Регуляторная функция ГТФ-связывающих белков

Добавил пользователь Евгений Кузнецов
Обновлено: 14.12.2024

Синтез и секреция гормонов регулируются нервной системой либо непосредственно, либо через выделение других гормонов или гуморальных факторов. Роль «эндокринного мозга», регулирующего деятельность периферических желез внутренней секреции, в настоящее время отводят особой «гипофизиотропной» области гипоталамуса. Именно здесь многочисленные и разнообразные нервные сигналы чаще всего трансформируются в гуморальные. В гипоталамусе концентрируются нейроны, выделяющие в ответ на приходящие извне импульсы или нейромедиаторы особые рилизинг-гормоны в кровь портальной системы гипофиза. Эти рилизинг-гормоны действуют на специфические клеточные популяции передней доли гипофиза, стимулируя или тормозя выделение гипофизарных гормонов.

Важнейшую роль в регуляции гормональной секреции играет механизм обратной связи, заключающийся в том, что при избыточном содержании данного гормона в крови тормозится секреция его физиологических стимуляторов, а при его недостатке она усиливается. Частным проявлением механизма обратной связи является регуляция выделения гормона изменением самого систематизируемого параметра. Например, повышение уровня сахара в крови усиливает секрецию инсулина, который снижает содержание сахара. Выделение многих гормонов подчиняется определенным ритмам (суточным, сезонным, возрастным) или связано с некоторыми физиологическими состояниями (беременность, лактация, адаптация к новым условиям среды).

Механизм действия гормонов зависит от того, могут ли они проникнуть через плазматическую мембрану. Так, гормоны белковой, пептидной природы, а также катехоламины (т. е. гидрофильные гор­моны) не могут проходить через мембрану; они вступают во взаимо­действие с рецепторами, расположенными на ее поверхности, и тем самым генерируют сигнал, который регулирует различные клеточные функции (обычно путем изменения активности ферментов (мембран­ный механизм циторецепции)). Воздействие гормонов на внутрикле­точные процессы обмена при этом опосредуется вторичными посред­никами (мессенджерами).

Липофильные гормоны (стероидные и тиреоидные гормоны) диф­фундируют через плазматическую мембрану и в цитоплазме связыва­ются со специфическими белками-рецепторами. Основной эффект этих гормонов проявляется на уровне транскрипции генов и синтеза соответствующих мРНК. В результате происходит изменение содер­жания определенных белков, что сказывается на активности тех или иных процессов метаболизма (цитозольный механизм циторе-цепции).

Однако разграничение гормонов на группы с мембранным (гидро­фильные гормоны) и цитозолъным механизмами циторецепции (ли-пофильные гормоны) не является абсолютным. В 80-х гг. XX в. было установлено, что многие белковые гормоны после их взаимодействия с рецепторами на плазматической мембране подвергаются эндоцитозу и оказываются внутри клетки, а далее могут транспортироваться в ядро. Это позволяет им осуществлять не только срочную гормональную ре­гуляцию (иметь «раннюю волну» эффектов), но и хроническую регу­ляцию (иметь «позднюю волну» эффектов) на уровне транскрипции генов.

Доказан внутриядерный перенос инсулина, люлиберина, хориони-ческого гонадотропина и других белковых гормонов. В «позднюю волну» эффектов белковых гормонов входят, в частности, такие эф­фекты, как индукция синтеза ключевых белков, морфогенетическое действие гормонов, регуляция пролиферации клеток. У стероидов и тиреоидных гормонов также имеется не только внутриклеточный на­бор отдаленных эффектов, но и ранние эффекты, связанные с их действием на мембранные рецепторы и мобилизацией внутриклеточ­ных посредников того же типа, что и у белковых гормонов. Так, на­пример, тиреоидиые гормоны через поверхностные рецепторы оказы­вают активирующее влияние на захват клетками аминокислот и глю­козы.

Существует классификация по месту синтеза гормонов: это гормоны гипоталамуса, гипофиза, щитовидной железы, паращитовид-ных желез, поджелудочной железы, надпочечников, половых желез, эпи­физа, тимуса.

20)Основные принципы действия системных гормонов на метаболизм: особенности образования и секреции, транспорта в крови и межклеточной жидкости, дистантность действия, клетки- мишени, характер в/д с рецепторами, уровни регулирующего влияния на тканевые ферменты.

Гормоны- биологически активные соединения, выделяемые железами внутренней секреции в кровь или лимфу и оказывающие влияние на метаболизм клетки. Гормоны осуществляют своё биологическое действие, образуя комплекс со специфическими молекулами - рецепторами . Клетки, содержащие рецепторы к определённому гормону, называются клетками-мишенями для этого гормона. Большинство гормонов взаимодействуют с рецепторами, расположенными на плазматической мембране клеток-мишеней; другие гормоны взаимодействуют с рецепторами, локализованными в цитоплазме и ядре клеток-мишеней. В организме существует несколько уровней регуляции гомеостаза, которые тесно взаимосвязаны и функционируют как единая система.

1. Сигналы из внешней и внутренней среды поступают в центральную нервную систему ( высший уровень регуляции, осуществляет контроль в пределах целого организма). Эти сигналы трансформируются в нервные импульсы, попадающие на нейросекреторные клетки гипоталамуса. В гипоталамусе образуются:

1. либерины (или рилизинг-факторы), стимулирующие секрецию гормонов гипофиза;

2. статины - вещества, угнетающие секрецию этих гормонов.

Либерины и статины по системе портальных капилляров достигают гипофиза, где вырабатываются тропные гормоны . Тропные гормоны действуют на периферические ткани-мишени и стимулируют(знак “+”) образование и секрецию гормонов периферических эндокринных желёз. Гормоны периферических желёз угнетают (знак “-”) образование тропных гормонов, действуя на клетки гипофиза или нейросекреторные клетки гипоталамуса. Кроме того, гормоны, действуя на обмен веществ в тканях, вызывают изменения содержания метаболитов в крови , а те, в свою очередь, влияют (по механизму обратной связи) на секрецию гормонов в периферических железах (или непосредственно, или через гипофиз и гипоталамус).

2. Гипоталамус, гипофиз и периферические железы образуют средний уровень регуляции гомеостаза, обеспечивающий контроль нескольких метаболических путей в пределах одного органа, или ткани, или разных органов.

Гормоны эндокринных желёз могут влиять на обмен веществ:

путём изменения количества ферментного белка;

путём химической модификации ферментного белка с изменением его активности, а также

путём изменения скорости транспорта веществ через биологические мембраны.

3. Внутриклеточные механизмы регуляции представляют собой низший уровень регуляции. Сигналами для изменения состояния клетки служат вещества, образующиеся в самих клетках или поступающие в неё.

Молекулярные механизмы действия гормонов в клетках мишенях. Характеристика рецепторов и действия липофильных гормонов. Рецепторы гидрофильных белково-пептидных гормонов G-белки. Вторичные месенджеры: цАМФ и ГМФ, инозитолтрифосфат и диацилглицерол, ионы Са.

Любой белок-рецептор состоит, минимум из двух доменов (участков), которые обеспечивают выполнение двух функций:

· преобразование и передачу полученного сигнала в клетку.

Рецепторы липофильных гормонов во многом сходны, т. к. принадлежат к одному семейству белков. Молекула рецепторного белка состоит из нескольких доменов, имеющих различные размеры и выполняющие разные функции. На С-концевом участке полипептидной цепи рецептора находится домен узнавания и связывания гормона. На N-концевом участке находится регуляторный доменотвечающий за связывание с другими белками. Центральная часть рецептора включает домен связывания ДНК. В этом домене содержаться повторяющиеся фрагменты, богатые остатками цистеина. Цистеин может координационно связывать ионы цинка и образовывать цинковые кластеры, называемые еще «цинковыми пальцами».

Связывание гормона влечет за собой конформационную перестройку молекулы рецепторного белка, сопряженного с другими белками, диссоциацию с освобождением от белков-ингибиторов, в частности от белка теплового шока (hsp90), и образование димеров, обладающих повышенным сродством к ДНК (DNA).

Ключевой стадией процесса гормональной регуляции является связывание димеров гормон-рецепторного комплекса с двунитевой ДНК. Комплекс связывается с регуляторными участками генов, которые носят название гормон-респонсивные элементы. Это короткие симметричные фрагменты ДНК, которые выполняют функции усилителей транскрипции. Связывание димеров рецептора с ГРЭ ведет к стимуляции, реже — к ингибированию, транскрипции соседних генов. Так, действие гормона в течении нескольких часов приводит к изменению уровня специфических мРНК ключевых белков клетки. Однако скорость белкового синтеза в клетках это относительно медленный процесс, т.к. требует большого количества энергии и пластического материала. Поэтому такие гормоны не могут осуществлять быстрый контроль процессов метаболизма. Основная их функция сводится к регуляции процессов роста, развития и дифференцировки клеток организма.

Гидрофильные гормоны построены из аминокислот, или являются производными аминокислот. Гидрофильные гормоны не способны проходить через липофильную клеточную мембрану, поэтому действуют на клетки-мишени за счет связывания с рецептором на плазматической мембране.

Различают три типа рецепторов:

1) Рецепторы первого типа - это белки, которые имеют одну трансмембранную цепь. Активный центр этого аллостерического фермента (многие являются тирозиновыми протеинкиназами) расположен на внутренней стороне мембраны. При связывании гормона с рецептором происходит димеризация последнего с одновременной активизацией и фосфорилированием тирозина в рецепторе. С фосфотирозином связывается белок-переносчик сигнала, который передает сигнал внутриклеточным протеинкиназам.

2) Ионные каналы.Это мембранные белки, которые при связывании с лигандами оказываются открытыми для ионов Na+, K+или Cl+. Так действуют нейромедиаторы.

3) Рецепторы третьего типа, сопряжены с ГТФ-связывающими белками. Пептидная цепь этих рецепторов включает семь трансмембранных тяжей. Такие рецепторы передают сигнал с помощью ГТФ-связывающих белков (G-белок) на белки-эффекторы. Функция этих белков заключается в изменении концентрации вторичных мессенджеров

Основные компоненты: мембранный белок-рецептор, G-белок, фермент аденилатциклаза, гуанозинтрифосфат, протеинкиназы.

Кроме того, для нормального функционирования аденилатциклазной системы, требуется АТФ.

Схема аденилатциклазной системы представлена на рисунке:


Как видно из рисунка, белок-рецептор, G-белок, рядом с которым располагаются ГТФ и фермент (аденилатциклаза) встроены в мембрану клетки.

До момента действия гормона эти компоненты находятся в диссоциированнном состоянии, а после образования комплекса сигнальной молекулы с белком-рецептором происходят изменения конформации G-белка. В результате одна из субъединиц G-белка приобретает способность связываться с ГТФ.

Комплекс “G-белок-ГТФ” активирует аденилатциклазу. Аденилатциклаза начинает активно превращать молекулы АТФ в ц-АМФ.

ц-АМФ обладает способностью активировать особые ферменты - протеинкиназы, которые катализируют реакции фосфорилирования различных белков с участием АТФ. При этом в состав белковых молекул включаются остатки фосфорной кислоты. Главным результатом этого процесса фосфорилирования является изменение активности фосфорилированного белка. В результате реакции фосфорилирования белки могут становятся функционально активными или неактивными.

Такие процессы будут приводить к изменениям скорости биохимических процессов в клетке-мишени.

Активация аденилатциклазной систтемы длится очень короткое время, потому что G-белок после связывания с аденилатциклазой начинает проявлять ГТФ-азную активность. После гидролиза ГТФ G-белок восстанавливает свою конформацию и перестает активировать аденилатциклазу. В результате прекращается реакция образования цАМФ.

Кроме участников аденилатциклазной системы в некоторых клетках-мишенях имеются белки-рецепторы, связанные с G-белками, которые приводят к торможению аденилатциклазы. При этом комплекс “GTP-G-белок” ингибирует аденилатциклазу.

Когда останавливается образование цАМФ, реакции фосфорилирования в клетке прекращаются не сразу: пока продолжают существовать молекулы цАМФ - будет продолжаться и процесс активации протеинкиназ. Для того, чтобы прекратить действие цАМФ, в клетках существует специальный фермент - фосфодиэстераза, который катализирует реакцию гидролиза 3',5'-цикло-АМФ до АМФ.

Некоторые вещества, обладающие ингибирующим действием на фосфодиэстеразу, (например, алкалоиды кофеин, теофиллин), способствуют сохранению и увеличению концентрации цикло-АМФ в клетке. Под действием этих веществ в организме продолжительность активации аденилатциклазной системы становится больше, то есть усиливается действие гормона.

Кроме аденилат-циклазной или гуанилатциклазной систем существует также механизм передачи информации внутри клетки-мишени с участием ионов кальция и инозитолтрифосфата.

Инозитолтрифосфат -это вещество, которое является производным сложного липида - инозитфосфатида. Оно образуется в результате действия специального фермента - фосфолипазы “С”, который активируется в результате конформационных изменений внутриклеточного домена мембранного белка-рецептора.

Этот фермент гидролизует фосфоэфирную связь в молекуле фосфатидил-инозитол-4,5-бисфосфата и в результате образуются диацилглицерин и инозитолтрифосфат.


Известно, что образование диацилглицерина и инозитолтрифосфата приводит к увеличению концентрации ионизированного кальция внутри клетки. Это приводит к активации многих кальций-зависимых белков внутри клетки, в том числе активируются различные протеинкиназы. И здесь, как и при активации аденилатциклазной системы, одной из стадий передачи сигнала внутри клетки является фосфорилирование белков, которое в приводит к физиологическому ответу клетки на действие гормона.

В работе фосфоинозитидного механизма передачи сигналов в клетке-мишени принимает участие специальный кальций-связывающий белок - кальмодулин. Это низкомолекулярный белок (17 кДа), на 30% состоящий из отрицательно заряженных аминокислот (Глу, Асп) и поэтому способный активно связывать Са+2. Одна молекула кальмодулина имеет 4 кальций-связывающих участка. После взаимодействия с Са+2 происходят конформационные изменения молекулы кальмодулина и комплекс “Са+2-кальмодулин” становится способным регулировать активность (аллостерически угнетать или активировать) многие ферменты - аденилатциклазу, фосфодиэстеразу, Са+2,Мg+2-АТФазу и различные протеинкиназы.

В разных клетках при воздействии комплекса “Са+2-кальмодулин” на изоферменты одного и того же фермента (например, на аденилатциклазу разного типа) в одних случаях наблюдается активация, а в других - ингибирование реакции образования цАМФ. Такие различные эффекты происходят потому, что аллостерические центры изоферментов могут включать в себя различные радикалы аминокислот и их реакция на действие комплекса Са+2-кальмодулин будет отличаться.

22) Нервно рефлекторный и эндокринный пути регуляции обмена веществ. Гипоталамус- нервный и гуморальный центр регуляции метаболизма. Структура и биологическая роль либеринов и статинов.

Гуморальная регуляция. Некоторые гормоны непосредственно регулируют синтез или распад ферментов и проницаемость клеточных оболочек, изменяя в клетке содержание субстратов, кофакторов и ионный состав.

Нервная регуляция осуществляется различными путями: изменением интенсивности функционирования эндокринных желез; непосредственно активацией ферментов. ЦНС, действуя на клеточные и гуморальные механизмы регуляции, адекватно изменяет трофику клеток.

Роль центра в регуляции обмена веществ и энергии играет гипо­таламус. Это обусловлено тем, что в гипоталамусе локализованы нервные ядра и центры, имеющие непосредственное отношение к регуляции голода и насыщения, теплообмена, осморегуляции. В гипоталамусе идентифицированы полисенсорные нейроны, реагиру­ющие сдвигами функциональной активности на изменения концент­рации глюкозы, водородных ионов, температуры тела, осмотического давления, т.е. важнейших гомеостатических констант внутренней среды организма. В ядрах гипоталамуса осуществляется анализ со­стояния внутренней среды организма и формируются управляющие сигналы, которые посредством эфферентных систем приспосаблива­ют ход метаболизма к потребностям организма.

Либерины и статины - рилизинг-гормоны, от концентрации которых зависит деятельность гипоталамуса. Попадая в кровеносное русло человека, либерины и статины начинают распределяться между тканями. Там они продуцируют развитие метаболических процессов на клеточно-мембранном уровне, из-за чего происходят множественные гормональные перестройки. Без либеринов и статинов в организме была бы невозможной регуляторная функция. Либерины и статины - вещества, которые объединены в общую группу рилизинг-факторов. Они являются антагонистами, которые вырабатываются самим организмам. Либерины - стимулируют, а статины - подавляют и выводят гормоны гипофиза из организма.

Известны следующие либерины и статины:

· соматолиберин (стимулирует продукцию гормона роста)

· соматостатин (тормозит продукцию гормона роста)

· гонадолиберин (люлиберин; стимулирует продукцию гонадотропных гормонов - фолликулостимулирующего и лютеинизирующего)

Регуляция каталитической активности ферментов белок-белковыми взаимодействиями.

- вследствие ассоциации или диссоциации протомеров фермента.

Активация ферментов в результате присоединения регуляторных белков.

на примере активации фермента аденилатциклазы, локализованной в плазматической мембране клетки.

· Активный центр аденилатциклазы локализован на внутренней стороне плазматической мембраны. Активированная аденилатциклаза катализирует реакцию образования из АТФ циклического 3',5'-АМФ (цАМФ) - вторичного, внутриклеточного посредника действия гормонов.

· В мембране аденилатциклаза функционирует в комплексе с другими белками:

o рецептором гормона, выступающего во внеклеточную среду и взаимодействующего с гормонами;

o с G-белком, занимающим промежуточное положение между рецептором и ферментом аденилатциклазой. G-белок - олиго-мерный белок, состоящий из 3 субъединиц - α, β, γ. α-субъединица имеет центр связывания и расщепления ГТФ. Поэтому этот белок называется ГТФ-связывающим белком, или G-белком;

o в результате связывания гормона с рецептором происходит изменение конформации G-белка, уменьшение его сродства к молекуле ГДФ, с которой он связан в отсутствие гормонального сигнала, и увеличение сродства к ГТФ. Присоединение ГТФ вызывает конформационные изменения в G-белке и диссоциацию его на субъединицы: субъединицу α, связанную с ГТФ (α-ГТФ), димер βγ;

o α-ГТФ имеет высокое сродство к аденилатциклазе, его присоединение приводит к активации последней, поэтому α-ГТФ - регуляторный белок, а данный механизм активации аденилатциклазы называют активацией ферментов в результате присоединения регуляторных белков.

Молекулярная регуляция метаболизма и клеточного цикла



(материал из PDB_ G PROTEIN HETEROTRIMER GI_ALPHA_1 BETA_1 GAMMA_2 WITH GDP BOUND_Wall, M.A., Coleman, D.E., Lee, E., Iniguez-Lluhi, J.A., Posner, B.A., Gilman, A.G., Sprang, S.R. (1995) Cell 83 : 1047-1058 )

В клетках существует 2 типа ГТФаз (GTPaз), и оба типа участвуют в контролировании процессов молекуляр­ной сигнализации.

Первый тип - тримерные белки, имеют три субъединицы (а, β и γ).

Второй тип - мономерные белки, сотоящие из одного полипептида

G-белки

Тримерные ГТФазы — это крупное семейство белков, называемых обычно G-белками. Они уча­ствуют в переносе сигналов с наружной стороны клетки внутрь. Каждая тримерная субъединица участвует в переносе различных сигналов к целе­вым молекулам в клетке.

Мономерные ГТФазы

На сегодняшний день выявлено пять под­семейств, они перечислены в таблице 1.

Каждое подсемейство мономерных ГТФaз включает множество белков, наиболее значимые из них — Ran и ARF; эти моле­кулы найдены на различных субклеточных уровнях.

Мономерные ГТФазы также функционируют как молекулярные переключатели; их конформа­ция изменяется в зависимости от того, находятся ли они в ГТФ- или ГДФ-связанном состоянии. Как часть переключателя функционируют также два вспомогательных белка: ГТФ-активирующий белок и ГТФ-высвобождающий белок.

Регуляторная функция белков

К белкам с регуляторной функцией можно отнести также белки-рецепторы. Мембранные белки — рецепторы передают сигнал с поверхности клетки внутрь, преобразовывая его. Они регулируют функции клеток за счет связывания с лигандом, который «сел» на этот рецептор снаружи клетки; в результате активируется другой белок внутри клетки.

Большинство гормонов действуют на клетку, только если на ее мембране есть определенный рецептор — другой белок или гликопротеид. Например, β2- адренорецептор находится на мембране клеток печени. При стрессе молекула адреналина связывается с β2- адренорецептором и активирует его. Далее активированный рецептор активирует G-белок , который присоединяет Внутриклеточные регуляторные белки

Белки регулируют процессы, происходщие внутри клеток, при помощи нескольких механизмов:

  • взаимодействия с молекулами ДНК (транскрипционные факторы)
  • при помощи фосфорилирования (протеинкиназы) или дефосфорилирования (протеинфосфатазы) других белков
  • при помощи взаимодействия с рибосомой или молекулами РНК (факторы регуляции трансляции)
  • воздействия на процесс удаления интронов (факторы регуляции сплайсинга)

Белки-регуляторы транскрипции

Факторы регуляции трансляции

Трансляция - синтез полипептидных цепей белков по матрице мРНК, выполняемый рибосомами. Регуляция трансляции может осуществляться несколькими способами,в том числе и с помощью белков-репрессоров, которые, связываются с мРНК. Известно много случаев, когда репрессором является белок, который кодируется этой мРНК.в этом случае происходит регуляция по типу обратной связи.(примером этого может служить репрессия синтеза фермента треонил-тРНК-синтетазы). В других случаях репрессором является специальный белок, и его способность связываться с определенными мРНК зависит от присутствия того или иного вещества.

Факторы регуляции сплайсинга

Внутри генов эукариот есть участки, не кодирующие аминокислот. Эти участки называются сплайсингом( сшивание, сращивание).Существвует альтернативный сплайсинг. Он осуществляется с помощью небольших РНК, связанных с белками, которые называются факторами регуляции сплайсинга. В сплайсинге принимают участие белки, обладающие ферментативной активностью. Они придают пре-мРНК нужную конформацию. Для сборки комплекса(сплайслслмы) необходимо потребление энергии в виде расщепляемых молекул АТФ, поэтому в составе этого комлекса есть белки, обладающие АТФ-азной активностью.

Протеинкиназы

Основная статья:

Цикл активации G-белка под действием См. также

Ссылки

Литература

Альфа-спираль Это незавершённая статья по биохимии. Вы можете помочь проекту, исправив и дополнив её.

Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Регуляторная функция белков. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .

G-белки


G-белки - это сигнальные белки, которые являются универсальными посредниками при передаче гормональных сигналов от рецепторов клеточной мембраны к эффекторным белкам , вызывающим конечный клеточный ответ.

Когда семи-доменная рецепторная молекула, локализованная в мембране сенсорной клетки, активируется какими-то изменениями во внешней среде, она претерпевает конформационные изменения. Последние детектируются G-белками, связанными с мембраной, которые, в свою очередь, активируют эффекторные молекулы в мембране. Часто это приводит к выделению вторичных мессенджеров в цитозоль.

G-белки, участвующие в передаче сигнала, являются членами большого надсемейства гуанин-связывающих белков. G- белки - это прецизионные регуляторы, включающие или выключающие активность других молекул.

Примерно 80% первичных мессенджеров (гормоны, нейротрансмиттеры, нейромодуляторы) взаимодействуют со специфическими рецепторами, которые связаны с эффекторами через G-белки.


Два семейства белков - гетеротримерные гуанозиннуклеотид связывающие белки (G-белки и отдаленно родственные им гуанозинтрифосфатазы (GTPase) при связывании GTP могут включаться и активировать последующие компоненты передачи сигнала от поверхности клетки. Малые GTPaзы участвуют в контроле фундаментальных свойств клетки - полярности формы и процессов деления и дифференцировки. G-белки обычно регулируют более специализированные сигналы - продукцию вторичных мессенджеров. И те и другие способны гидролизовать GTP и таким образом выключать сигнал.

G-белки, стимулирующие аденилатциклазу (Gs) или участвующие в фототрансдукции (Gt, трансдуцин) служат субстратами для АДФ- рибозилирования, катализируемого холерным токсином по одному из остатков аргинина, что приводит к блокированию деактивации этих белков. Gs, G-белок, ингибирующий аденилатциклазу (Gi) и G-белок с пока еще неизвестной функцией (Gо) АДФ-рибозилируются коклюшным токсином по остатку цистеина, расположенному у C-конца. Эта модификация препятствует взаимодействию между G-белком и рецепторами. Определена последовательность G-белка крысы (Gx), который оказался нечувствительным к коклюшному токсину.


G-белки это - регуляторные белки, связывающие при активации ГТФ . Лучше всего изучены G-белки, стимулирующие и ингибирующие аденилатциклазу (Gs-белки и Gi-белки соответственно). Бета1-адренорецепторы , бета2-адренорецепторы и D1-рецепторы сопряжены с белком Gs, и поэтому стимуляция этих рецепторов сопровождается активацией аденилатциклазы и повышением внутриклеточной концентрации цАМФ - классического второго (внутриклеточного) посредника. Конечный ответ в разных клетках различен и зависит от того, что представляет собой эффекторные фермент (фермент, ионный канал и пр.). Альфа2-адренорецепторы , М2-холинорецепторы и D2-peцепторы сопряжены с белком Gi, и стимуляция этих рецепторов приводит к снижению активности аденилатциклазы и внутриклеточной концентрации цАМФ. Изменения активности ферментов и других внутриклеточных белков и, соответственно, клеточных функций при этом противоположны тем, что наблюдаются при активации белка Gs. Альфа1-адренорецепторы (как и М1-холинорецепторы), видимо, сопряжены с другим, пока еще мало изученным типом G-белка. Этот белок иногда обозначают Gq. Он активирует фосфолипазу С , катализирующую распад мембранных фосфолипидов, в частности - фосфатидилинозитол-4,5-дифосфата до ИФ3 и ДАГ . Оба эти вещества являются вторыми посредниками ( рис. 70.5 ).

Связывание агониста (гормона, нейромедиатора и др.) с соответствующим рецептором приводит к белок-белковому взаимодействию между рецептором и G-белком и ускоряет диссоциацию ГДФ. В результате образуется короткоживущий комплекс агонист - рецептор - G-белок, не связанный ни с каким нуклеотидом. Связывание с этим комплексом молекулы ГТФ снижает сродство рецептора к G-белку, что приводит к диссоциации комплекса и высвобождению рецептора. Потенциально рецептор может активировать большое количество молекул G-белка, обеспечивая, таким образом, высокий коэффициент усиления внеклеточного сигнала на данном этапе. Активированная альфа-субъединица G-белка (альфа* ГТФ Мg). [ Bourne, ea 1997 ] диссоциирует от бета-гамма-субъединиц и вступает во взаимодействие с соответствующим эффектором, оказывая на него активирующее или ингибирующее воздействие.


Взаимодействие с эффектором, однако, длится до тех пор, пока альфа- субъединица, являющаяся ГТФ-азой, удерживает ГТФ. Так что, очень вскоре присоединенный ГТФ гидролизуется до ГДФ. Когда это происходит, альфа- субъединица снова меняет свою коонформацию и теряет способность активировать эффектор. После этого альфа-ГДФ взаимодействует с бета- гамма-комплексом и снова образует тримерный комплекс, завершая, таким образом, цикл ( рис. 1.9 ).

Предполагают, что комплекс из бета-гамма-субъединиц тоже может (прямо или опосредованно) влиять на эффекторные ферменты. Такими феpментами являются аденилатциклаза(4.6.1.1) [ Gilman A.G.,1987 ], 3',5'-циклонуклеотид-фосфодиэстераза сетчатой оболочки глаза, фосфолипаза C .

G-белки также pегулиpуют pаботу K+ и Ca2+ -ионных каналов [ Stryer L.,1986 ; Casey P.J.,1988 ; Plaffinger P.J.,1985 ]. К G-белкам относятся полипептид Gs, стимулирующий аденилатциклазу и pегулиpующий Ca2+ -ионные каналы [ Yatani A.,1987 ], полипептид Gi, ингибирующий аденилатциклазу [ Gilman A.G.,1987 ], и pегулиpующий K+ -каналы в клетках тканей мозга [ Gilman A.G.,1989 ], Gt, трансдуцин, участвующий в передаче светого сигнала [ Stryer L.,1986 ], Golf, специфичный белок обонятельных ресничек [ Jones D.T.,1989 ] и др. Все G-белки являются гетеротримерами, состоящими из субъединиц альфа, бета и гамма в порядке уменьшения молекулярной массы [ Gilman A.G.,1987 ].

Впоследствии ГТФ, связанный с альфа-субъединицей G-белка, подвергается гидролизу, причем ферментом, катализирующим этот процесс, является сама альфа-субъединица. Это приводит к диссоциации альфа-субъединицы от эффектора и реассоциации комплекса альфаГДФ с бета-гамма-субъединицами. Спонтанная активация G-белка, связанного с ГДФ - весьма маловероятный процесс.

Лимитирующей стадией процесса восстановления исходного состояния G-белка является скорость диссоциации GDP от альфа-субъединицы G-белка. Скорость диссоциации увеличивается при взаимодействии G-белок-GDP с агонист-связанным рецептором [ Branot D.R.,1986 ]. Связывание GTP G-белком приводит, очевидно, к образованию комплекса агонист-рецептор-G-белок. Аналог GTP-CTP-гамма-S и Mg2+ усиливает диссоциацию альфа-субъединицы из тримера G-белка [ Northup J.V.,1983 ]. Однако следует заметить, что каталитическая субъединица аденилатциклазы из мембран мозга быка хроматографически соочищается с альфа- и бета-субъединицами GS-белка [ Marbach J.,1990 ] и вопрос диссоциации альфа-субъединиц из тримера G-белка для активации эффектора требует уточнения.

Содержание

Структура G-белков

G-белки биологических мембран состоят из трех субъединиц: из большой альфа-субъединицы (около 45 килодальтон - кДа), а также меньших бета- и гамма-субъединиц.

Поскольку бета- и гамма- субъединицы G-белков чрезвычайно консервативны, G-белки принято различать по их альфа-субъединицам.

G-белки проявляют значительный полиморфизм. Каждая из форм субъединиц G-белка высокогомологична по структуре, близка по функциям, но отличается молекулярной массой и электрофоретической подвижностью [ Перцева М.Н.,1990 ]. Особенно широк полиморфизм и наиболее изучен для альфаs и альфаi G-белков. Так из мозга человека выделено 11 форм сДНК, ответственных за синтез альфаs субъединиц, четыре вида которых клонированы и, предполагается, что они определяют синтез четырех изоформ альфаs в мозге человека [ Bray P.,1986 ]. Для альфаi найдены, в основном, три изоформы альфаi1, альфаi2, альфаi3. Молекулярные массы изоформы альфаs находятся в пределах 42-55 кДа, а альфаi -39-41 кДа [ Перцева М.Н.,1990 ]. Распределение молекулярных вариантов альфаi носит тканеспецифический характер: альфаi1 представлена, в основном, в мозге, альфаi2 обнаружена в нервной ткани и в клетках крови, альфаi3 представлена в переферических тканях и отсутствует в мозге [ Goldsmith P.,1988 ]. Распределение генов, кодирующих синтез синтез трех изоформ альфаi по тканям примерно совпадает в ряду: человека, бык, крыса, мышь [ Lochrie M.A.,1988 ]. Определение аминокислотной последовательности альфаs и альфаi [ Spiegel A.M.,1987 ; Itoh I.,1988 ] показало, что изоформы альфаs или альфаi различаются в области C- и N- концевой последовательности, связывающихся с рецептором или эффектором. Предполагается, что полиморфизм альфа субъединиц определяется многообразием рецепторов и их подтипов и разнообразием эффекторных систем [ Перцева М.Н.,1990 ; Gilman A.G.,1987 ].

Альфа субъединица

Альфа-субъединица обладает ГТФ-азной активностью, в неактивной (выключенной) форме она связывает молекулу ГДФ на активном сайте. Альфа-субъединица также как и гамма связана с мембраной жирной кислотой с длиной цепи в 14 атомов углерода ( миристоевая кислота ). Такие связи обеспечивают то, что комплекс G-белка удерживается в плоскости мембраны, но в то же время способен легко двигаться в этой плоскости.

Альфа субъединицы Gi кодируются тремя различными структурными генами [ NukadaT.,1986 ; Jones D.T.,1987 ; Itoh I.,1988 ]. Что касается изоформ альфа-субъединиц Gs-белков, то пока неясно, кодируются ли изоформы разными структурными генами или это продукт одного гена с последующим внутренним альтернативным сплайсингом исходного РНК-транскрипта [ Robishaw J.D.,1986 ], или множественность их результат посттрансляционной модификации [ Casey P.J.,1988 ]. В настоящее время известно 9 структурных генов, кодирующих C-белки и 12 продуктов этих генов [ Gilman A.G.,1989 ].

Альфа-субъдиница с присоединенным с ней ГТФ способна взаимодействовать с эффектором в мембране - ферментами, такими, как аденилатциклаза , или, возможно, ионными каналами . Фермент может активироваться или ингибироваться, а ионный канал - открываться или закрываться.

Кроме ГТФ-связывающего мотива, каждая последовательность Gальфа содержит как минимум один центр связывания дивалентных катионов, а также сайты ковалентной модификации бактериальными токсинами, катализирующими NAD-зависимые АДФ-рибозилтрансферазные реакции.

Бета субъединица

Субъединицы бета и гамма связаны между собой, и в физиологических условиях не могут быть диссоциированы. В неактивном состоянии бета-гамма-комплекс непрочно связан с альфа-субъединицей.

Гамма субъединица

Гамма-субъединица связана с цитоплазматическим листком биологической мембраны геранил-гераниловой цепью (20 атомов углерода в цепи) , близкой по структуре к холестерину.

Читайте также: