Анатомия: Статический анализатор. Ядро анализатора импульсов от внутренних органов
Добавил пользователь Валентин П. Обновлено: 14.12.2024
Передняя часть перепончатого лабиринта - улитковый проток, ductus cochlearis, заключенный в костной улитке, является самой существенной частью органа слуха. Ductus cochlearis начинается слепым концом в recessus cochlearis преддверия несколько кзади от ductus reuniens, соединяющего улитковый проток с sacculus. Затем ductus cochlearis проходит по всему спиральному каналу костной улитки и оканчивается слепо в ее верхушке.
На поперечном сечении улитковый проток имеет треугольное очертание. Одна из трех его стенок срастается с наружной стенкой костного канала улитки, другая, membrana spiralis, является продолжением костной спиральной пластинки, протягиваясь между свободным краем последней и наружной стенкой. Третья, очень тонкая стенка улиточного хода, paries vestibularis ductus cochlearis, протянута косо от спиральной пластинки к наружной стенке.
Спиральный орган, organon spirale, располагается вдоль всего улиткового протока на базилярной пластинке, занимая часть ее, ближайшую к lamina spiralis ossea. Базилярная пластинка, lamina basilaris, состоит из большого количества (24000) фиброзных волокон различной длины, натянутых, как струны (слуховые струны). Согласно известной теории Гельмгольца (1875), они являются резонаторами, обусловливающими своими колебаниями восприятие тонов различной высоты, но, по данным электронной микроскопии, эти волокна образуют эластическую сеть, которая в целом резонирует строго градуированными колебаниями.
Сам спиральный орган слагается из нескольких рядов эпителиальных клеток, среди которых можно различить чувствительные слуховые клетки с волосками. Он выполняет роль «обратного» микрофона, трансформирующего механические колебания в электрические.
Артерии внутреннего уха происходит из a. labyrinthi, ветви a. basilaris. Идя вместе с n. vestibulocochlearis во внутреннем слуховом проходе, a. labyrinthi разветвляется в ушном лабиринте. Вены выносят кровь из лабиринта главным образом двумя путями: v. aqueductus vestibuli, лежащая в одноименном канале вместе с ductus endolymphaticus, собирает кровь из utriculus и полукружных каналов и вливается в sinus petrosus superior, v. canaliculi cochleae, проходящая вместе с ductus perilymphaticus в канале водопровода улитки, несет кровь преимущественно от улитки, а также из преддверия от sacculus и utriculus и впадает в v. jugularis interna.
Пути проведения звука. С функциональной точки зрения орган слуха (периферическая часть слухового анализатора) делится на две части:
- звукопроводящий аппарат - наружное и среднее ухо, а также некоторые элементы (перилимфа и эндолимфа) внутреннего уха;
- звуковоспринимающий аппарат - внутреннее ухо.
Воздушные волны, собираемые ушной раковиной, направляются в наружный слуховой проход, ударяются о барабанную перепонку и вызывают ее вибрацию.
Вибрация барабанной перепонки, степень натяжения которой регулируется сокращением m. tensor tympani (иннервация из n. trigeminus), приводит в движение сращенную с ней рукоятку молоточка. Молоточек соответственно движет наковальню, а наковальня - стремя, которое вставлено в fenestra vestibuli, ведущее во внутреннее ухо. Величина смещения стремени в окне преддверия регулируется сокращением m. stapedius (иннервация от n. stapedius из n. facialis).
Таким образом цепь косточек, соединенная подвижно, передает колебательные движения барабанной перепонки направленно к окну преддверия. Движение стремени в окне преддверия кнутри вызывает перемещения лабиринтной жидкости, которая выпячивает мембрану окна улитки кнаружи. Эти перемещения необходимы для функционирования высокочувствительных элементов спирального органа.
Первой перемещается перилимфа преддверия; ее колебания по scala vestibuli восходят до вершины улитки, через helicotrema передаются перилимфе в scala tympani, по ней спускаются к membrana tympani secundaria, закрывающей окно улитки, являющейся слабым местом в костной стенке внутреннего уха, и как бы возвращаются к барабанной полости. С перилимфы звуковая вибрация передается эндолимфе, а через нее спиральному органу.
Таким образом, колебания воздуха в наружном и среднем ухе благодаря системе слуховых косточек барабанной полости переходят в колебания жидкости перепончатого лабиринта, вызывающие раздражения специальных слуховых волосковых клеток спирального органа, составляющих рецептор слухового анализатора. В рецепторе, являющемся как бы «обратным» микрофоном, механические колебания жидкости (эндолимфы) превращаются в электрические, характеризующие нервный процесс, распространяющийся по кондуктору до мозговой коры.
Кондуктор слухового анализатора составляют слуховые проводящие пути, состоящие из ряда звеньев. Клеточное тело первого нейрона лежит в ganglion spirale. Периферический отросток биполярных клеток его в спиральном органе начинается рецепторами, а центральный идет в составе pars cochlearis n. vestibulocochlearis до его ядер, nucleus cochlearis dorsalis et ventralis, заложенных в области ромбовидной ямки.
Различные части слухового нерва проводят различные по частоте колебаний звуки. В названных ядрах помещаются тела вторых нейронов, аксоны которых образуют центральный слуховой путь; последний в области заднего ядра трапециевидного тела перекрещивается с соименным путем противоположной стороны, образуя латеральную петлю, lemniscus lateralis. Волокна центрального слухового пути, идущие из вентрального ядра, образуют трапециевидное тело и, пройдя мост, входят в состав lemniscus lateralis противоположной стороны. Волокна центрального пути,гисходящие из дорсального ядра, идут по дну IV желудочка в виде striae medullares ventriculi quarti, проникают в formatio reticularis моста и вместе с волокнами трапециевидного тела вступают в состав латеральной петли противоположной стороны. Lemniscus lateralis заканчивается частью в нижних холмиках крыши среднего мозга, частью в corpus geniculatum mediale, где помещаются третьи нейроны. Нижние холмики крыши среднего мозга служат рефлекторным центром для слуховых импульсов. От них идет к спинному мозгу tractus tectospinalis, через посредство которого совершаются двигательные реакции на слуховые раздражения, поступающие в средний мозг. Рефлекторные ответы на слуховые импульсы могут быть получены и из других промежуточных слуховых ядер - ядер трапециевидного тела и латеральной петли, связанных короткими путями с двигательными ядрами среднего мозга, моста и продолговатого мозга. Оканчиваясь в образованиях, имеющих отношение к слуху (нижние холмики и corpus geniculatum mediale), слуховые волокна и их коллатерали присоединяются, помимо этого, к медиальному продольному пучку, при помощи которого они приходят в связь с ядрами глазодвигательных мышц и с двигательными ядрами других черепных нервов и спинного мозга. Этими связями объясняются рефлекторные ответы на слуховые раздражения. Нижние холмики крыши среднего мозга не имеют центростремительных связей с корой. В corpus geniculatum mediale лежат клеточные тела последних нейронов, аксоны которых в составе внутренней капсулы достигают коры височной доли большого мозга.
Корковый конец слухового анализатора находится в gyrus temporalis superior (поле 41). Здесь воздушные волны наружного уха, вызывающие движение слуховых косточек в среднем ухе и колебания жидкости во внутреннем ухе и превращающиеся далее в рецепторе в нервные импульсы, переданные по кондуктору в мозговую кору, воспринимаются в виде звуковых ощущений. Следовательно, благодаря слуховому анализатору колебания воздуха, т. е. объективное явление существующего независимо от нашего сознания окружающего нас реального мира, отражается в нашем сознании в виде субъективно воспринимаемых образов, т. е. звуковых ощущений. Это яркий пример справедливости ленинской теории отражения, согласно которой объективно реальный мир отражается в нашем сознании в форме субъективных образов. Эта материалистическая теория разоблачает субъективный идеализм, который, наоборот, на первое место ставит наши ощущения.
Благодаря слуховому анализатору различные звуковые раздражители, воспринимаемые в нашем мозге в виде звуковых ощущений и комплексов ощущений - восприятий, становятся сигналами (первыми сигналами) жизненно важных явлений окружающей среды. Это составляет первую сигнальную систему действительности (И. П. Павлов), т. е. конкретно-наглядное мышление, свойственное и животным. У человека имеется способность к абстрактному, отвлеченному мышлению при помощи слова, которое сигнализирует о звуковых ощущениях, являющихся первыми сигналами, и потому является сигналом сигналов (вторым сигналом). Отсюда устная речь составляет вторую сигнальную систему действительности, свойственную только человеку.
Вопрос 27. Корковые ядра анализаторов.
1.Ядро коркового анализатораобшей (температурной, болевой, осязательной) и проприоцептивной чувствительности образуют нервные клетки, залегающие в коре постцентральной извилины (поля 1, 2, 3) и верхней теменной дольки (поля 5 и 7). Проводящие чувствительные пути, следующие к коре большого мозга, перекрещиваются на уровне спинного мозга (пути болевой, температурной чувствительности, осязания и давления), и на уровне продолговатого мозга (пути проприоцептивной чувствительности коркового направления). Вследствие этого постцентральные извилины каждого из полушарий связаны с противоположной половиной тела.
2.Ядро двигательного анализаторанаходится в основном в так называемой двигательной области коры, к которой относятся предцентральная извилина (поля 4 и 6) и парацентральная долька на медиальной поверхности полушария. В 5-м слое (пластинке) коры предцентральной извилины залегают гигантопирамидальные нейроны (клетки Беца). И.П. Павлов относил их к вставочным и отмечал, что эти клетки своими отростками связаны с подкорковыми ядрами, двигательными клетками ядер черепных и спинномозговых нервов. В верхних участках предцентральной извилины и в парацентральной дольке расположены клетки, импульсы от которых направляются к мышцам самых нижних отделов туловища и нижних конечностей. В нижней части предцентральной извилины находятся двигательные центры, регулирующие деятельность мышц лица.
3.Ядра анализатора, обеспечивающее функции сочетания поворота головы и глаз в противоположную сторону, расположено в задних отделах средней лобной извилины, в так называемой премоторной зоне (поле 8). Сочетанный поворот глаз и головы регулируется не только при поступлении в кору лобной извилины проприоцептивных импульсов от мышц глазного яблока, но и при поступлении импульсов из сетчатки глаза в поле 17 затылочной доли, где находится ядро зрительного анализатора.
4.Ядродвигательного анализаторарасположено в области нижней теменной дольки, в надкраевой извилине (глубокие слои цитоархитектонического поля 40). Функциональное значение этого ядра — синтез всех целенаправленных движений. Это ядро асимметрично. У правшей оно находится в левом, а у левшей — в правом полушарии. Способность координировать сложные целенаправленные движения приобретается индивидуумом в течение жизни в результате практической деятельности и накопления опыта. Целенаправленные движения происходят за счет образования временных связей между клетками, расположенными в предцентральной и надкраевой извилинах. Поражение поля 40 не вызывает паралича, а приводит к потере способности производить сложные координированные целенаправленные движения — к апраксии (praxis— практика).
5.Ядро кожного анализатора одного из частных видов чувствительности, которому присуща функция узнавания предметов на ощупь, — стреогнозии, находится в коре верхней теменной дольки (поле 7). Корковый конец этого анализатора находится в правом полушарии и представляет собой проекцию рецепторных полей левой верхней конечности. Так, ядро этого анализатора для правой верхней конечности находится в левом полушарии. Поражение поверхностных слоев коры в этом отделе мозга сопровождается утратой функции узнавания предметов на ощупь, хотя другие виды общей чувствительности при этом остаются сохранными.
6.Ядро слухового анализатора расположено в глубине латеральной борозды, на обращенной к островку поверхности средней части верхней височной извилины (там, где видны поперечные височные извилины, илиизвилины Гешля, — поля 41, 42, 52). К нервным клеткам, составляющим ядро слухового анализатора каждого из полушарий, подходят проводящие пути от рецепторов как левой, так и правой стороны. В связи с этим одностороннее поражение этого ядра не вызывает полной утраты способности воспринимать звуки. Двустороннее поражение со- провождается «корковой глухотой».
7.Ядро зрительного анализатора расположено на медиальной поверхности затылочной доли полушария большого мозга, по обеим сторонам от шпорной борозды (поля 17,18,19). Ядро зрительного анализатора правого полушария связано с проводящими путями от латеральной половины сетчатки правого глаза и медиальной половины сетчатки левого глаза. В коре за- тылочной доли левого полушария проецируются соответственно рецепторы латеральной половины сетчатки левого глаза и медиальной половины сетчатки правого глаза. Как и для ядра слухового анализатора, только двустороннее поражение ядер зрительного анализатора приводит к полной «корковой слепоте». Поражение поля 18, находящегося несколько выше поля 17, сопровождается потерей зрительной памяти, но не слепотой. Наиболее высоко по отношению к двум предыдущим в коре затылочной доли находится поле 19, поражение которого сопровождается утратой способности ориентироваться в незнакомой обстановке.
8. Ядро обонятельного анализаторанаходится на нижней поверхности височной доли полушария большого мозга, в области крючка и отчасти в области гиппокампа. Эти участки с точки зрения филогенеза относятся к наиболее древним частям коры большого мозга. Чувство обоняния и чувство вкуса тесно взаимосвязаны, что объясняется близким расположением ядер обонятельного и вкусового анализаторов. Отмечено также (В.М. Бехтерев), что вкусовое восприятие нарушается при поражении коры самых нижних отделов постцентральной извилины (поле 43). Ядра вкусового и обонятельного анализаторов обоих полушарий связаны с рецепторами как левой, так и правой стороны тела.
Ядра второй сигнальной системы
9. Ядро двигательного анализатора письменной речи (анализатора произвольных движений, связанных с написанием букв и других знаков) находится в заднем отделе средней лобной извилины (поле 40). Оно тесно прилежит к тем отделам предцентральной извилины, которым присуща функция двигательного анализатора руки и сочетанного поворота головы и глаз в противоположную сторону. Разрушение поля 40 не приводит к нарушению всех видов движений, а сопровождается лишь утратой способности производить рукой точные и тонкие движения приначертании букв, знаков и слов (аграфия).
10. Ядро двигательного анализатора артикуляции речи (речедвигательный анализатор) располагается в задних отделах нижней лобной извилины (поле 44, или центра Брока). Это ядро граничит с теми отделами предцентральной извилины, которые являются анализаторами движений, производимых при сокращении мыши головы и шеи. Это понятно, так как в рече-двигательном центре осуществляется анализ движений всех мышц: губ, щек, языка, гортани, принимающих участие в акте устной речи (произношение слов и предложении). Повреждение участка коры этой области (поле 44) приводит к двигательной афазии, т.е. утрате способности произносить слова. Такая афазия не связана с потерей функции мышц, участвующих в речеобразовании. Более того, при поражении поля 44 не утрачивается способность к произношению звуков или пению. В центральных отделах нижней лобной извилины (поле 45) находится ядро речевого анализатора, связанного с пением. Поражение поля 45 сопровождается вокальной амузией — неспособностью к составлению и воспроизведению музыкальных фраз и аграмматизмом — утратой способности состав- лять осмысленные предложения из отдельных слов. Речь таких больных состоит из несвязанного по смысловому значению набора слов.
11.Ядро слухового анализатора устной речи тесно взаимосвязано с корковым центром слухового анализатора и располагается, как и последний, в области верхней височной извилины. Это ядро находится в задних отделах верхней височной извилины, на стороне, обращенной к латеральной борозде полушария большого мозга (поле 42). Поражение ядра не нарушает слухового восприятия звуков вообще, однако при этом утрачивается способность понимать слова, речь (словесная глухота, или сенсорная афазия). Функция этого ядра состоит в том, что человек не только слышит и понимает речь другого человека, но и контролирует свою собственную. В средней трети верхней височной извилины (поле 22) находится ядро коркового анализатора, поражение которого сопровождается наступлением музыкальной глухоты: музыкальные фразы воспринимаются как бессмысленный набор различных шумов. Этот корковый конец слухового анализатора относится к центрам второй сигнальной системы, воспринимающим словесное обозначение предметов, действий, явлений, т.е. воспринимающим сигналы сигналов.
12.Ядро зрительного анализатора письменной речи расположено в непосредственной близости к ядру зрительного анализатора — в угловой извилине нижней теменной дольки (поле 39). Поражение этого ядра приводит к утрате способности воспринимать написанный текст, читать (алексия).
ВНУТРЕННИЕ АНАЛИЗАТОРЫ.
Органы чувств необходимы человеку для его ориентации во внешней среде, а также для получения информации о состоянии своего тела, его внутренней среды. В результате деятельности органов чувств у человека рождаются ощущения - отражение в его сознании предметов и явлений внешнего мира. Однако не все виды раздражений доходят до нашего сознания. Так человек не ощущает радиоволн, космических лучей, не слышит слишком высоких или низких звуков и пр. Совершенствование органов чувств в процессе эволюции шло параллельно с развитием нервной системы в целом.
Аппарат, необходимый человеку для возникновения ощущений, И.П. Павлов назвал «анализатором» еще в начале 20 века.
Анализатор (сенсорная система) - совокупность взаимосвязанных структур нервной системы, осуществляющая восприятие и анализ раздражений из внешней или внутренней среды. В структуре любого анализатора выделяют три отдела (части): периферический, проводниковый и центральный (в головном мозге).
Периферический отдел анализатора представлен рецепторами, воспринимающими внешние и внутренние раздражения и преобразующими энергию раздражителя в нервный импульс.
Все рецепторы делятся на две группы: дистантные и контактные. Дистантныерецепторы способны воспринимать раздражения, источник которых находится на значительном расстоянии от организма (зрительные, слуховые, обонятельные рецепторы). Контактные рецепторы возбуждаются при непосредственном соприкосновении с источником раздражения. К ним относятся тактильные, температурные, вкусовые рецепторы.
Общие свойства рецепторов:
ü Воспринимают информацию в виде химических, световых, звуковых, механических и др. раздражителей - сигналов;
ü Различают только адекватные раздражители;
ü Обладают строгой специфичностью;
ü Преобразуют полученный сигнал в нервный импульс;
ü Обладают способностью к адаптации- приспособление к силе раздражителя. Происходит снижение чувствительности рецепторов к постоянно действующему раздражителю. Проприорецепторы не способны к адаптации.
Проводниковый отдел анализатора представлен нервными путями, проводящими нервные импульсы в центральный отдел анализатора.
Центральный, или мозговой, отдел анализатора представлен определенными областями коры большого мозга. В клетках коры большого мозга нервные импульсы являются основой для возникновения ощущения. На базе ощущений возникают более сложные психические акты — восприятие, представление и абстрактное мышление.
Павлов И.П. Мозговой конец анализатора состоит из двух частей: ядра и периферических рассеянных нервных элементов, располагающихся по всей поверхности коры головного мозга. Центральная часть анализатора (ядро) состоит из высокодифференцированных в функциональном отношении нейронов, которые осуществляют высший анализ и синтез информации, поступающей к ним. Рассеянные элементы мозгового конца анализатора представлены менее дифференцированными нейронами, способными к выполнению простейших функций.
По источнику раздражения все анализаторы делятся на внешние и внутренние. К внешним анализаторам относят зрительный, слуховой, вкусовой, обонятельный и кожный. К внутренним анализаторам - двигательный, вестибулярный и анализатор внутренних органов (интерорецептивный анализатор).
ВНЕШНИЕ АНАЛИЗАТОРЫ.
Зрительный анализатор. Периферический отдел зрительного анализатора - фоторецепторы, расположенные на сетчатой оболочке глаза. Нервные импульсы по зрительному нерву (проводниковый отдел) поступают в затылочную область — мозговой отдел анализатора. В нейронах затылочной области коры большого мозга возникают многообразные и различные зрительные ощущения.
Значение слухового анализатора состоит в восприятии и анализе звуковых волн. Периферический отделслухового анализатора представлен спиральным (кортиевым) органом внутреннего уха (улитка). Слуховые рецепторы спирального органа воспринимают физическую энергию звуковых колебаний, которые поступают к ним от звукоулавливающего (наружное ухо) и звукопередающего аппарата (среднее ухо). Нервные импульсы, образующиеся в рецепторах спирального органа, через проводниковый путь(предверно-улитковый, или слуховой нерв, 8 пара черепных нервов) идут в височную область коры большого мозга — мозговой отдел анализатора. В мозговом отделе анализатора нервные импульсы преобразуются в слуховые ощущения.
Значение вкусового анализатора заключается в апробации пищи при непосредственном соприкосновении ее со слизистой оболочкой полости рта.
Вкусовые рецепторы (периферический отдел) заложены в эпителии слизистой оболочки ротовой полости. Нервные импульсы по проводниковому пути, главным образом блуждающему, лицевому и языкоглоточному нервам, поступают в мозговой конец анализатора, располагающегося в ближайшем соседстве с корковым отделом обонятельного анализатора.
Вкусовые почки (рецепторы) сосредоточены, в основном, на сосочках языка. Больше всего вкусовых рецепторов имеется на кончике, краях и в задней части языка. Рецепторы вкуса располагаются также на задней стенке глотки, мягком небе, миндалинах, надгортаннике.
Раздражение одних сосочков вызывает ощущение только сладкого вкуса, других — только горького и т. д. Вместе с тем имеются сосочки, возбуждение которых сопровождается двумя или тремя вкусовыми ощущениями.
Обонятельный анализатор принимает участие в определении запахов, связанных с появлением в окружающей среде пахучих веществ.
Периферический отдел анализатора образуется обонятельными рецепторами, которые находятся в слизистой оболочке полости носа. От обонятельных рецепторов нервные импульсы по проводниковому отделу — обонятельному нерву — поступают в мозговой отдел анализатора — область крючка и гиппокампа лимбической системы. В корковом отделе анализатора возникают различные обонятельные ощущения.
Рецепторы обоняния сосредоточены в области верхних носовых ходов. На поверхности обонятельных клеток имеются реснички. Это увеличивает возможность их контакта с молекулами пахучих веществ. Рецепторы обоняния очень чувствительны. Так, для получения ощущения запаха достаточно, чтобы было возбуждено 40 рецепторных клеток, причем на каждую из них должна действовать всего одна молекула пахучего вещества. Ощущение запаха при одной и той же концентрации пахучего вещества в воздухе возникает лишь в первый момент его действия на обонятельные клетки. В дальнейшем ощущение запаха ослабевает. Количество слизи в полости носа также влияет на возбудимость обонятельных рецепторов. При повышенном выделении слизи, например, во время насморка, происходит снижение чувствительности рецепторов обоняния к пахучим веществам.
Деятельность тактильного анализатора (осязание) связана с различением различных воздействий, оказываемых на кожу — прикосновение, давление, вибрация и т.п.
Тактильные рецепторы, находящиеся на поверхности кожи и слизистых оболочках полости рта и носа, образуют периферический отдел анализатора. Они возбуждаются при прикосновении к ним или давлении на них. Проводниковый отдел тактильного анализатора представлен чувствительными нервными волокнами, идущими от рецепторов в спинной (через задние корешки и задние столбы), продолговатый мозг, зрительные бугры и нейроны ретикулярной формации. Мозговой отдел анализатора- задняя центральная извилина КБП. В нем возникают тактильные ощущения.
К тактильным рецепторам относят осязательные тельца (мейсснеровы), расположенные в сосудах кожи, и осязательные мениски (меркелевы диски), имеющиеся в большом количестве на кончиках пальцев и губ. К рецепторам давления относят пластинчатые тельца (тельца Пачини), которые сосредоточены в глубоких слоях кожи, в сухожилиях, связках, брюшине, брыжейке кишечника.
Температурный анализатор. Его значение состоит в определении температуры внешней и внутренней среды организма.
Периферический отдел этого анализатора образован терморецепторами, тепловыми и холодовыми, в коже и внутренних органах. Изменение температуры внутренней среды организма приводит к возбуждению температурных рецепторов, расположенных в гипоталамусе. Проводниковый отдел анализатора представлен спиноталамическим путем, волокна которого заканчиваются в ядрах зрительных бугров и нейронах ретикулярной формации ствола мозга. Мозговой конец анализатора — задняя центральная извилина КГМ, где формируются температурные ощущения.
Тепловые рецепторы представлены тельцами Руффини, холодовые — колбами Краузе. Терморецепторы в коже располагаются на разной глубине: более поверхностно находятся холодовые, глубже — тепловые рецепторы.
ВНУТРЕННИЕ АНАЛИЗАТОРЫ.
Вестибулярный анализатор. Участвует в регуляции положения и движения тела в пространстве, в поддержании равновесия, а также имеет отношение к регуляции мышечного тонуса.
Периферический отдел анализатора представлен рецепторами, расположенными в вестибулярном аппарате. Вестибулярный аппарат состоит из преддверия и трех полукружных каналов внутреннего уха. Они возбуждаются при изменении скорости вращательного движения, прямолинейном ускорении, изменении направления силы тяжести, вибрации. Проводниковый путь —предверно-улитковый нерв. Мозговой отдел анализатора расположен в передних отделах височной доли КГМ. В результате возбуждения нейронов этого отдела коры возникают ощущения, дающие представления о положении тела и отдельных его частей в пространстве, способствующие сохранению равновесия и поддержанию определенной позы тела в покое и при движении.
Двигательный анализатор. За счет активности двигательного анализатора определяется положение тела или его отдельных частей в пространстве, степень сокращения каждой мышцы.
Периферический отдел двигательного анализатора представлен проприорецепторами, находящимися в мышцах, сухожилиях, связках и околосуставных сумках. Проводниковый отдел состоит из соответствующих чувствительных нервов и проводящих путей спинного и головного мозга. Мозговой отдел анализатора располагается в двигательной области коры головного мозга — передней центральной извилине лобной доли.
Интероцептивный (висцеральный) анализатор. Этот анализатор внутренних органов участвует в поддержании постоянства внутренней среды организма (гомеостаза).
Периферический отдел образован разнообразными интерорецепторами, диффузно расположенными во внутренних органах. Их называются висцерорецепторами. Они участвуют в регуляции работы внутренних органов, осуществляют рефлекторные взаимодействия между ними. Проводниковый отдел включает несколько различных по функциональному значению нервов, которые иннервируют внутренние органы, блуждающие, чревные и внутренностные тазовые. Мозговой отдел располагается в моторной и премоторной области КГМ.
В отличие от внешних анализаторов мозговой отдел интероцептивного анализатора имеет значительно меньше афферентных нейронов, воспринимающих нервные импульсы от рецепторов. Поэтому здоровый человек не ощущает работу внутренних органов. Это связано с тем, что афферентные импульсы, поступающие от интерорецепторов в мозговой отдел анализатора, не преобразуются в ощущения, то есть не доходят до порога нашего сознания. Однако при возбуждении некоторых висцерорецепторов, например, рецепторов мочевого пузыря и прямой кишки в случае растяжения их стенок, возникают ощущения позыва на мочеиспускание и дефекацию.
Боль - физиологический феномен, информирующий нас о вредных воздействиях, повреждающих или представляющих потенциальную опасность для организма. Болевые раздражения могут возникать в коже, глубоких тканях и внутренних органах. Эти раздражения воспринимаются ноцицепторами, расположенными по всему телу, за исключением головного мозга. Термин ноцицепция означает процесс восприятия повреждения.
Когда при раздражении кожных ноцицепторов, ноцицепторов глубоких тканей или внутренних органов тела, возникающие импульсы, следуя по классическим анатомическим путям, достигают высших отделов нервной системы и отображаются сознанием, формируется ощущение боли. Комплекс ноцицептивной системы в равной степени сбалансирован в организме комплексом антиноцицептивной системы, обеспечивающей контроль за активностью структур, участвующих в восприятии, проведении и анализе болевых сигналов. Антиноцицептивная система обеспечивает снижение болевых ощущений внутри организма.
В настоящее время установлено, что болевые сигналы, поступающие с периферии, стимулируют активность различных отделов центральной нервной системы (околопроводное серое вещество, ядра шва ствола мозга, ядра ретикулярной формации, ядра таламуса, внутренней капсулы, мозжечка, интернейроны задних рогов спинного мозга и др.) оказывающих нисходящее тормозное действие на передачу ноцицептивной афферентации в дорзальных рогах спинного мозга.
В механизмах развития анальгезии наибольшее значение придаётся серотонинергической, норадренергической, ГАМКергической и опиоидергической системам мозга. Основная из них ,опиоидергическая система, образована нейронами, тело и отростки которых содержат опиоидные пептиды (бета-эндорфин, мет-энкефалин, лей-энкефалин, динорфин). Связываясь с определёнными группами специфических опиоидных рецепторов, 90% которых расположено в дорзальных рогах спинного мозга, они способствуют высвобождению различных химических веществ (гамма-аминомасляная кислота), тормозящих передачу болевых импульсов. Эта природная, естественная болеутоляющая система так же важна для нормальной жизнедеятельности, как и болесигнализирующая система. Благодаря ей, незначительные повреждения типа ушиба пальца или растяжения связок вызывают сильные болевые ощущения только на короткое время - от несколько минут до нескольких часов, не заставляя нас страдать в течение дней и недель, что случилось бы в условиях сохранения боли до полного заживления.
Познавательно:
Доврачебная помощь при приступе бронхиальной астмы Неотложная помощь Астматический статус. - Это синдром острой дыхательной недостаточности.
Внешняя политика России во второй половине XIX века Во внешней политике России второй половины XIX в. основными целями были: отмена статей Парижского (1856 г.) договора.
Стадии гражданского процесса Гражданский процесс представляет собой поступательное движение, состоящее из ряда стадий.
Социальная профилактика Выявление и решение социальных проблем различного уровня организации предполагает и деятельность.
Алгоритм внутривенного введения лекарственных средств (струйно) Подготовка к процедуре. Представиться пациенту, объяснить ход и цель процедуры. Убедиться в наличии у пациента информированного.
Анатомия проводящих путей нервной системы
В учебно-методическом пособии рассматривается нервная система как упорядоченное множество нейронов, образующих устойчивые цепочки в виде проводящих путей и рефлекторных дуг. Описывается функциональное значение и локализация как отдельных нейронов (их тел и отростков), так и целостных нейронных проекций: от рецептора до коры полушарий большого мозга и от двигательного центра до скелетной мышцы. Современное текстовое объяснение построено по функциональному принципу (т.е. по ходу нервного импульса) и дополнено подробными аннотированными схемами. Приводится пример построения и анализа сложных соматических рефлекторных дуг. Содержатся некоторые сведения о совокупности тел нейронов, образующих нервные центры, и о совокупности отростков нейронов, образующих нервные тракты и нервы.
Пособие предназначено для студентов и преподавателей медицинских вузов, ординаторов и начинающих врачей.
Введение
Проводящие пути нервной системы и состоящие из них сложные рефлекторные дуги — наиболее важный и сложный раздел неврологии. Важен он потому, что утверждает клеточную природу нервной системы (нейронная доктрина) и показывает упорядоченный характер расположения и связей нейронов (в виде рефлекторных дуг), лежащий в основе ее регулирующей функции.
При этом имеется существенное отличие от метода описательной анатомии. Последняя позволяет продемонстрировать форму, размеры и локализацию того или иного образования нервной системы, а также его принадлежность к серому или белому веществу, но совершенно не раскрывает структурную организацию нервной системы и механизмы ее функционирования.
Этот опасный для мировоззрения «отрыв» структуры от функции ликвидирует системный подход к нервной системе в виде изучения рефлекторных дуг. Здесь акцент делается именно на наличие связей нейронов, на их взаимодействие, приводящее к функционированию как самой нервной системы, так и целостного организма. Однако при этом возрастает количество мыслительных операций у обучающихся (к анализу добавляется синтез), что увеличивает трудоемкость освоения материала и его субъективную сложность. Тем не менее только изучение нервной системы как совокупности рефлекторных дуг позволяет понять ее организацию и функциональное значение. Наконец, только знание нейронных связей и взаимодействий позволяет проводить топическую диагностику поражения нервной системы, т.е. осмысленно подходить к диагностике и лечению нервных и многих других болезней и повреждений.
Как соотносятся между собой понятия «проводящий путь» и «рефлекторная дуга»? Здесь следует четко понимать, что любой проводящий путь является частью той или иной рефлекторной дуги. Поскольку в рефлекторной дуге присутствуют два главнейших звена: афферентное и эфферентное, то и проводящие пути классифицируют на афферентные и эфферентные. Учитывая иерархический принцип построения центральной нервной системы (наличие высших и подчиненных им низших нервных центров) и возможность замыкания рефлекторных дуг на уровне высших нервных центров, ясно, что и афферентные, и эфферентные проводящие пути должны быть локализованы как в периферической, так и в центральной частях нервной системы. Поскольку замыкание соматических рефлекторных дуг (соединение афферентного и эфферентного звеньев посредством вставочных нейронов) всегда происходит в центральной нервной системе, то в последних выделяют также ассоциативное звено и соответствующие ему ассоциативные проводящие пути, локализованные только в пределах центральной нервной системы.
Афферентные нервные пути проводят импульсы от рецептора до нервного центра и являются чувствительными. Афферентные нервные пути, заканчивающиеся в проекционных центрах коры полушарий большого мозга, относят к путям сознательной чувствительности. Те же афферентные пути, которые заканчиваются в подкорковых чувствительных нервных центрах, относят к путям бессознательной чувствительности.
Эфферентные нервные пути проводят импульсы от нервных центров к рабочему органу. Поскольку здесь речь идет только о соматической нервной системе, рабочим органом является скелетная мышца, поэтому эфферентные нервные пути называют двигательными. В зависимости от того, с какими нервными центрами связаны эфферентные пути, последние отвечают за выполнение как сознательных, так и бессознательных движений.
Любой проводящий путь (афферентный, ассоциативный или эфферентный) в зависимости от уровня замыкания и сложности рефлекторной дуги может быть однонейронным или многонейронным (несколько последовательно соединенных в цепь нейронов). Если рассматривать многонейронный проводящий путь как цепь, то в его пределах можно выделить звенья, представленные соответствующими нейронами. Компактно расположенные тела нейронов образуют нервные центры (узлового, ядерного или экранного типа), а аксоны, собранные в пучки, — нервные тракты. Таким образом, многонейронный проводящий путь состоит из нервных центров и трактов. В этом случае нервные центры и тракты одного и того же проводящего пути локализованы в определенных, но разных отделах нервной системы. Каждый тракт в пределах ЦНС проводит нервные импульсы обычно в одном направлении и в большинстве случаев — одного функционального содержания. Следует четко понимать, чем отличаются тракты в пределах ЦНС от пучков волокон, образующих черепные или спинномозговые нервы. Нервы содержат и афферентные, и эфферентные волокна, причем разные афферентные волокна могут проводить разные сенсорные импульсы.
В дальнейшем будет представлен материал, касающийся преимущественно соматической части нервной системы.
1. Графическая основа для изображения проводящих путей и рефлекторных дуг
Схема проводящих путей или рефлекторных дуг требует символического изображения отделов нервной системы и цепочки нейронов, расположенных в этих отделах.
Начнем с изображения нейронов. Первой в цепочке нейронов афферентного пути является ганглиозная нервная клетка, тело которой всегда расположено в периферической части нервной системы, в большинстве случаев — в чувствительном нервном узле (ганглии). По форме ганглиозная клетка выглядит либо как биполярный нейрон, либо (и чаще) как псевдоуниполярный нейрон (рис. 1).
Рис. 1. Схематическое изображение нейронов и синаптической связи. Биполярный нейрон (а); псевдоуниполярный нейрон (б): 1 — рецепторное нервное окончание, 2 — периферический отросток (дендрит), 3 — тело нейрона, 4 — центральный отросток (аксон), 5 — окончание, контактирующее со вторым нейроном в цепочке, 6 — направление импульсации. Межнейронный контакт (в): 1 — первый нейрон, 2 — синапс, 3 — второй нейрон, 4 — направление импульсации. Мотонейрон (г): 1 — тело нейрона, 2 — центральный отросток (аксон), 3 — эффекторное нервное окончание, 4 — направление импульсации
Тела коммуникационных и двигательных нейронов расположены только в центральной нервной системе: коммуникационные — в центрах либо экранного, либо ядерного типа; двигательные — только в двигательных ядрах (см. рис. 1).
Для схем большинства проводящих путей и рефлекторных дуг используется графическое изображение отделов нервной системы (рис. 2).
Корковые концы анализаторов внешнего мира.
Нервные импульсы из внешней среды организма поступают в корковые концы анализаторов внешнего мира.
1. Ядро слухового анализатора лежит в средней части верхней височной извилины, на поверхности, обращенной к островку, — поля 41, 42, 52, где спроецирована улитка. Повреждение ведет к глухоте.
2. Ядро зрительного анализатора находится в затылочной доле — поля 17, 18, 19. На внутренней поверхности затылочной доли, по краям sulcus calcarinus, в поле 17 заканчивается зрительный путь. Здесь спроецирована сетчатка глаза, причем зрительный анализатор каждого полушария связан с полями зрения и соименными половинами сетчатки обоих глаз (например, левое полушарие связано с латеральной половиной левого глаза и медиальной правого). При поражении ядра зрительного анализатора наступает слепота. Выше поля 17 расположено поле 18, при поражении которого зрение сохраняется и только теряется зрительная память.
Еще выше находится поле 19, при поражении которого утрачивается ориентация в непривычной обстановке.
3. Ядро обонятельного анализатора помещается в филогенетически древней части коры мозга, в пределах основания обонятельного мозга — uncus, отчасти гиппокампа (поле 11).
4. Ядро вкусового анализатора, по одним данным, находится в нижней части постцентральной извилины, близко к центрам мышц рта и языка, по другим — в uncus, в ближайшем соседстве с корковым концом обонятельного анализатора, чем объясняется тесная связь обонятельных и вкусовых ощущений. Установлено, что расстройство вкуса наступает при поражении поля 43.
Анализаторы обоняния, вкуса и слуха каждого полушария связаны с рецепторами соответствующих органов обеих сторон тела.
5. Ядро кожного анализатора (осязательная, болевая и температурная чувствительность) находится в постцентральной извилине (поля 1, 2, 3) и в коре верхней теменной области (поля 5 и 7). При этом тело спроецировано в постцентральной извилине вверх ногами, так что в верхней ее части расположена проекция рецепторов нижних конечностей, а в нижней — проекция рецепторов головы. Так как у животных рецепторы общей чувствительности особенно развиты на головном конце тела, в области рта, играющего огромную роль при захватывании пищи, то и у человека сохранилось сильное развитие рецепторов рта.
В связи с этим область последних занимает в коре постцентральной извилины непомерно большую зону. Вместе с тем у человека в связи с развитием руки как органа труда резко увеличились рецепторы осязания в коже кисти, которая стала и органом осязания. Соответственно этому участки коры, соответствующие рецепторам верхней конечности, много больше таковых нижней конечности. Поэтому, если в постцентральную извилину врисовать фигуру человека головой вниз (к основанию черепа) и стопами вверх (к верхнему краю полушария), то надо нарисовать громадное лицо с несообразно большим ртом, большую руку, особенно кисть с большим пальцем, резко превосходящим остальные, небольшое туловище и маленькую ножку. Каждая постцентральная извилина связана с противоположной частью тела вследствие перекреста чувствительных проводников в спинном и частью в продолговатом мозге.
4. Ядро анализатора положения и движения головы — статический анализатор (вестибулярный аппарат) в коре мозга точно еще не локализован. Есть основания предполагать, что вестибулярный аппарат проецируется в той же области коры, что и улитка, т. е. в височной доле. Так, при поражении полей 21 и 20, лежащих в области средней и нижней височных извилин, наблюдается атаксия, т. е. расстройство равновесия, покачивание тела при стоянии. Этот анализатор, играющий решающую роль в прямохождении человека, имеет особенное значение для работы летчиков в условиях реактивной авиации, так как чувствительность вестибулярного аппарата на самолете значительно понижается.
5. Ядро анализатора импульсов, идущих от внутренностей и сосудов, находится в нижних отделах передней и задней центральных извилин. Центростремительные импульсы от внутренностей, сосудов, непроизвольной мускулатуры и желез кожи поступают в этот отдел коры, откуда исходят центробежные пути к подкорковым вегетативным центрам.
В премоторной области (поля 6 и 8) совершается объединение вегетативных и анимальных функций. Однако не следует считать, что только эта область коры влияет на деятельность внутренностей. На них оказывает влияние состояние всей коры полушарий большого мозга.
Читайте также: