
В коре больших полушарий пользуется позиционное кодирование. Определенный признак раздражителя вызывает возбуждение определенного нейрона или небольшой группы нейронов, расположенных в определенном месте нейронного слоя.
Для периферических отделов сенсорной системы типично временное кодирование признаков раздражителя, а на высших уровнях — переход к преимущественно пространственному (позиционному) кодированию.
Детектирование сигналов.
Избирательное выделение сенсорным нейроном того или иного признака раздражителя. Такой анализ осуществляют нейроны- детекторы, избирательно реагирующие на определенные параметры стимула. Например, ответ нейрона зрительной области коры на определенную ориентацию темной или светлой полоски, расположенной в определенной части поля зрения.
В высших отделах сенсорных систем сконцентрированы детекторы сложных признаков и целых образов (детекторы лица в нижневисочной области коры обезьян).
Опознание образов.
Адаптация сенсорной системы.
Это общее свойство сенсорных систем, заключающееся в приспособлении к длительно действующему (фоновому) раздражителю. Адаптация проявляется в снижении абсолютной и повышении дифференциальной чувствительности сенсорной системы (исключение составляет вестибуло- и проприорецепторы).
По скорости адаптации все рецепторы делятся на быстро- и медленно адаптирующиеся. Первые после развития адаптации практически не посылают в мозг информации о длящемся раздражении. Вторые передают информацию в значительно ослабленном виде. Если действие раздражителя прекращается, то чувствительность рецептора повышается (восстанавливается).
Важную роль играет эфферентная регуляция свойств сенсорных систем, за счет нисходящих влияний более высоких отделов на более низкие. Происходит как бы перенастройка свойств нейронов на оптимальное восприятие внешних сигналов в изменившихся условиях. Эфферентные влияния чаще имеют тормозной характер, приводят к уменьшению чувствительности и ограничению потока афферентных сигналов.
Взаимодействие сенсорных систем.
Теория информации в сенсорной физиологии.
Между нервной системой и искусственными системами связи существует функциональное сходство в передаче информации. Это позволяет подходить к изучению функций нервной системы, опираясь на теорию информации. Сочетание ее с теорией управления образует научную дисциплину, называемую кибернетиков.
В теории информации сам этот термин применяется к измеримой, описываемой математически стороне сообщения. Т.е. теория информации дает возможность измерить количество информации в неком сообщении и охарактеризовал системы ее передачи.
Информация – это выраженное количественно уменьшение неопределенности в знаниях о событии. Поэтому информационное содержание (I) удобно выражать как величину, обратную вероятности этого события: I = 1/p, В простейшем случае информацию можно передавать с помощью 2 символов (0, 1) в двоичной системе. Измеримое информационное содержание сообщения: I = Id (1/d), где Id — двоичный логарифм. Количество информации, передаваемое одним двоичным символом, – 1 бит.
Эффективность систем передачи информации характеризуется максимальным потоком информации, иди пропускной способностью канала. Количественная оценка информации используется в экспериментальной психофизике, когда речь идет об информации на уровне сознательного восприятия.
В рамках субъективного восприятия оценивается лишь малая часть информации передаваемой афферентными волокнами от сенсорных органов (максимально около 30%).
Для эффективной защиты от шума используется параллельная передача информации по двум или более каналам. Такая возможность реализуется в ЦНС и представляется как защита от шума с помощью избыточности. Например, когда испытуемого просили оценить интенсивность давления на кожу, информационное содержание механического воздействия на механорецепторы кожи кисти верхней конечности составило 3 бит/сек. Эта величина почти совпадает с полученными данными для одиночного рецептора давления, хотя в процессе возбуждения участвовали около 20 афферентных волокон, отходящих от медленно адаптирующихся рецепторов.
Читайте также: