Биология 5 класс модель вируса
Описание презентации по отдельным слайдам:
Вирус Вирусы – это очень маленькие живые организмы, вызывающие болезни у растений и животных. Вирусы мельче бактерий, и рассмотреть их можно только в очень сильный электронный микроскоп.
Д.И.Ивановский открыл вирусы - новую форму существования жизни. Своими исследованиями он заложил основы ряда научных направлений вирусологии: изучение природы вируса, цетопотологических вирусных инфекций, фильтрующихся форм микроорганизмов, хронического и латентного вирусоносительства. В знак признания выдающихся заслуг Д.И.Ивановского перед вирусологической наукой Институту вирусологии АМН СССР в 1950 году было присвоено его имя, в Академии медицинских наук учреждена премия имени Д.И.Ивановского, присуждаемая один раз в три года. Первая половина нашего столетия была посвящена пристальному изучению вирусов - возбудителей острых лихорадочных заболеваний, разработке методов борьбы с этими заболеваниями и методов их предупреждения.
Строение вирусов Вирусы не имеют клеточного строения. Каждая вирусная частица состоит из расположенного в центре носителя генетической информации и оболочки. Генетический материал представляет собой короткую молекулу нуклеиновой кислоты, это образует сердцевину вируса. Нуклеиновая кислота у разных вирусов может быть представлена ДНК или РНК, причем эти молекулы могут иметь необычное строение: встречается однонитчатая ДНК и двух нитчатая РНК. Оболочка называется капсид. Она образована субъединицами – капсомерами, каждый из которых состоит из одной или двух белковых молекул. Число капсомеров для каждого вируса постоянно.
Размеры вирусов колеблются от 20 до 300 нм. В среднем они в 50 раз меньше бактерий. Их нельзя увидеть в световой микроскоп, так как их длины меньше длины световой волны. Строение.
Непременным компонентом вирусной частицы является одна из двух нуклеиновых кислот, белок и зольные элементы. Эти три компонента являются общими для вирусов, тогда как остальные двалипоиды и углеводы - входят в состав далеко не всех вирусов Вирусы, состоящие только из белка нуклеиновой кислоты и зольных элементов, чаще всего принадлежат к группе простых вирусов, лишенных дифференциации, собственных ферментов или каких-либо специализированных структур - вирусы растений, некоторые вирусы животных и насекомых. В то же время практически все бактериофаги, которые по химическому составу, принадлежат к группе минимальных вирусов, на самом деле являются очень сложными и высокодифференцированными структурами. Вирусы, в состав которых наряду с белком и нуклеиновой кислотой входят также липоиды и углеводы, как правило, принадлежат к группе сложно устроенных вирусов. Большая часть вирусов этой группы паразитирует на животных.
Вирусная ДНК Молекулы вирусных ДНК могут быть линейными или кольцевыми, двух цепочечными или одно цепочечными по всей своей длине или же одно цепочечными только на концах. Кроме того, выяснилось, что большинство нуклеотидных последовательностей в вирусном геноме встречается лишь по одному разу, однако на концах могут находиться повторяющиеся, или избыточные участки. Помимо различий в форме молекулы и в структуре концевых участков вирусных ДНК существуют также различия в величине генома.
Размножение вирусов Вирусная частица - это инертная статическая форма вируса. Когда вирионы находятся вне клетки, они не размножаются и в них не происходит никаких метаболических процессов. Все динамические события начинаются лишь тогда, когда вирус проникает в клетку. Даже у многоклеточного хозяина решающие события при вирусной инфекции происходят на клеточном уровне. Распространение вируса совершается в результате повторных циклов взаимодействия вируса с клетками и рассеяния вирионов во внеклеточной среде. В зараженных вирусом клетках происходит глубокая перестройка вирусного материала, а часто также и компонентов клетки-хозяина. Возникает новая система - комплекс вирус-клетка.
Схема размножения вирусов, содержащих в вирионе одну нить ДНК (I) или одну нить РНК (II). ДНК изображена сплошной линией, РНК — пунктиром; А — нуклеиновая к-та вириона; Б — удвоенная нить нуклеиновой кислоты при ее репликации; В — информационная РНК, (и-РНК), копирующая вирусную ДНК; Г — цепочка рибосом (полисома), соединенная и-РНК или вирусной РНК (на рибосомах растет полипептидная цепочка из остатков аминокислот); Д — рибосома с полипептидом, отделившаяся от полисомы; Е — белковая молекула, образованная полипептидными цепочками; Ж — построение дочерней нити нуклеиновой к-ты между двумя материнскими; З — зрелый вирион. Стадия В у вирусов с РНК отсутствует, т. к. их собственная РНК выполняет при синтезе белков роль и-РНК.
Вирус гриппа А Вирус гриппа А как правило вызывает заболевание средней или сильной тяжести. Поражает как человека, так и некоторых животных (лошадь, свинья, хорек, птицы). Именно вирусы гриппа А ответственны за появление пандемий и тяжелых эпидемий. Известно множество подтипов вируса типа А, которые классифицируются по поверхностным антигенам - гемагглютинину и нейраминидазе: на настоящий момент известно 16 типов гемагглютинина и 9 типов нейраминидазы. Вирус видоспецифичен: то есть как правило, вирус птиц не может поражать свинью или человека, и наоборот.
Вирус гриппа В Вирус гриппа В Как и вирус гриппа А, способен изменять свою антигеннуюструктуру. Однако эти процессы выражены менее четко, чем при гриппе типа А. Вирусы типа В не вызывают пандемии и обычно являются причиной локальных вспышек и эпидемий, иногда охватывающих одну или несколько стран. Вспышки гриппа типа В могут совпадать с таковыми гриппа типа А или предшествовать ему. Вирусы гриппа В циркулируют только в человеческой популяции (чаще вызывая заболевание у детей).
Вирус гриппа С Вирус гриппа С достаточно мало изучен. Известно, что в отличие от вирусов А и В, он содержит только 7 фрагментов нуклеиновой кислоты и один поверхностный антиген. Инфицирует только человека. Симптомы болезни обычно очень легкие, либо не проявляются вообще. Он не вызывает эпидемий и не приводит к серьезным последствиям. Является причиной спорадических заболеваний, чаще у детей. Антигеннаяструктура не подвержена таким изменениям , как у вирусов типа А. Заболевания, вызванные вирусом гриппа С, часто совпадают с эпидемией гриппа типа А. Клиническая картина такая же, как при легких и умеренно тяжелых формах гриппа А.
Выберите книгу со скидкой:
3D-рисование. Гиперреализм Рисунки, которые оживают
350 руб. 553.00 руб.
Совушки. Раскраски, поднимающие настроение (ПР)
350 руб. 96.00 руб.
Совушки. Раскраски, поднимающие настроение
350 руб. 283.00 руб.
Котики. Раскраски, поднимающие настроение
350 руб. 283.00 руб.
В цветочном вальсе. Открытки-раскраски
350 руб. 225.00 руб.
На крыльях счастья. Открытки-раскраски
350 руб. 225.00 руб.
Краски. История макияжа
350 руб. 1383.00 руб.
Мандалы на каждый день лунного месяца (раскраски для взрослых)
350 руб. 233.00 руб.
350 руб. 305.00 руб.
ШИЗО: Шуточное Изобразительное Искусство
350 руб. 346.00 руб.
Современная школа игры на фортепиано
350 руб. 410.00 руб.
Готовимся к школе. Учимся проходить лабиринты.KUMON
350 руб. 541.00 руб.
БОЛЕЕ 58 000 КНИГ И ШИРОКИЙ ВЫБОР КАНЦТОВАРОВ! ИНФОЛАВКА
Открытие вирусов
В 1892 году Д.И. Ивановский (см. Рис. 1), изучая мозаичную болезнь табака (см. Рис. 2), установил, что причиной заболевания является некое инфекционное начало, содержащееся в листьях больных растений, которое проходит через фильтр, задерживающий обыкновенные бактерии. Если профильтрованный сок внести в листья здоровых растений, то они также заболевают мозаичной болезнью.
Рис. 1. Д.И. Ивановский
Рис. 2. Мозаичная болезнь табака
В 1898 году независимо от Ивановского аналогичные результаты получил голландский микробиолог М. Бейеринк. Однако он предположил, что мозаичную болезнь табака вызывают не мельчайшие бактерии, а некое жидкое заразное начало, которое он назвал фильтрующим вирусом.
Размеры вирусов определяются нанометрами (20-200 нм), поэтому их изучение началось после открытия электронного микроскопа. В настоящее время описаны вирусы практически всех групп живых организмов.
Строение вирусов
Вирусы – неклеточные формы жизни. Они состоят (см. Рис. 3) из фрагмента генетического материала (РНК или ДНК), составляющего сердцевину вируса, и защитной оболочки, которая называется капсид. У некоторых вирусов (герпес, грипп) есть дополнительная липопротеидная оболочка – суперкапсид, которая возникает из плазматической мембраны клетки-хозяина.
Рис. 3. Строение вируса
Вирусы не способны к самостоятельной жизнедеятельности. Они могут проявлять свойства живого, только попав в клетку-хозяина. Они используют потенциал и энергию этой клетки для создания своих новых вирусных частиц, следовательно, вирусы являются внутриклеточными паразитами.
Размножение вирусов
Обычно вирус связывается с поверхностью клетки-хозяина и проникает внутрь. Каждый вирус ищет своего хозяина, то есть клетки строго определенного вида. Например, вирус – возбудитель гепатита (желтуха) проникает и размножается только в клетках печени, а вирус эпидемического паротита (свинка) – только в клетках околоушных слюнных желез человека.
Проникнув внутрь клетки-хозяина, вирусная ДНК или РНК начинает взаимодействовать с ее генетическим аппаратом таким образом, что клетка начинает синтезировать белки, свойственные вирусу (см. Рис. 4).
Рис. 4. Схема репродукции вируса
При заражении ретровирусом (например, вирус иммунодефицита человека (ВИЧ)), у которого в качестве генетического материала используется молекула РНК, наблюдается другая картина. При попадании ретровируса в клетку-хозяина происходит обратная транскрипция. То есть на основе вирусной РНК синтезируется вирусная ДНК, которая встраивается в ДНК человека. Такой тип взаимодействия вируса с клеткой называется интегративным, а встроенная в состав хромосомы клетки ДНК вируса называется провирусом. Далее провирус реплицируется (удваивается) в составе хромосомы и переходит в геном дочерних клеток. Однако под влиянием некоторых физических и химических факторов провирус может выщепляться из хромосомы клетки и переходить к продуктивному типу взаимодействия, то есть синтезировать новые вирусные частицы.
При заражении ВИЧ человек чувствует себя здоровым, пока вирусный генетический материал встроен в хромосому человека. Однако при выщеплении этого вирусного генетического материала из клетки она начинает образовывать новые вирусные частицы, вследствие чего развивается смертельное заболевание – синдром приобретенного иммунодефицита (СПИД).
Вирусы являются возбудителями большого количества заболеваний человека: корь, грипп, оспа, краснуха, энцефалит, свинка, гепатиты, СПИД. Известен также целый ряд заболеваний растений, вызываемых вирусами, например мозаичная болезнь табака, томатов, огурцов или скручивание листьев картофеля. Всего описано около 500 видов вирусов, поражающих клетки позвоночных животных, и около 300 вирусов растений. Некоторые вирусы участвуют в злокачественном перерождении клеток и тем самым провоцируют онкологические заболевания.
ДНК- и РНК-содержащие вирусы
В зависимости от содержащегося генетического материала вирусы подразделяются на ДНК-содержащие и РНК-содержащие.
Одноцепочные РНК-содержащие вирусы подразделяются на:
1. Плюс-нитевые (положительные). Плюс-нить РНК этих вирусов выполняет наследственную (геномную) функцию и функцию информационной РНК (иРНК).
2. Минус-нитевые (отрицательные). Минус-нить РНК этих вирусов выполняет только наследственную функцию.
К РНК-содержащим вирусам относятся более
вирусов, вызывающих респираторные заболевания, а также вирус гриппа, кори, краснухи, свинки, ВИЧ. Также существует специфическая группа вирусов – арбовирусы, которые переносятся членистоногими.
Двухцепочные ДНК-содержащие вирусы вызывают такие заболевания, как папиллома человека или герпес, гепатит В (гепатит А и гепатит С вызывается РНК-содержащими вирусами).
ДНК-содержащие вирусы поражают также растения. Они вызывают, например, золотую мозаику бобов или полосатость у кукурузы.
Вирус гепатита С
По своему строению вирус гепатита С – это РНК-содержащий вирус, имеющий сферическую форму, сложно устроенный (см. Рис. 5).
В качестве генетического материала такой вирус содержит линейную однонитчатую молекулу РНК.
Рис. 5. Гепатит С
Вопреки бытующим предрассудкам, подцепить вирус гепатита C невозможно через социальные контакты (поцелуи, объятия), через продукты или воду, через грудное молоко. Вы ничем не рискнете, если разделите с носителем вируса трапезу или напитки. Заразиться гепатитом C можно при контакте с кровью инфицированного человека либо половым путем.
В настоящее время для лечения гепатита С используют два препарата: Интерферон альфа и Рибавирин.
Бактериофаги
Рис. 6. Бактериофаг (Источник)
Особую группу вирусов составляют бактериофаги (или просто фаги), которые заражают бактериальные клетки (см. Рис. 6). Фаг укрепляется на поверхности бактерии при помощи специальных ножек и вводит в ее цитоплазму полый стержень, через который проталкивает внутрь клетки свою ДНК или РНК. Таким образом, генетический материал фага попадает внутрь бактериальной клетки, а капсид остается снаружи. В цитоплазме начинается репликация генетического материала фага, синтез его белков, построение капсида и сборка новых фагов. Уже через 10 мин после заражения в бактерии формируются новые фаги, а через полчаса бактериальная клетка разрушается, и из нее выходят около 200 заново сформированных вирусов – фагов, способных заражать другие бактериальные клетки (см. Рис. 7). Некоторые фаги используются человеком для борьбы с болезнетворными бактериями, вызывающими холеру, дизентерию, брюшной тиф.
Рис. 7. Схема размножения бактериофага (Источник)
Список литературы
- Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
- Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.
- Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.
- Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Домашнее задание
Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.
Под катом первая часть рассказа о нашем опыте создания научно достверных моделей вирусов.
Мир молекулярных машин и вирусов предлагает массу интересных вызовов CG командам. Проблема в том, что пока не существует универсальной научной методики, которая позволила бы полностью описать строение вирусной частицы. Для того, чтобы описать устройство вируса нужно пользоваться множеством методов, которые дают представление об отдельных кусках финального паззла. Электронная микроскопия позволяет оценить размеры и очертания вирионов, рентгеноструктурный анализ способен описать отдельные белки или их фрагменты, а молекулярно-биологические и биохимические методы дают сведения о том, сколько каких молекул входит в состав вируса и как они между собой взаимодействуют. При этом создается несколько парадоксальная ситуация: многие вирусы изучены очень подробно и в деталях, но не существует изображений, которые давали бы научно достоверное и полное представление о том, как они устроены.
Например, современные электронные микрофотографии вирусных частиц гриппа выглядят так (источник).
Визуализация данных криоэлектронной микроскопии геномного комплекса вируса гриппа А и реконструкция упаковки РНК (желтая лента) белками В и С. Работу с этими данными опубликовала в конце 2012 года в журнале Science группа вирусологов из Мадрида, которые помогли нам в создании модели вируса гриппа A/H1N1.
Собрать всю доступную информацию технически возможно. Но ее систематизация, обработка и перевод в 3Д модель требует командного подхода. При этом даже компетентный научный консультант не может обладать полным багажом узкоспециальных знаний по теме, поэтому к проекту важно подключить ученых, посвятивших работе с тем или иным вирусом всю свою карьеру. Моделлер без биологического образования не разберется в опубликованных научных данных и структурах белков из Protein Data Bank, а также не сможет корректно достроить модели молекул при помощи молекулярной динамики, где это необходимо (приблизительно 80-90% белков, с которыми мы сталкиваемся, имеют неполное описание пространственной струкутры на 10-90%). Ученый же, даже обладая всеми сведениями в отдельности, не может собрать и визуализировать полную модель в профессиональных пограммах для трехмерного моделирования. По нашему опыту, только тесное взаимодействие этих специалистов может дать аккуратный и информативный результат.
Изображение вируса гриппа с детализацией до атомов. Все белки и белковые комплексы в составе частицы, а также их количественные соотношения и положение соответствуют опубликованным в научной литературе данным (подписи всех компонентов). Модель создана при участии Хайме Мартин-Бенито и коллег (Испанский национальный центр биотехнологий, Мадрид, Испания). 2013 год.
Внутреннее устройство вируса иммунодефицита человека. Виден край мембранной оболочки, белки, присутствующие внутри вириона, капсид и фрагменты РНК вируса, в нем заключенные (подписи всех компонентов). Модель создана при участии Егора Воронина (Global HIV Vaccine Enterprise). Приз за лучшую научную иллюстрацию на конкурсе Science and Engineering Visualization Challenge в 2011 году.
Модель предполагаемой укладки генома вируса папилломы человека. Модель создана при участии Кристофера Бака (Национальный институт рака, США). 2012 год.
Частица и отдельные белки вируса Эбола. Модель создана при участии Рональда Харти (Университет Пеннисльвании, США). Honorable mention конкурса Science and Engineering Visualization Challenge в 2010 году. Экспозиция салона Ассоциации медицинских иллюстраторов в Торонто в 2012 году.
Наша студия несколько лет назад запустила некоммерческий проект, суть которого в моделировании и визуализации наиболее распространенных и опасных вирусов человека. Мы назвали его Viral Park, или “Зоопарк вирусов”. Проект пока включает четыре вирусные модели, еще несколько находятся в разработке, а в планах сделать серию из примерно двадцати вирионов. За время работы над проектом мы успели освоить и наладить процесс, выделив в нем ряд этапов:
- Обзор литературы и систематизация обнаруженных данных
- Молекулярное моделирование и динамика
- Сборка полной модели из отдельных элементов
- 3D визуализация и дизайн
- Создание материалов на основе модели от плакатов до приложений, виджетов и пластиковых моделей.
В этом посте мы немного расскажем о первом этапе нашей работы.
Сбор информации об изучаемой теме — это задача, которую ученые решают постоянно. Невозможно сделать новый проект, не зная того, что опубликовали до тебя. Для этого надо найти и проанализировать сначала обзорные, а потом и исследовательские публикации по интересующему вопросу. Та же схема работает, когда собирается информация о строении вирусов. Благодаря базам естественнонаучных публикаций основных мировых журналов PubMed и Google Scholar этот процесс можно организовать весьма эффективно. Если нужна вводная информация о биологии вируса, можно воспользоваться сайтом Viral Zone а много данных по отдельным белкам доступно в базе данных Uniprot. Структуры белков или их фрагментов, полученные разными коллективами ученых при помощи методов ядерного магнитного резонанса и рентгеноструктурного анализа, доступны в уже упомянутом Protein Data Bank в виде координат всех атомов или, в ряде случаев, только альфа-атомов цепочки белка.
Задачей для ученого в процессе создания модели вируса являются сбор, обработка и подготовка всей информации в том виде, который будет удобен для работы остальных членов команды. Нужно составить полный список всех типов молекул, которые образуют частицу, и всех их взаимодействий. Помимо белков это могут быть липиды мембраны и молекулы вирусного генома, представленные ДНК или РНК. Дальше надо понять, в каких количествах молекулы представлены в частице, и какие места они занимают. Эта наиболее сложная для поиска и часто противоречивая и неполная информация, поскольку разные методы могут давать разные оценки. Для уточнения тех или иных вопросов мы связываемся с авторами статей, в которых они обсуждаются. Это вполне принятая практика в научном сообществе, и ученые часто с удовольствием, а иногда без идут на контакт и порой делятся своими гипотезами и даже неопубликованными данными, как это было при работе над моделью Гриппа в случае с уже упомянутыми испанскими вирусологами.
Результатом исследования литературы должна стать максимально подробная вербальная картина будущей модели. Надо понимать что, в каких количествах и каким образом упаковано в вирусной частице. Это можно свести в описание, таблицу количеств и взаимодействий и план модели в нужном масштабе.
Дальнейшие этапы работы подразумевают получение трехмерных моделей всех нужных компонентов. Одной из проблем тут является то, что не для всех белков и их комплексов могут быть доступны атомные структуры. Существенную часть вирусных белков ученым просто еще не удалось описать. В нашей работе мы используем методы структурной биоинформатики, чтобы заполнить этот пробел. Об этом мы расскажем в следующих постах. Также постараемся раскрыть детали того, как происходит сборка полной модели, ее визуализация и создание образовательных пособий и виджетов на основе полученного результата.
Мы считаем, что у такого детального подхода к моделированию молекулярно-биологических объектов большие перспективы с точки зрения его применения в образовании, популяризации науки и научной коммуникации. В пользу этого говорит и то, что такие модели получают высокие оценки на крупных международных конкурсах научной иллюстрации и дизайна, положительные отзывы известных коллег, а включить такие изображения в свои презентации бывает приятно даже Франсуазе Барре-Синусси, получившей Нобелевскую премию за открытие ВИЧ.
В продолжении темы, помимо моделирования вирусов в рамках Зоопарка вирусов, мы обсудим сферу научной и медицинской иллюстрации в целом, поговорим о том, почему это актуально, чем это отличается от набирающего популярность научного исскуства, или Science Art, и как это поможет сделать мир лучше а науку понятнее.
Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.
Презентация по биологии для 5 класса на тему: "Царства живой природы".
Всё то, что неизвестно!
Мы тайны разгадаем
И мир большой познаем!
Мир живых организмов планеты.
- На Земле существует около 30млн. видов живых существ.
В настоящее время открыто и описано около 2млн .видов, среди которых 1,5 млн. составляют животные и 300 тыс. растения.
- Перед учеными всегда стояла непростая задача: как отыскать нужные сведения среди информации о таком гигантском многообразии живых организмов?
- Упорядочить знания о живых существах помогает классификация.
- Классификация организмов – распределение их по группам.
- обладают нервной системой и органами чувств
-пьют воду и поедают растения и животных
-дышат кислородом, выделяя углекислый газ
- пьют воду из почвы
- выделяют кислород в процессе фотосинтеза
Самый маленький многоклеточный организм
Коловратки очищают водоёмы.
Самое маленькое млекопитающее
Самое маленькое животное – свиноносая бесхвостая летучая мышь. В длину она всего 3 см, а весит всего 2 г.
Она открыта в 1973 г. в Таиланде. Всего обнаружено 160
Вес новорожденного - 2-3 тонны.
Вес взрослого - 100-120 тонн.
Язык весит 3 т, печень -1т, сердце – 600-
700 кг, крови у него - 10 т.
Самое большое беспозвоночное животное
Гигантские кальмары - крупнейшие в мире беспозвоночные, они достигают в длину 18 метров. Живут на больших океанских глубинах. Их вес
Царства живой природы
- Основная и наименьшая единица классификации – это вид.
Вид – это совокупность особей, населяющих определенную территорию, имеющих сходное строение, образ жизни, способных скрещиваться и давать плодовитое потомство. (рис.27)
классификации ввел Карл Линней
Мул – гибрид осла и лошади
- Раздел биологии, посвященный классификации живой природы, носит название – систематика.
- Ученые – систематики приводят в систему сведения о живых организмах – распределяют их по группам – единицам системы (вид, род, семейство и т.д.)
Неклеточные формы жизни: В И Р У С Ы
Если вы не готовы столкнуться с неожиданным,
То никогда с ним и не столкнетесь,
Поскольку его нельзя найти или выследить
Гераклит, философ V века до нашей эры.
Упоминание о вирусах
существо или вещество?
- Вирус(от лат. virus — яд) — простейшая форма жизни на нашей планете, микроскопическая частица, представляющая собой молекулы нуклеиновых кислот (ДНК или РНК), заключённые в защитную белковую оболочку(капсид)и способные заражать живые организмы.
- Полностью сформированная инфекционная частица называетсявирионом .
- Вирусы доставляют людям много неприятностей: они вызывают множество заболеваний растений, животных и человека.
Читайте также: