Строение септированных контактов клеток

Добавил пользователь Алексей Ф.
Обновлено: 14.12.2024

. Контакты простого типа - простые межклеточные соединения, интердигитации (пальцевидные).

. Контакты сцепляющего типа - десмосомы,адгезивные пояски.

. Контакты запирающего типа - плотные соединения.

. Контакты коммуникационного типа - нексусы, синапсы

Введение

Плазмалемма многоклеточных животных организмов принимает активное участие в образовании специальных структур - межклеточных контактов, или соединений (junctiones intercellulares), обеспечивающих межклеточные взаимодействия. Благодаря межклеточным контактам осуществляется структурная и функциональная связь клеток в тканевых системах и обеспечивается интегративная целостность органов. В зависимости от выполняемой функции и ультраструктурной организации межклеточные контакты подразделяются на несколько типов. В настоящей главе рассматриваются основные типы контактов - простые и сложные.

Простые контакты - между плазматическими мембранами соседних клеток имеется щель шириной 10-20 нм, заполненная гликокалликсом, специализированных структур на мембранах нет.

Сложные межклеточные соединения представляют собой небольшие парные специализированные участки плазматических мембран двух соседних клеток. Они подразделяются на запирающие(изолирующие), сцепляющие (заякоривающие), обусловливающие механическое сцепление и соединение клеток, и коммуникационные (объединяющие) контакты, обеспечивающие химическую (метаболическую, ионную) и электрическую связь между клетками. К запирающим относится плотный контакт.

К сцепляющим соединениям относятся адгезивный (сцепляющий) поясок, десмосомы, полудесмосомы и фокальный контакт. Общим для этой группы соединений является то, что к участкам плазматических мембран со стороны цитоплазмы подходят фибриллярные элементы цитоскелета, которые как бы заякориваются на их поверхности.

Коммуникационные соединения в клетках животных представлены так называемыми щелевыми контактами и синапсами. Особыми формами межклеточных контактов являются септированные, к которым относятся плазмодесмы растительных клеток.

Рыхлые или простые контакты

Простой контакт (junctiones intercellulares simplex)- соединение клеток за счет пальцевидных впячиваний и выпячиваний цитоплазматических мембран соседних клеток. Специфических структур, формирующих контакт, нет.

Простые контакты занимают наиболее обширные участки соприкасающихся клеток. Расстояние между билипидными мембранами соседних клеток составляет 15-20 нм, а связь между клетками осуществляется за счет взаимодействия макромолекул соприкасающихся гликокаликсов. Гликопротеиды соседних клеток при образовании простого контакта «узнают» клетки одного типа. Наличие этих белков-рецепторов (кадгерины, интегрины и др.) характерно для определенных тканей. Они реагируют только с соответствующими им клетками. Например, Е-кадгерины участвуют в образовании контактов только между эпителиальными клетками, обеспечивая их соединение практически по всей поверхности контактирующих клеток.

Посредством простых контактов осуществляется слабая механическая связь - адгезия, не препятствующая транспорту веществ в межклеточных пространствах. Интегрины и обеспечивают адгезию клеток к компонентам внеклеточного матрикса и иногда к другим клеткам, и представляют собой поверхностные гетеродимерные белки. Утрата некоторых интегринов (при раке молочной железы, раке предстательной железы, раке толстой кишки) или их избыток (при меланоме, плоскоклеточном раке полости рта, носоглотки, гортани) сопряжены с высокой степенью злокачественности опухоли. Взаимодействие интегринов с белками внеклеточного матрикса в некоторых случаях препятствует апоптозу.

Клеточно-матриксные контакты, образованные с помощью интегринов хорошо изучены в гладкомышечных клетках и в местах прикрепления культивируемых фибробластов к внеклеточному матриксу.

Разновидностью простого контакта является контакт "типа замка", когда плазмолеммы соседних клеток вместе с участком цитоплазмы как бы впячивается друг в друга (интердигитация), чем достигается большая поверхность соприкосновения и более прочная механическая связь.


Рис. 1. Схема простого межклеточного соединения

а - простое соединение, без участия специальных структур; б - трансмембранные гликопротеиды определяют связывание двух соседних клеток

Фокальные контакты

Онивстречаются у многих клеток и особенно хорошо изучены у фибробластов. Они построены по общему плану со сцепляющими лентами, но выражены в виде небольших участков - бляшек на плазмолемме. В этом случае трансмембранные линкерные белки-интегрины специфически связываются с белками внеклеточного матрикса (например с фибронектином). Со стороны цитоплазмы эти же гликопротеиды связаны с примембранными белками, куда входит и винкулин, который в свою очередь связан с пучком актиновых филаментов.

Функциональное значение фокальных контактов заключается как в закреплении клетки на внеклеточных структурах, так и создании механизма, позволяющего клеткам перемещаться.

Рис 7. Упрощенная схема фокального контакта клетки с внеклеточным матриксом

ПМК - плазматическая мембрана клетки,

И - интегриновый рецептор,

Т - талин, - FAK (протеинкиназа фокального контакта),

ТЗ - тензин, а - альфа-актинин,

АФ - пучки актиновых микрофиламентов

Коммуникационные соединения

Контакты коммуникационного типа позволяют клеткам обмениваться веществами (нексусы) или сигналами (синапсы).

Плотное соединение

Плотное соединение характерно для однослойных эпителиев. Это зона, где внешние слои двух плазматических мембран максимально сближены. Часто видна трехслойность мембраны в этом контакте: два внешних осмофильных слоя обеих мембран как бы сливаются в один общий слой толщиной 2-3 нм. Слияние мембран происходит не по всей площади плотного контакта, а представляет собой ряд точечных сближений мембран.

Было обнаружено, что точки соприкосновения мембран представляют собой ряды глобул. Это белки окклудин и клаудин, специальные интегральные белки плазматической мембраны, встроенные рядами. Такие ряды глобул или полоски могут пересекаться так, что образуют на поверхности скола как бы решетку или сеть.

Этот тип соединений характерен для эпителиев, особенно железистых и кишечных. В последнем случае плотный контакт образует сплошную зону слияния плазматических мембран, опоясывающую клетку в апикальной (верхней, смотрящей в просвет кишечника) ее части. Таким образом, каждая клетка пласта как бы обведена лентой этого контакта. Такие структуры при специальных окрасках можно видеть и в световом микроскопе. Они получили у морфологов название замыкающих пластинок. Оказалось, что в данном случае роль замыкающего плотного контакта заключается не только в механическом соединении клеток друг с другом.

Эта область контакта плохо проницаема для макромолекул и ионов, и следовательно, она запирает, перегораживает межклеточные полости, изолируя их (и вместе с ними собственно внутреннюю среду организма) от внешней среды (в данном случае - просвет кишечника).

Плотный контакт встречается между всеми типами однослойного эпителия (эндотелий, мезотелий, эпендима). Основной функцией которой является создание барьера, ограничивающего диффузию веществ между наружной средой и межклеточным пространством.

Трехмерное схематическое изображение фрагмента плотного контакта представлено на рис.7


Септированнные соединения

Плазмодесмы

Этот тип межклеточных связей встречается у растений. Плазмодесмы представляют собой тонкие трубчатые цитоплазматические каналы, соединяющие две соседние клетки. Диаметр этих каналов обычно составляет 20-40 нм. Ограничивающая эти каналы мембрана непосредственно переходит в плазматические мембраны соседствующих клеток. Плазмодесмы проходят сквозь клеточную стенку, разделяющую клетки.

Таким образом, у некоторых растительных клеток плазмодесмы соединяют гиалоплазму соседних клеток, поэтому формально здесь нет полного разграничения, отделения тела одной клетки от другой, это скорее представляет собой синцитий: объединение многих клеточных территорий с помощью цитоплазматических мостиков.

Внутрь плазмодесм могут проникать мембранные трубчатые элементы, соединяющие цистерны эндоплазматического ретикулума соседних клеток. Образуются плазмодесмы во время деления клетки, когда строится первичная клеточная оболочка (см. ниже). У только что разделившихся клеток число плазмодесм может быть очень велико (до 1000 на клетку), при старении клеток их число падает за счет разрывов при увеличении толщины клеточной стенки.

Функциональная роль плазмодесм очень велика: с их помощью обеспечивается межклеточная циркуляция растворов, содержащих питательные вещества, ионы и другие соединения. По плазмодесмам могут перемещаться липидные капли.

Через плазмодесмы происходит заражение клеток растительными вирусами. Однако эксперименты показывают, что свободный транспорт через плазмодесмы ограничивается частицами с массой не более 800 дальтон.


Рис 11. Схематическая структура плазмодесмы.

1 - клеточная стенка

5 - белки плазмодесмы

механизм структура клетка соединение

Заключение

Морфологические структуры, возникающие в местах соприкосновения клеток в тканях, носят название межклеточных контактов. В зависимости от выполняемой функции их можно классифицировать:

1. Функция герметизации отсеков межклеточного пространства между соседними клетками. В результате мелкие водорастворимые молекулы не способны легко и быстро перемещаться во внеклеточном матриксе.

В организме позвоночных этот тип соединений представлен плотными контактами. Здесь плазмолеммы прилегают друг к другу вплотную, сцепляясь с помощью специальных белков. Места такого плотного прилегания образуют на контактирующих поверхностях подобие ячеистой сети. Тем самым обеспечивается надежность отграничения двух сред, находящихся по разные стороны от пласта клеток.

. Функция скрепления клеток друг с другом. В результате ткани приобретают механическую прочность, а различные клеточные типы не смешиваются в пределах одного органа (ткани).

Наиболее просто устроенными типами подобных соединений являются рыхлые (простые) контакты, в англоязычной литературе именуемые слипающимися контактами (adherens junction).

Это просто сближение плазмалемм соседних клеток на расстояние 15-20нм. без образования специальных структур.

При этом плазмолеммы взаимодействуют друг с другом с помощью специфических адгезивных гликопротеинов - кадгеринов, интегринов и др.

3. Функция коммуникации между клетками как в пределах одной ткани, так и между разными типами тканей. Благодаря этим соединениям осуществляется транспорт веществ и передача сигналов. Представлены щелевыми контактами и синапсами, плазмодесмами.


Литература

. А. В. Сидоров Физиология межклеточной коммуникации : учеб. пособие / А. В. Сидоров. - Минск: БГУ, 2008. - 215 с.

. С. Л. Кузнецов, Н. Н. Мушкамбаров К89 Гистология, цитология и эмбриология: Учебник для медицинских вузов. - М. : ООО «Медицинское информационное агенство», 2007. - 600 с. ; ил., табл.

. Гистология: Учебник/ Ю. И. Афанасьевой, Н. А. Юрина, Е. Ф. Котовский и др.; Под ред. Ю. И. Афанасьева, Н. А. Юриной. - 5-е изд., перераб. и доп. - М.: Медицина, 2001. - 744с.: ил.

Содержание

. Рыхлые, или простые соединения

Классификация контактов

Сцепляющие (заякоривающие) контакты

Они соединяют не только плазматические мембраны соседних клеток, но и связываются с фибриллярными элементами цитоскелета. Для этого рода соединений характерным является наличие двух типов белков. Один из них - это трансмембранные линкерные (связующие) белки, которые участвуют или в собственно межклеточном соединении или в соединении плазмолеммы с компонентами внеклеточного матрикса (базальная мембрана эпителиев, внеклеточные структурные белки соединительной ткани). Второй - внутриклеточные белки, соединяющие или заякоревающие за мембранные элементы такого контакта цитоплазматические фибриллы цитоскелета.

К заякоревающим соединениям относятся межклеточные сцепляющие точечные контакты, адгезивный поясок, фокальные контакты или бляшки сцепления - все эти контакты связываются внутри клеток с актиновыми микрофиламентами.

Другая группа заякоревающих межклеточных соединений - десмосомы и полудесмосомы - связываются с другими элементами цитоскелета, а именно с промежуточными филаментами.

Рис. 2. Схема строения заякоривающих адгезивных соединений

1 - плазматическая мембрана; 2 - трансмембранные линкерные гликопротеиды; 3 - внутриклеточные белки сцепления; 4 - элементы цитоскелета

Клеточные контакты



Плотные контакты образуются путем точечного соединения мембран соседних клеток через трансмембранные белки клаудин и окклудин, встроенные рядами, которые могут пересекаться так, что образуют на поверхности скола как бы решетку или сеть.
Плотные контакты блокируют перемещение макромолекул, жидкостей и ионов между клетками, обеспечивая тем самым барьерную функцию эпителия и регуляцию транспорта веществ через эпителиальный пласт.
Плотные контакты соединяют клетки однослойных эпителиев, особенно железистых и кишечных (клетки выстилки жкт и дыхательной системы). Плотный контакт встречается между всеми типами однослойного эпителия (эндотелий, мезотелий, эпендима).

Плотные контакты препятствуют свободному перемещению и смешиванию функционально различных внутримембранных белков, локализующихся в плазмолемме апикальной и базолатеральной поверхностей клетки, что способствует поддержанию ее полярности.
Плотные контакты имеют вид пояска шириной 0,1-0,5 мкм, окружающего клетку по периметру (обычно у ее апикального полюса).
Для поддержания целостности этих соединений необходимы двухвалентные катионы Mg 2+ и Ca 2+ . Контакты могут динамично перестраиваться (вследствие изменений экспрессии и степени полимеризации окклудина) и временно размыкаться (например, для миграции лейкоцитов через межклеточные пространства).

Фокальные контакты

Встречаются у многих клеток и особенно хорошо изучены у фибробластов.
Они построены по общему плану со сцепляющими лентами, но выражены в виде небольших участков - бляшек на плазмолемме. В этом случае трансмембранные линкерные белки-интегрины специфически связываются с белками внеклеточного матрикса (например с фибронектином). Со стороны цитоплазмы эти же гликопротеиды связаны с примембранными белками, куда входит и винкулин, который в свою очередь связан с пучком актиновых филаментов. Функциональное значение фокальных контактов заключается как в закреплении клетки на внеклеточных структурах, так и создании механизма, позволяющего клеткам перемещаться.

Щелевые контакты


Щелевые контакты - щель 2-4нм, состоят из белковых каналов обеспечивают прохождение веществ до 1кДа.
Коннексоны - регулируемые каналы, состоят из 6 коннексинов - белковые субъединицы М=26-54 кДа.

Каналы перекрываются при попадании в клетку Ca 2+ при повреждении. Обмен тимином через коннексоны при отборе гибридных клеток усложняет отбор - т.к. два коннексона соседних клеток образуют канал по которым тимин передается из клетки в клетку.
Через коннексоны передаются электрические сигналы и малые регуляторные молекулы (например, cAMP, InsP3, аденозин, ADP и ATP). Коннексины - нестабильные белки, живущие несколько часов.
Присутствуют практически во всех клетках.
Имеется 20 различных коннексинов у мыши и 21 у человека. Многие клетки образуют несколько видов коннексинов, которые способны полимеризоваться в различных комбинациях. Например, кератиноциты экспрессируют Cx26, Cx30, Cx30.3, Cx31, Cx31.1 и Cx43; гепатоциты - Cx26 и Cx32; кардиомиоциты - Cx40, Cx43 и Cx45. Некоторые коннексины могут заменять другие в случае мутаций. Гетеромерные коннексоны (состоящие из разных коннексинов) Cx26/Cx32 в клетках печени, Cx46/Cx50 в хрусталике и Cx26/Cx30 коннексоны в улитке уха.

Объединение шести коннексинов двух типов может образовывать 14 вариантов коннексонов, из которых может образоваться 142=196 различных вариантов каналов!

Различные типы коннексинов человека и мыши.

человек Cx23 Cx25 Cx26 Cx30.2 Cx30 Cx31.9 Cx30.3 Cx31 Cx31.1 Cx32 - Cx36 Cx37 Cx40.1 Cx40 Cx59 Cx43 Cx45 Cx46 Cx47 Cx50 Cx62
мышь Cx23 - Cx26 Cx29 Cx30 Cx30.2 Cx30.3 Cx31 Cx31.1 Cx32 Cx33 Cx36 Cx37 Cx39 Cx40 - Cx43 Cx45 Cx46 Cx47 Cx50 Cx57

Коннексины - политопные интегральные мембранные белки 4 раза пересекающий мембрану, имеющие две внеклеточные петли (EL-1 и EL-2), цитоплазматическую петлю (CL) с N-концом (AT) и C-концом (CT) вдающимися в цитоплазму.
Специфические N- и E-кадгерины обеспечивающие адгезию клеток, что способствует образованию каналов между соседними клетками.
Белки взаимодействующие с коннексонами Cx43: v-, c-src киназы, киназа С, MAP киназа, Cdc2 киназа, казеин киназа 1, киназа A, ZO-2, ZO-1, b-катенин, Дребрин, a-, b-тубулин, кавеолин-1, NOV, CIP85.
С коннексонами способны взаимодействовать различные белки, например, киназы, фосфорилирующие коннексины и меняющие их свойства, что может регулировать работу канала. С коннексонами
так же взаимодействют тубулины (белки микротрубочек), что может способствовать транспорт различных веществ вдоль микротрубочек непосредственно к каналу. Белок дребрин взаимодействует с коннексинами и с микрофиламентами, что указывает на взаимосвязь каналов и организации цитоскелета клетки.
Коннексоны могут закрываться при действии тока, pH, напряжения мембраны, Ca2+.

Десмосомы

Десмосомы - соединяют клеточную мембрану с промежуточными филаментами, формируя сеть устойчивую к растяжениям.
Цитокератиновые филаменты
Десминовые филаменты
Пластинка прикрепления иммеет дисковидную форму (диаметр ~0,5 мкм и толщиной 15 нм) и служит участком прикрепления к плазматической мембране промежуточных филаментов.
Состоит из белков - десмоплакин, плакоглобин, десмокальмин.
Межклеточная щель в области десмосомы шириной 25 нм заполнена белками десмоколлинами и десмоглеинами - Са 2+ -связывающие адгезивные белки, взаимодействующие с пластинками прикрепления.

Полудесмосомы

Полудесмосомы - прикрепляют базальную часть плазматической мембраны эпителиальных клеток к базальной мембране.

Септированные контакты

Плазмодесмы

Внутрь плазмодесм могут проникать мембранные трубчатые элементы, соединяющие цистерны эндоплазматического ретикулума соседних клеток.
Образуются плазмодесмы во время деления клетки, когда строится первичная клеточная оболочка. У только что разделившихся клеток число плазмодесм может быть очень велико (до 1000 на клетку), при старении клеток их число падает за счет разрывов при увеличении толщины клеточной стенки.
C помощью плазмодесм обеспечивается межклеточная циркуляция растворов, содержащих питательные вещества, ионы и другие соединения. По плазмодесмам могут перемещаться липидные капли Через плазмодесмы происходит заражение клеток растительными вирусами. Однако эксперименты показывают, что свободный транспорт через плазмодесмы ограничивается частицами с массой не более 800 Да.

Интердигитации

Интердигитации - межклеточные соединения, образованные выпячиваниями цитоплазмы одних клеток, вдающимися
в цитоплазму других. За счет интердигитаций увеличивается прочность соединения клеток и площадь их контакта.

Биология клетки/Часть 1. Клетка как она есть/6/10


Плотные, или замыкающие контакты (zonula occludens) — участки, на которых мембраны двух соседних (эпителиальных) клеток тесно сближены и образуют барьер, практически непроницаемый для растворенных веществ. У беспозвоночных типичные замыкающие контакты не встречаются, им соответствуют по функциям септированные контакты.

Плотные контакты — система ветвящихся полосок. Каждая полоска состоит из белков, пронизывающих мембраны соседних клеток и непосредственно соединяющихся друг с другом во внеклеточном пространстве. Хотя в образовании плотных контактов участвуют многочисленные белки, главные из них — клаудины и окклюдины. Различные периферические белки, расположенные на цитоплазматической стороне мембран, соединяют плотные контакты с актиновым цитоскелетом.

Плотные контакты выполняют три основные функции:

  • Механически соединяют клетки эпителия
  • Обеспечивают барьер для латеральной диффузии белков, благодаря чему сохраняется полярность клеток эпителия. На апикальной (смотрящей в просвет органа или на поверхность тела) поверхности локализованы одни белки, а на базолатеральной (нижне-боковой) — другие. Благодаря этому, например, клетки кишечного эпителия могут поглощать вещества путем активного транспорта или эндоцитоза из просвета кишки и выделять их в кровь (обычно путем пассивного транспорта или экзоцитоза). Для поглощения веществ нужны одни белки, а для их выделения в кровь — другие.
  • Обеспечивают барьер на пути большинства веществ, из-за чего эти вещества транспортируются в организм через мембраны и через цитоплазму клеток. Это позволяет отчасти контролировать транспорт веществ (в большей степени, чем когда они просачиваются между клетками).

По степени «плотности» контактов эпителии lелятся на проницаемые и мало проницаемые. К первым относится, например. эпителий почечных капсул и проксимальных извитых трубочек, а ко вторым — эпителий дистальных извитых трубочек почек или капилляров мозга (где плотные контакты обеспечивают гематоэнцефалический барьер).


Десмосома — один из типов межклеточных контактов, обеспечивающих прочное соединение клеток (как правило, эпителиальной или мышечной ткани) у животных. Функции z десмосом заключается главным образом в обеспечении механической связи между клетками.

Существуют 3 типа десмосом — точечные, опоясывающие и гемидесмосомы. Точечная десмосома собой небольшую площадку (диаметром до 0,5 мкм), соединяющую мембраны двух соседних клеток. Количество точечных десмосом на одной клетке может достигать 2000.

Десмосомы образуются между клетками тех тканей, которые могут подвергаться трению, растяжению и другим механическим воздействиям (эпителиальные клетки, клетки сердечной мышцы). Со стороны цитоплазмы к десмосомам прикрепляются промежуточные филаменты, которые формируют в цитоплазме сеть, обладающий большой прочностью на разрыв. Через десмосомы промежуточные филаменты соседних клеток объединяются в непрерывную сеть, охватывающую всю ткань.

Десмосома состоит из белков клеточной адгезии из семейства кадгеринов и соединительных (адапторных) белков, которые соединяют их с промежуточными филаментами. Белки клеточной адгезии, формирующие десмосомы — десмоглеин и десмоколлин. Как и другие кадгерины, эти трансмембранные белки имеют по пять внеклеточных доменов и являются кальцийсвязывающими. Они обеспечивают гомофильное соединение клеток — между собой соединяются две одинаковые по строению молекулы белка. Внутриклеточный белок десмоплакин (при участии еще двух белков, плакофиллина и плакоглобина) соединяет внутриклеточные домены десмоглеина с промежуточными филаментами. Тип промежуточных филаментов зависит от типа клеток: в большинстве эпителиальных клеток они кератиновые, а в клетках сердечной мышцы — десминовые, и т. п.

Если контакты похожего строения образуются между клетками и внеклеточным матриксом, то они называются гемидесмосомами, или полудесмосомами. Хотя по структуре они напоминают десмосомы и тоже содержат промежуточные филаменты, они образованы другими белками. Основные трансмембранные белки гемидесмосом — интегрины и коллаген XVII. С промежуточными филаментами они соединяются при участии дистонина и плектина. Основной белок межклеточного матрикса, к которому клетки присоединяются с помощью гемидесмосом — ламинин.

Медицинское значение

С нарушением функции десмосом связаны кожные болезни, которые объединены под названием «пузырчатка» (pemphigus). Две её наиболее распространенные формы — pemphigus vulgaris (вульгарная пузырчатка) и pemphigus foliaceus (пластинчатая пузырчатка). Обычно они имеют аутоиммунную природу, хотя сходные патологии могут быть и наследственными. При вульгарной пузырчатке антитела атакуют белок десмоглеин-3, который присутствует во всех слоях эпителия. При пластинчатой пузырчатке образуются аутоантитела против белка десмоглеин-1, который экспрессируется только в верхних слоях эпидермиса кожи. У больных образуются пузыри, так как слои эпидермиса разрываются, часть его клеток гибнет, а в образующиеся полости поступает межклеточная жидкость.

При вульгарной пузырчатке пузыри образуются не только на коже, но на других слизистых (в основном во рту). Эта болезнь протекает более тяжело и может закончиться смертью. Развивается она обычно в возрасте 40-60 лет. При пластинчатой пузырчатке поражения захватывают только кожу, которая отслаивается в виде пластинок.

При нарушении функции гемидесмосом развивается буллёзный эпидермолиз (врожденная, буллёзная пузырчатка). При малейшем механическом воздействии эпидермис кожи отстаёт от базальной пластинки, под ним образуются пузыри с серозным или геморрагическим содержимым. Одна из причин этого заболевания — мутации гена коллагена XVII. Данный вариант заболевания наследуется по аутосомно-рецессивному типу.

Щелевое соединение, щелевой контакт — способ соединения клеток в организме с помощью белковых каналов (коннексонов). Через щелевые контакты могут непосредственно передаваться от клетки к клетке электрические сигналы (потенциалы действия), а также малые молекулы (с молекулярной массой примерно до 1.000 Д). Этим щелевые контакты отличаются от плазмодесм, через которые могут транспортироваться макромолекулы и даже органоиды.

Структурную основу щелевого соединения составляют коннексоны — каналы, образуемые шестью белками-коннексинами. В нервной системе щелевое соединение между нейронами встречается в так называемых электрических синапсах. Отдельные коннексоны обычно сосредоточены на ограниченных по площади участках мембран — нексусах, или бляшках (англ. plaque) диаметром 0,5-1 мкм. В области нексуса мембраны соседних клеток сближены, расстояние между ними составляет 2-4 нм.

Белки щелевых контактов

У позвоночных основу щелевых контактов составляют коннексины — первое из описанных семейств белков щелевых контактов. В геноме человека идентифицирован 21 ген щелевых контактов, в геноме мыши — 20 генов.

У беспозвоночных имеется другое семейство белков щелевых контактов, сходных с коннексинами по структуре и функциям. но негомологичных им (имеющих несходную первичную структуру) — иннексины. В геноме Caenorhabditis elegans найдено 25 генов иннексинов, в геноме Drosophila melanogaster — 8.

Позднее выяснилось, что у позвоночных, кроме коннексинов, имеются также белки, гомологичные иннексинам. Эти белки, открытые группой российских ученых под руководством Ю. В. Панчина, получили название паннексины. В геноме человека и мыши к настоящему времени идентифицированы 3 гена паннексинов.

У кишечнополостных и иглокожих есть щелевые контакты, но нет генов ни одного из вышеназванных семейств. Это означает, что существуют ещё не открытые семейства белков щелевых контактов.

Адгезионные (адгезивные) контакты образуются между соседними клетками (как правило, 'пиелиальными) или между клетками и межклеточным веществом (фокальные контакты, пятна адгезии). В первом случае трансмембранные белки, обеспечивающие контакт клеток, относятся к семейству кадгеринов; присоединение клетки к межклеточному веществу обеспечивают интегрины. Этим адгезивные контакты сходны с десмосомами и гемидесмосомами. Однако внутри клетки белки этих контактов через различные линкерные белки связываются не с промежуточными фиалментами (как в случае десмосом и гемидесмосом), а с актиновыми микрофиламентами.

Межклеточные простые контакты, строение, функции.

Простые межклеточные контакты представляют собой сближение плазмолемм соседних клеток. К ним относят:

Простые межклеточные соединения - оболочки клеток сближены на расстояние 15 - 20 нм. Это соединение занимает наиболее обширные участки соприкасающихся клеток.

Интердигитации - являются разновидностью простого межклеточного соединения, когда билипидные мембраны соседних клеток вместе с участком цитоплазмы вдавливаются друг в друга, чем достигается большая поверхность соприкосновения и более прочная механическая связь.

Среди контактов выделяют следующие:

· простые, которые могут формировать различные по форме соединения;

· сложные: десмосомальные, щелевидные, плотные контакты, синапсы и адгезивные пояски.

Простой контакт. Это область взаимодействия надмембранных комплексов плазмолеммы (гликокаликсов клеток). Расстояние между контактами составляет около 15 нм. Контакты обеспечивают адгезию (прилипание) клеток друг к другу в результате взаимного «узнавания». На гликокаликсе имеются специальные рецепторные комплексы, строго индивидуальные для каждого организма.

образуется за счет элементов гликокаликса — трансмембранными гликопротеинами (кадгеринами) взаимодействующих мембран. Слои гликокаликса удерживают мембраны клеток на расстоянии около 10-20 нм, оставляя свободной межклеточную щель для транспортных процессов ионов и низкомолекулярных соединений. Обращенные в сторону межклеточной щели молекулы кадгеринов связываются катионами кальция. Простые контакты не обеспечивают высокой прочности межклеточных взаимодействий. Иногда плазмолеммы контактирующих клеток в области простого контакта образуют интердигитации (взаимные пальцевидные внедрения участков цитоплазмы), которые придают контакту большую прочность.

Функция простых контактов далеко не ограничена лишь простым механическим сцеплением. Они необходимы для нормального функционирования клеток и тканевых структур, в образовании которых участвуют. Такие контакты контролируют созревание и миграцию клеток, предотвращают излишние митозы (гиперплазию).

Клетки могут образовывать разнообразные по конфигурации соединения: в форме «черепицы» (в роговом слое многослойного плоского ороговевающего эпителия, в эндотелии артерий); зубчатое, или пальцевидное («замок», или интердигитация). Зубчатое соединение отличается тем, что выпячивание одной клетки погружается во впячивание другой. Такая связь значительно усиливает механическую прочность прикрепления клеток.

Перечислить состав цитоплазмы клетки.

Схема строения типичной клетки животного. Отмеченные органоиды (органеллы):1) Ядрышко 2) Ядро 3) Рибосома 4) Везикула 5) Шероховатая эндоплазматическая сеть 6) Аппарат Гольджи 7) Цитоскелет 8) Гладкая эндоплазматическая сеть 9) Митохондрия 10) Вакуоль 11) Цитоплазма 12) Лизосома 13) Центросом

Мембранные органеллы клетки (ЭПС,виды, строение, функции)

Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭПР), — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают два вида ЭПС: 1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и 2) гладкая (агранулярная), мембраны которой рибосом не несут.

Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты ( «отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС), 5) место образования аппарата Гольджи.

Читайте также: