Белковый чехол вируса называется
Основным структурным компонентом вирионов (полных вирусных частиц) является нуклеокапсид, т.е. белковый чехол (капсид) в котором заключен вирусный геном (ДНК или РНК). Нуклеокапсид большинства семейств вирусов окружен липопротеиновой оболочкой. Между оболочкой и нуклеокапсидом у некоторых вирусов (орто-, парамиксо-, рабдо-, фило- и ретровирусов) находится негликозилированный матриксный белок, придающий дополнительную жесткость вирионам. Вирусы большинства семейств имеют оболочку, которая играет важную роль в инфекционности. Наружный слой оболочки вирионы приобретают, когда нуклеокапсид проникает через клеточную мембрану почкованием.
Белки оболочки кодируются вирусом, а липиды заимствуются из мембраны клетки. Гликопротеины обычно в виде димеров и тримеров образуют пепломеры (выступы) на поверхности вирионов (орто-, парамиксовирусы, рабдо-, фило-, корона-, бунья-, арена-, ретровирусы). Гликозилированные белки слияния связаны с пепломерами и выполняют ключевую роль в проникновении вируса в клетку. Капсиды и оболочки вирионов образуются множеством копий одного или нескольких видов белковых субъединиц в результате процесса самосборки. Взаимодействие в системе белок-белок, благодаря слабым химическим связям, ведет к объединению симметричных капсидов.
Различия вирусов по форме и размеру вирионов зависят от формы, размера и количества структурных белковых субъединиц и природы взаимодействия между ними.
Капсид состоит из множества морфологически выраженных субъединиц (капсомеров), собранных из вирусных полипептидов строго определенным образом, в соответствии с относительно простыми геометрическими принципами. Белковые субъединицы, соединяясь друг с другом, образуют капсиды двух видов симметрии: изометрические и спиральные. Структура нуклеокапсида оболочечных вирусов сходна со структурой нуклеокапсида безоболочечных вирусов. На поверхности оболочки вирусов различают морфологически выраженные гликопротеиновые структуры — пепломеры.
В состав суперкапсидной оболочки входят липиды (до 20—35%) и углеводы (до 7—8%), имеющие клеточное происхождение. Она состоит из двойного слоя клеточных липидов и вирусспецифических белков, расположенных снаружи и изнутри липидного биослоя. Наружный слой суперкапсидной оболочки представляют пепломеры (выступы) одного или более типов, состоящие из одной или нескольких молекул гликопротеинов. Нуклеокапсид у оболочечных вирусов часто называют сердцевиной (core), а центральную часть вирионов, содержащую нуклеиновую кислоту, называют нуклеоидом.
Капсомеры (пепломеры) состоят из структурных единиц, построенных из одной либо из нескольких гомологичных или гетерологичных полипептидных цепей (белковых субъединиц).
Изометрические капсиды представляют собой не сферы, а правильные многогранники (икосаэдры). Их линейные размеры идентичны по осям симметрии. Согласно Каспару и Клугу (1962), капсомеры в капсидах расположены в соответствии с икосаэдрической симметрией.
Такие капсиды состоят из идентичных субъединиц, образующих икосаэдр. Они имеют 12 вершин (углов), 30 граней и 20 поверхностей в виде равнобедренных треугольников. В соответствии с этим правилом капсид полиовируса и вируса ящура образован 60 белковыми структурными единицами, каждая из которых состоит из четырех полипептидных цепей.
Икосаэдр оптимально решает проблему укладки повторяющихся субъединиц в строгую компактную структуру при минимальном объеме. Только некоторые конфигурации структурных субъединиц могут сформировать поверхности, образовать вершины и грани вирусного икосаэдра. Например, структурные субъединицы аденовируса на поверхностях и гранях формируют шестигранные капсомеры (гексоны), а на вершинах - пятигранные капсомеры (пептоны). У одних вирусов оба вида капсомеров образуются одними и теми же полипептидами, у других — разными полипептидами. Так как структурные субъединицы разных вирусов различаются между собой, то одни вирусы кажутся более гексагональными, другие — более сферическими.
Все известные ДНК-содержащие вирусы позвоночных, за исключением вирусов оспы, а также многие РНК-содержащие вирусы (7 семейств) имеют кубический тип симметрии капсида.
Реовирусы, в отличие от других вирусов позвоночных, имеют двойной кап-сид (наружный и внутренний), причем каждый состоит из морфологических единиц.
Вирусы, обладающие спиральным типом симметрии, имеют вид цилиндрической нитевидной структуры, их геномная РНК имеет вид спирали и находится внутри капсида. Все вирусы животных спиральной симметрии окружены липопротеиновой оболочкой.
Спиральные нуклеокапсиды характеризуются длиной, диаметром, шагом спирали и числом капсомеров, приходящихся на один оборот спирали. Так, у вируса Сендай (парамиксовирус) нуклеокапсид представляет собой спираль длиной около 1 мкм, диаметром 20 нм и шагом спирали 5 нм. Капсид состоит примерно из 2400 структурных единиц, каждая из которых является белком с молекулярной массой 60 кД. На каждый виток спирали приходится 11—13 субъединиц.
У вирусов со спиральным типом симметрии нуклеокапсида укладка белковых молекул в спираль обеспечивает максимальное взаимодействие между нуклеиновой кислотой и белковыми субъединицами. У икосаэдрических вирусов нуклеиновая кислота находится внутри вирионов в скрученном состоянии и взаимодействует с одним или несколькими полипептидами, расположенными внутри капсида.
Капсид
Все вирусные геномы являются гаплоидными, т.е. содержат одну копию каждого гена, за исключением ретровирусов, которые обладают диплоидным геномом, и ДНК-содержащих парво- и цирковирусов.
Геном вирусов
МОРФОЛОГИЯ ВИРУСОВ
Размер вирусов. Самые мелкие парвовирусы (20 нм) – ДНК-содержащий вирус – (размножается в эритроидных клетках-предшественниках и вызывает их гибель. В зависимости от гематологического и иммунологического статуса заболевшего клиническая картина заражения может варьировать в широких пределах: от бессимптомной эритроидной аплазии до хронической анемии. Вирус встречается по всему миру и довольно широко распространён, распространяется в основном воздушно-капельным путём, но заражение также возможно при парентеральном введении донорской крови или её компонентов и при пересадке органов – проявляется сыпью. Сыпь на лице может быть интенсивно красного цвета (синдром отшлепанных щек). Сыпь симметричная, пятнисто-папулёзная, сетчатая ("кружевная") появляется на туловище с тенденцией распространения на руки, бёдра, ягодицы.). Аденовирусы (ДНК-сод.) – 75 нм. Самые крупные – поксвирусы (ДНК-сод. – вирус оспы) – 300 нм и парамиксовирусы (РНК-сод. – корь, эпидемический паротит - свинку) – 150-300 нм.
Основным структурным компонентом вирионов (полных вирусных частиц) является нуклеокапсид, т.е. комплекс капсида и вирусного генома (ДНК или РНК).
Несмотря на простоту организации, вирусы отличаются от животных и растений большим разнообразием генома. Животные и растения содержат одновременно две формы нуклеиновой кислоты: двухцепочную ДНК и одноцепочную РНК.
Вирусы содержат только одну форму нуклеиновой кислоты — ДНК или РНК, которые могут быть представлены одно- или двухцепочными молекулами.
В зависимости от типа НК выделяют ДНК-содержащие и РНК-содержащие вирусы. Поскольку у животных РНК не обеспечивает сохранение генетической информации, и ее передачу последующим поколениям, поэтому РНК-содержащие вирусы можно рассматривать как самостоятельное направление эволюции инфекционных агентов.
У РНК-содержащих вирусов вся генетическая информация содержится в РНК, что является уникальным явлением в биологии.
Вирусные ДНК или РНК могут иметь линейную или кольцевую форму.
РНКпредставлена одно- и двухнитевыми молекулами. У некоторых видов РНК может быть сегментирована - разделенной на 2—12 фрагментов (фрагментированный геном). Преимущество сегментированного генома – в нескольких дискретных фрагментах (молекулах) содержится объем информации, сохранение которого не способна обеспечить обычная молекла РНК.
Полярность.В зависимости от выполняемых функций однонитевые РНК вирусов разделяют на две группы:
1. РНК, способные непосредственно транслировать генетическую информацию на рибосомы чувствительной клетки, т.е. выполнять функции иРНК и мРНК. Их называют плюс-нити РНКи обозначают как +РНК (позитивный геном). У таких вирусов репликация РНК мало отличается от транскрипции.
2 РНК не способна транслировать генетическую информацию непосредственно на рибосомы и функционировать как иРНК. Подобные РНК служат матрицей для образования иРНК, т.е. при репликации первоначально синтезируется матрица (+РНК) для синтеза –РНК. Такой тип РНК определяют как минус-нить и обозначают –РНК(негативный геном). У подобных вирусов репликация РНК отлична от транскрипции по длине образующихся молекул : при репликации длина РНК соответствует материнской нити, а при транскрипции образуются укороченные молекулы иРНК.
Основные типы вирусных геномов можно представить следующим образом:
1) двуцепочечной линейной молекулой ДНК с открытыми (герпесвирусы, аденовирусы, иридовирусы) или ковалентно связанными концами (вирусы оспы, асфаровирусы);
2) одноцепочечной линейной молекулой ДНК (парвовирусы);
3) одноцепочечной кольцевой молекулой ДНК (цирковирусы);
4) двуцепочечной кольцевой молекулой ДНК (папилломавирусы, полиомавирусы);
5) частично двуцепочечной кольцевой незамкнутой молекулой ДНК (гепаднавирусы);
6) одноцепочечной молекулой РНК, являющейся мРНК (положительно-геномные вирусы: пикорнавирусы, тогавирусы, флавивирусы, астровирусы, калицивирусы, коронавирусы, артеривирусы, нодавирусы);
7) одноцепочечной единой (рабдовирусы, парамиксовирусы, филовирусы, бор-навирусы) или фрагментированнои (ортомиксовирусы) линейной молекулой РНК, комплементарной мРНК — отрицательно-геномные вирусы;
8) одноцепочечной фрагментированнои кольцевой ковалентно несвязанной отрицательной или двуполярной РНК (буньявирусы, аренавирусы);
9) двуцепочечной линейной фрагментированнои молекулой РНК (реовирусы, бирнавирусы);
10) двумя идентичными линейными молекулами плюс-РНК, являющимися матрицами для синтеза ДНК (ретровирусы).
Геномы полиома-, папиллома-, гепадна- и цирковирусов представлены кольцевой ДНК. ДНК гепаднавирусов частично двуспиральная, частично односпиральная. ДНК вирусов полиомы и папилломы является суперспиральной. Большинство линейных вирусных ДНК обладает способностью приобрести циркулярную конфигурацию, которая требуется для репликации по вращающемуся кольцевому механизму. Две цепи ДНК вируса оспы ковалентно связаны своими концами и при денатурации образуют большое одноцепочечное кольцо. У некоторых ДНК-вирусов (так же как у РНК-ретровирусов) имеются концевые повторяющиеся последовательности. Инвертированные концевые повторы обнаружены у адено- и парвовирусов. У адено-, гепадна- и парвовирусов, так же как у некоторых РНК-вирусов (пикорна- и калицивирусов), с 5'-концом генома ковалентно связан белок, играющий важную роль в его репликации.
Все РНК-вирусы позвоночных за исключением рео- и бирнавирусов имеют одноцепочечные геномы. Геном некоторых РНК-вирусов состоит из нескольких (2-12) уникальных фрагментов, каждый из которых кодирует, как правило, один белок. РНК-вирусы с односпиральным геномом могут иметь различную полярность. Если они имеют ту же полярность, что и мРНК, то они могут прямо индуцировать синтез вирусного белка и считаются положительно (+) полярными.
Если геномная нуклеотидная последовательность комплементарна мРНК, то они считаются отрицательно (—) полярными. К ним относятся: парамиксо-, рабдо-, фило-, ортомиксо-, арена- и буньявирусы. Все они имеют вирионную РНК-зависимую полимеразу (транскриптазу), которая в инфицированной клетке транскрибирует положительно-полярную РНК на матрице геномной вирусной РНК. У аренавирусов, по крайней мере, у одного рода буньявирусов, один из РНК-сегментов является двуполярным. Обычно у (+)полярных РНК-вирусов З'-конец имеет polyA-последовательность, а 5'-конец имеет кэп-структуру.
Содержание ГЦ-пар в ДНК 36 (у поксвирусов) – 70 % (у герпетовирусов).
Капсид – это белковый чехол, в котором заключен вирусный геном. Капсид состоит из субъединиц - капсомеров, собранных из вирусных полипептидов. Капсомеры, соединяясь друг с другом, образуют капсиды двух видов симметрии: икосаэдральной (кубической) или спиральнойв один-два слоя. Число капсомеров строго специфично для каждого вида вирусов и зависит от размеров и морфологии вирионов. Основная функция капсида – защита генома от внешних воздействий и обеспечение адсорбции и проникновения вируса в клеткучерез взаимодействие с клеточными рецепторами.
Комплекс капсида и вирусного генома называют нуклеокапсидом.Нуклеокапсид может быть составной частью вириона – у голых вирусов, либо окружен мемраноподобной оболочкой – у одетых вирусов.
Нуклеокапсид обладает спиральной или икосаэдральной симметрией. В нуклеокапсиде взаимоотношения НК и белка осуществляется по одной ротационной оси. Нуклеокапсиды большинства патогенных для человека вирусов имеют спиральную симметрию и окружены оболочкой. К этой группе относится и вирус табачной мозаики. Организация по типу спиральной симметрии придает вирусам палочковидную форму.
У вирусов с икосаэдральной симметрией НК составляет сердцевину, окруженную капсомерами в виде многогранника с 12 вершинами, 20 треугольными гранями и 30 углами, икосаэдр имеет 3-5-кратную двухмерную ротационную симметрию. К вирусам с подобной симметрией относят аденовирусы, реовирусы, иридовирусы, герпетовирусы и пикорновирусы. Вирусы с икосаэдральной симметрией имеют сферическую форму.
Оболочка вирусов – пеплос - суперкапсидная оболочка. Нуклеокапсид у большинства вирусов окруженсуперкапсидной оболочкой (гликопротеиновая оболочка). Она состоит из двойного слоя клеточных липидов и вирусспецифических белков, расположенных снаружи и изнутри липидного бислоя. Образуется на поздних этапах репликативного цикла.
В состав суперкапсидной оболочки входят белки (кодируются вирусом), а также липиды (до 20—35 % -липиды заимствуются из мембраны клетки)и углеводы (до 7—8 %), имеющие клеточное происхождение. Наружный слой суперкапсидной оболочки представляют пепломеры(выступы в виде шипов) одного или более типов, состоящие из одной или нескольких молекул гликопротеинов. Гликозилированные белки слияния связаны с пепломерами и выполняют ключевую роль в проникновении вируса в клетку – они взаимодействуют с с клеточными рецепторами, являются важным компонентом инфекционности. Матричные белкипредставлены негликозилированными белками, они формируют структурный слой на внутренней поверхности вирусной оболочки и спосбоствуют взаимодействию с белками нуклеокапсида. Оболочка вирусов подвержена действию многих органических растворителей и детергентов, что приводит к потере инфекционных свойств.
В 1901 американский военный хирург У.Рид и его коллеги установили, что возбудитель желтой лихорадки также является фильтрующимся вирусом. Желтая лихорадка была первым заболеванием человека, опознанным как вирусное, однако потребовалось еще 26 лет, чтобы ее вирусное происхождение было окончательно доказано.
СВОЙСТВА И ПРОИСХОЖДЕНИЕ ВИРУСОВ.
Наиболее просто устроенные вирусы состоят из нуклеиновой кислоты, являющейся генетическим материалом (геномом) вируса, и покрывающего нуклеиновую кислоту белкового чехла. В состав некоторых вирусов входят также углеводы и жиры (липиды). Таким образом, вирусы можно рассматривать просто как мобильные наборы генетической информации.
Принято считать, что вирусы произошли в результате обособления (автономизации) отдельных генетических элементов клетки, получивших, кроме того, способность передаваться от организма к организму. В нормальной клетке происходят перемещения нескольких типов генетических структур, например матричной, или информационной, РНК (мРНК), транспозонов, интронов, плазмид. Такие мобильные элементы, возможно, были предшественниками, или прародителями, вирусов.
ЯВЛЯЮТСЯ ЛИ ВИРУСЫ ЖИВЫМИ ОРГАНИЗМАМИ?
В 1935 американский биохимик У.Стэнли выделил в кристаллической форме вирус табачной мозаики, доказав тем самым его молекулярную природу. Полученные результаты вызвали бурные дискуссии о природе вирусов: являются ли они живыми организмами или просто активированными молекулами? Действительно, внутри зараженной клетки вирусы проявляют себя как интегральные компоненты более сложных живых систем, но вне клетки представляют собой метаболически инертные нуклеопротеины. Вирусы содержат генетическую информацию, но не могут самостоятельно реализовать ее, не обладая собственным механизмом синтеза белка. Когда особенности строения и репродукции вирусов оказались выясненными, вопрос о том, являются ли они живыми, постепенно утратил свое значение.
РАЗМЕРЫ ВИРУСОВ.
Величина вирусов варьирует от 20 до 300 нм (1 нм = 10 -9 м). Практически все вирусы по своим размерам мельче, чем бактерии. Однако наиболее крупные вирусы, например вирус коровьей оспы, имеют такие же размеры, как и наиболее мелкие бактерии (хламидии и риккетсии), которые тоже являются облигатными паразитами и размножаются только в живых клетках. Поэтому отличительными чертами вирусов по сравнению с другими микроскопическими возбудителями инфекций служат не размеры или обязательный паразитизм, а особенности строения и уникальные механизмы репликации (воспроизведения самих себя).
СТРОЕНИЕ ВИРУСОВ
Вирионы со спиральным типом симметрии, как у вируса табачной мозаики, имеют форму удлиненного цилиндра; внутри белкового чехла, состоящего из отдельных субъединиц – капсомеров, находится свернутая спираль нуклеиновой кислоты (РНК). Вирионы с икосаэдрическим типом симметрии (от греч. eikosi – двадцать, hedra – поверхность), как у полиовируса, имеют сферическую, а точнее, многогранную форму; их капсиды построены из 20 правильных треугольных фасеток (поверхностей) и похожи на геодезический купол.
Встречаются вирусы с еще более сложным строением. Вирионы поксвирусов (вирусы группы оспы) не имеют правильного, типичного капсида: между сердцевиной и наружной оболочкой у них располагаются трубчатые и мембранные структуры.
РЕПЛИКАЦИЯ ВИРУСОВ
ДНК обычно существует в виде двухцепочечных структур: две полинуклеотидные цепочки соединены водородными связями и закручены таким образом, что образуется двойная спираль. РНК, напротив, обычно существует в виде одноцепочечных структур. Однако геном отдельных вирусов представляет собой одноцепочечную ДНК или двухцепочечную РНК. Нити (цепочки) вирусной нуклеиновой кислоты, двойные или одинарные, могут иметь линейную форму или замыкаться в кольцо.
У некоторых ДНК-содержащих вирусов сам цикл репродукции в клетке не связан с немедленной репликацией вирусной ДНК; вместо этого вирусная ДНК встраивается (интегрируется) в ДНК клетки-хозяина. На этой стадии вирус как единое структурное образование исчезает: его геном становится частью генетического аппарата клетки и даже реплицируется в составе клеточной ДНК во время деления клетки. Однако впоследствии, иногда через много лет, вирус может появиться вновь – запускается механизм синтеза вирусных белков, которые, объединяясь с вирусной ДНК, формируют новые вирионы.
Так называемые ретровирусы содержат в качестве генома РНК и имеют необычный способ транскрипции генетического материала: вместо транскрипции ДНК в РНК, как это происходит в клетке и характерно для ДНК-содержащих вирусов, их РНК транскрибируется в ДНК. Двухцепочечная ДНК вируса затем встраивается в хромосомную ДНК клетки. На матрице такой вирусной ДНК синтезируется новая вирусная РНК, которая, как и другие, определяет синтез вирусных белков.
КЛАССИФИКАЦИЯ ВИРУСОВ
Тем не менее система классификации вирусов необходима в практической работе, и попытки ее создания предпринимались неоднократно. Наиболее продуктивным оказался подход, основанный на структурно-функциональной характеристике вирусов: чтобы отличить разные группы вирусов друг от друга, описывают тип их нуклеиновой кислоты (ДНК или РНК, каждая из которых может быть одноцепочечной или двухцепочечной), ее размеры (число нуклеотидов в цепочке нуклеиновой кислоты), число молекул нуклеиновой кислоты в одном вирионе, геометрию вириона и особенности строения капсида и наружной оболочки вириона, тип хозяина (растения, бактерии, насекомые, млекопитающие и т.д.), особенности вызываемой вирусами патологии (симптомы и характер заболевания), антигенные свойства вирусных белков и особенности реакции иммунной системы организма на внедрение вируса.
В систему классификации вирусов не вполне укладывается группа микроскопических возбудителей болезней, называемая вироидами (т.е. вирусоподобными частицами). Вироиды вызывают многие распространенные среди растений болезни. Это мельчайшие инфекционные агенты, лишенные даже простейшего белкового чехла (имеющегося у всех вирусов); они состоят только из замкнутой в кольцо одноцепочечной РНК.
ВИРУСНЫЕ ЗАБОЛЕВАНИЯ
ЭВОЛЮЦИЯ ВИРУСОВ И ВИРУСНЫХ ИНФЕКЦИЙ.
Хотя вирусы не являются полноценными живыми организмами, их эволюционное развитие имеет много общего с эволюцией других патогенных организмов. Для того чтобы сохраниться как вид, ни один паразит не может быть слишком опасным для своего основного хозяина, в котором размножается. В противном случае это привело бы к полному исчезновению хозяина как биологического вида, а вместе с ним и самого возбудителя. В то же время любой патогенный организм не сможет существовать как биологический вид, если у его основного хозяина слишком быстро и эффективно развивается иммунитет, позволяющий подавлять репродукцию возбудителя. Поэтому вирус, вызывающий острое и тяжелое заболевание у какого-либо вида животных, обычно имеет еще и другого хозяина. Размножаясь в последнем, вирус не наносит ему (как виду) существенного вреда, однако такое относительно безвредное сосуществование поддерживает циркуляцию вируса в природе. Так, например, вирус бешенства в природе сохраняется среди грызунов, для которых заражение этим вирусом не является смертельным.
Природным резервуаром для вирусов лошадиных энцефалитов, особо опасных для лошадей и в несколько меньшей степени для человека, являются птицы. Эти вирусы переносятся кровососущими комарами, в которых вирус размножается без существенного вреда для комара. Иногда вирусы могут передаваться насекомыми пассивно (без размножения в них), однако чаще всего они репродуцируются в переносчиках.
Для многих вирусов, например кори, герпеса и отчасти гриппа, основным природным резервуаром является человек. Передача этих вирусов происходит воздушно-капельным или контактным путем.
Распространение некоторых вирусных заболеваний, как и других инфекций, полно неожиданностей. Например, в группах людей, проживающих в антисанитарных условиях, практически все дети в раннем возрасте переносят полиомиелит, обычно протекающий в легкой форме, и приобретают иммунитет. Если же условия жизни в этих группах улучшаются, дети младшего возраста обычно полиомиелитом не болеют, но заболевание может возникнуть в более старшем возрасте, и тогда оно часто протекает в тяжелой форме.
Возбудители некоторых болезней, в том числе очень тяжелых, не укладываются ни в одну из вышеперечисленных категорий. К особой группе медленных вирусных инфекций еще недавно относили, например, болезнь Крейтцфельда – Якоба и куру – дегенеративные заболевания головного мозга, имеющие очень продолжительный инкубационный период. Однако оказалось, что они вызываются не вирусами, а мельчайшими инфекционными агентами белковой природы – прионами.
ЛЕЧЕНИЕ И ПРОФИЛАКТИКА.
Репродукция вирусов тесно переплетается с механизмами синтеза белка и нуклеиновых кислот клетки в зараженном организме. Поэтому создать лекарства, избирательно подавляющие вирус, но не наносящие вреда организму, – задача чрезвычайно трудная. Все же оказалось, что у наиболее крупных вирусов герпеса и оспы геномные ДНК кодируют большое число ферментов, отличающихся по свойствам от сходных клеточных ферментов, и это послужило основой для разработки противовирусных препаратов. Действительно, создано несколько препаратов, механизм действия которых основан на подавлении синтеза вирусных ДНК. Некоторые соединения, слишком токсичные для общего применения (внутривенно или через рот), годятся для местного использования, например при поражении глаз вирусом герпеса.
Известно, что в организме человека вырабатываются особые белки – интерфероны. Они подавляют трансляцию вирусных нуклеиновых кислот и таким образом угнетают размножение вируса. Благодаря генной инженерии стали доступны и проходят проверку в медицинской практике интерфероны, производимые бактериями.
К самым действенным элементам естественной защиты организма относятся специфические антитела (специальные белки, вырабатываемые иммунной системой), которые взаимодействуют с соответствующим вирусом и тем самым эффективно препятствуют развитию болезни; однако они не могут нейтрализовать вирус, уже проникший в клетку. Примером может служить герпетическая инфекция: вирус герпеса сохраняется в клетках нервных узлов (ганглиев), где антитела не могут его достичь. Время от времени вирус активируется и вызывает рецидивы заболевания.
Обычно специфические антитела образуются в организме в результате проникновения в него возбудителя инфекции. Организму можно помочь, усиливая выработку антител искусственно, в том числе создавая иммунитет заранее, с помощью вакцинации. Именно таким способом, путем массовой вакцинации, заболевание натуральной оспой было практически ликвидировано во всем мире.
НАКОПЛЕНИЕ ВИРУСОВ.
Для приготовления вакцинных препаратов необходимо накопить вирус. С этой целью часто используют развивающиеся куриные эмбрионы, которых заражают данным вирусом. После инкубирования зараженных эмбрионов в течение определенного времени накопившийся в них вследствие размножения вирус собирают, очищают (центрифугированием или другим способом) и, если нужно, инактивируют. Очень важно удалить из препаратов вируса все балластные примеси, которые могут вызывать серьезные осложнения при вакцинации. Конечно, не менее важно убедиться, что в препаратах не осталось неинактивированного патогенного вируса. В последние годы для накопления вирусов широко используют различные типы клеточных культур.
МЕТОДЫ ИЗУЧЕНИЯ ВИРУСОВ
Работы с бактериофагами способствовали расширению методического арсенала в изучении вирусов животных. До этого исследования вирусов позвоночных выполнялись в основном на лабораторных животных; такие опыты были очень трудоемки, дороги и не очень информативны. Впоследствие появились новые методы, основанные на применении тканевых культур; бактериальные клетки, использовавшиеся в экспериментах с фагами, были заменены на клетки позвоночных. Однако для изучения механизмов развития вирусных заболеваний эксперименты на лабораторных животных очень важны и продолжают проводиться в настоящее время.
Капсид
Все вирусные геномы являются гаплоидными, т.е. содержат одну копию каждого гена, за исключением ретровирусов, которые обладают диплоидным геномом, и ДНК-содержащих парво- и цирковирусов.
Геном вирусов
МОРФОЛОГИЯ ВИРУСОВ
Размер вирусов. Самые мелкие парвовирусы (20 нм) – ДНК-содержащий вирус – (размножается в эритроидных клетках-предшественниках и вызывает их гибель. В зависимости от гематологического и иммунологического статуса заболевшего клиническая картина заражения может варьировать в широких пределах: от бессимптомной эритроидной аплазии до хронической анемии. Вирус встречается по всему миру и довольно широко распространён, распространяется в основном воздушно-капельным путём, но заражение также возможно при парентеральном введении донорской крови или её компонентов и при пересадке органов – проявляется сыпью. Сыпь на лице может быть интенсивно красного цвета (синдром отшлепанных щек). Сыпь симметричная, пятнисто-папулёзная, сетчатая ("кружевная") появляется на туловище с тенденцией распространения на руки, бёдра, ягодицы.). Аденовирусы (ДНК-сод.) – 75 нм. Самые крупные – поксвирусы (ДНК-сод. – вирус оспы) – 300 нм и парамиксовирусы (РНК-сод. – корь, эпидемический паротит - свинку) – 150-300 нм.
Основным структурным компонентом вирионов (полных вирусных частиц) является нуклеокапсид, т.е. комплекс капсида и вирусного генома (ДНК или РНК).
Несмотря на простоту организации, вирусы отличаются от животных и растений большим разнообразием генома. Животные и растения содержат одновременно две формы нуклеиновой кислоты: двухцепочную ДНК и одноцепочную РНК.
Вирусы содержат только одну форму нуклеиновой кислоты — ДНК или РНК, которые могут быть представлены одно- или двухцепочными молекулами.
В зависимости от типа НК выделяют ДНК-содержащие и РНК-содержащие вирусы. Поскольку у животных РНК не обеспечивает сохранение генетической информации, и ее передачу последующим поколениям, поэтому РНК-содержащие вирусы можно рассматривать как самостоятельное направление эволюции инфекционных агентов.
У РНК-содержащих вирусов вся генетическая информация содержится в РНК, что является уникальным явлением в биологии.
Вирусные ДНК или РНК могут иметь линейную или кольцевую форму.
РНКпредставлена одно- и двухнитевыми молекулами. У некоторых видов РНК может быть сегментирована - разделенной на 2—12 фрагментов (фрагментированный геном). Преимущество сегментированного генома – в нескольких дискретных фрагментах (молекулах) содержится объем информации, сохранение которого не способна обеспечить обычная молекла РНК.
Полярность.В зависимости от выполняемых функций однонитевые РНК вирусов разделяют на две группы:
1. РНК, способные непосредственно транслировать генетическую информацию на рибосомы чувствительной клетки, т.е. выполнять функции иРНК и мРНК. Их называют плюс-нити РНКи обозначают как +РНК (позитивный геном). У таких вирусов репликация РНК мало отличается от транскрипции.
2 РНК не способна транслировать генетическую информацию непосредственно на рибосомы и функционировать как иРНК. Подобные РНК служат матрицей для образования иРНК, т.е. при репликации первоначально синтезируется матрица (+РНК) для синтеза –РНК. Такой тип РНК определяют как минус-нить и обозначают –РНК(негативный геном). У подобных вирусов репликация РНК отлична от транскрипции по длине образующихся молекул : при репликации длина РНК соответствует материнской нити, а при транскрипции образуются укороченные молекулы иРНК.
Основные типы вирусных геномов можно представить следующим образом:
1) двуцепочечной линейной молекулой ДНК с открытыми (герпесвирусы, аденовирусы, иридовирусы) или ковалентно связанными концами (вирусы оспы, асфаровирусы);
2) одноцепочечной линейной молекулой ДНК (парвовирусы);
3) одноцепочечной кольцевой молекулой ДНК (цирковирусы);
4) двуцепочечной кольцевой молекулой ДНК (папилломавирусы, полиомавирусы);
5) частично двуцепочечной кольцевой незамкнутой молекулой ДНК (гепаднавирусы);
6) одноцепочечной молекулой РНК, являющейся мРНК (положительно-геномные вирусы: пикорнавирусы, тогавирусы, флавивирусы, астровирусы, калицивирусы, коронавирусы, артеривирусы, нодавирусы);
7) одноцепочечной единой (рабдовирусы, парамиксовирусы, филовирусы, бор-навирусы) или фрагментированнои (ортомиксовирусы) линейной молекулой РНК, комплементарной мРНК — отрицательно-геномные вирусы;
8) одноцепочечной фрагментированнои кольцевой ковалентно несвязанной отрицательной или двуполярной РНК (буньявирусы, аренавирусы);
9) двуцепочечной линейной фрагментированнои молекулой РНК (реовирусы, бирнавирусы);
10) двумя идентичными линейными молекулами плюс-РНК, являющимися матрицами для синтеза ДНК (ретровирусы).
Геномы полиома-, папиллома-, гепадна- и цирковирусов представлены кольцевой ДНК. ДНК гепаднавирусов частично двуспиральная, частично односпиральная. ДНК вирусов полиомы и папилломы является суперспиральной. Большинство линейных вирусных ДНК обладает способностью приобрести циркулярную конфигурацию, которая требуется для репликации по вращающемуся кольцевому механизму. Две цепи ДНК вируса оспы ковалентно связаны своими концами и при денатурации образуют большое одноцепочечное кольцо. У некоторых ДНК-вирусов (так же как у РНК-ретровирусов) имеются концевые повторяющиеся последовательности. Инвертированные концевые повторы обнаружены у адено- и парвовирусов. У адено-, гепадна- и парвовирусов, так же как у некоторых РНК-вирусов (пикорна- и калицивирусов), с 5'-концом генома ковалентно связан белок, играющий важную роль в его репликации.
Все РНК-вирусы позвоночных за исключением рео- и бирнавирусов имеют одноцепочечные геномы. Геном некоторых РНК-вирусов состоит из нескольких (2-12) уникальных фрагментов, каждый из которых кодирует, как правило, один белок. РНК-вирусы с односпиральным геномом могут иметь различную полярность. Если они имеют ту же полярность, что и мРНК, то они могут прямо индуцировать синтез вирусного белка и считаются положительно (+) полярными.
Если геномная нуклеотидная последовательность комплементарна мРНК, то они считаются отрицательно (—) полярными. К ним относятся: парамиксо-, рабдо-, фило-, ортомиксо-, арена- и буньявирусы. Все они имеют вирионную РНК-зависимую полимеразу (транскриптазу), которая в инфицированной клетке транскрибирует положительно-полярную РНК на матрице геномной вирусной РНК. У аренавирусов, по крайней мере, у одного рода буньявирусов, один из РНК-сегментов является двуполярным. Обычно у (+)полярных РНК-вирусов З'-конец имеет polyA-последовательность, а 5'-конец имеет кэп-структуру.
Содержание ГЦ-пар в ДНК 36 (у поксвирусов) – 70 % (у герпетовирусов).
Капсид – это белковый чехол, в котором заключен вирусный геном. Капсид состоит из субъединиц - капсомеров, собранных из вирусных полипептидов. Капсомеры, соединяясь друг с другом, образуют капсиды двух видов симметрии: икосаэдральной (кубической) или спиральнойв один-два слоя. Число капсомеров строго специфично для каждого вида вирусов и зависит от размеров и морфологии вирионов. Основная функция капсида – защита генома от внешних воздействий и обеспечение адсорбции и проникновения вируса в клеткучерез взаимодействие с клеточными рецепторами.
Комплекс капсида и вирусного генома называют нуклеокапсидом.Нуклеокапсид может быть составной частью вириона – у голых вирусов, либо окружен мемраноподобной оболочкой – у одетых вирусов.
Нуклеокапсид обладает спиральной или икосаэдральной симметрией. В нуклеокапсиде взаимоотношения НК и белка осуществляется по одной ротационной оси. Нуклеокапсиды большинства патогенных для человека вирусов имеют спиральную симметрию и окружены оболочкой. К этой группе относится и вирус табачной мозаики. Организация по типу спиральной симметрии придает вирусам палочковидную форму.
У вирусов с икосаэдральной симметрией НК составляет сердцевину, окруженную капсомерами в виде многогранника с 12 вершинами, 20 треугольными гранями и 30 углами, икосаэдр имеет 3-5-кратную двухмерную ротационную симметрию. К вирусам с подобной симметрией относят аденовирусы, реовирусы, иридовирусы, герпетовирусы и пикорновирусы. Вирусы с икосаэдральной симметрией имеют сферическую форму.
Оболочка вирусов – пеплос - суперкапсидная оболочка. Нуклеокапсид у большинства вирусов окруженсуперкапсидной оболочкой (гликопротеиновая оболочка). Она состоит из двойного слоя клеточных липидов и вирусспецифических белков, расположенных снаружи и изнутри липидного бислоя. Образуется на поздних этапах репликативного цикла.
В состав суперкапсидной оболочки входят белки (кодируются вирусом), а также липиды (до 20—35 % -липиды заимствуются из мембраны клетки)и углеводы (до 7—8 %), имеющие клеточное происхождение. Наружный слой суперкапсидной оболочки представляют пепломеры(выступы в виде шипов) одного или более типов, состоящие из одной или нескольких молекул гликопротеинов. Гликозилированные белки слияния связаны с пепломерами и выполняют ключевую роль в проникновении вируса в клетку – они взаимодействуют с с клеточными рецепторами, являются важным компонентом инфекционности. Матричные белкипредставлены негликозилированными белками, они формируют структурный слой на внутренней поверхности вирусной оболочки и спосбоствуют взаимодействию с белками нуклеокапсида. Оболочка вирусов подвержена действию многих органических растворителей и детергентов, что приводит к потере инфекционных свойств.
Читайте также: