Чем отличается вирусный геном от генома эукариот
Геном эукариот устроен намного сложнее, чем у прокариот. Генетический аппарат эукариотической клетки обособлен в виде клеточного ядра, внутри которого располагаются основные носители наследственности — хромосомы. Количество хромосом видоспецифично и колеблется от двух (лошадиная аскарида) до тысячи (низшие растения). Количество ДНК в клетках эукариот намного выше, чем у бактерий. Оно оценивается с помощью величины С — количества ДНК на гаплоидное число хромосом, т.е. на геном. Оно колеблется у разных видов от 10 4 до 10 11 и часто не коррелирует с уровнем организации вида. Самые большие значения величины С, превышающие содержание ДНК в геноме человека, характерны для некоторых рыб, хвостатых амфибий, лилейных.
Одной из особенностей генома эукариот является структурная и функциональная связь ДНК с белками. Она обусловлена особенностями процесса передачи генетической информации и регуляторной функцией белков. Информация передается от клетки к клетке в процессе сложного процесса клеточного деления (митоза или мейоза). Для полного и точного распределения ее между дочерними клетками в интерфазе происходит процесс удвоения количества ДНК, а в начале деления (профазе) — процесс конденсации интерфазных хромосом. В итоге хромосомы приобретают вид компактных плотных тел. Компактизация хромосом исключает риск их запутывания во время расхождения к разным полюсам в анафазе. В этих структурных преобразованиях хромосом участвуют ядерные белки — гистоны, которые осуществляют суперспирализацию ДНК. Гистоны выступают также в качестве регуляторов матричной активности интерфазных хромосом, т.к. связь гистона с функционирующим участком хромосомы переводит его в гетерохроматическое, т.е. сильно спирализованное и, следовательно, неактивное состояние.
Присутствие в составе эукариотических хромосом белков, количество которых удваивается синхронно с удвоением ДНК, делает процесс репликации хромосом более длительным.
Характерной особенностью генома эукариот является избыточность ДНК, количество которой намного превышает то, которое необходимо для кодирования структуры всех клеточных белков. Одной из причин избыточности является наличие повторяющихся последовательностей нуклеотидов. Их существование впервые было установлено в конце 60-х гг. ХХ в. американскими исследователями Р. Бриттеном и Д. Девидсоном при изучении кинетики ренатурации ДНК (воссоединения одиночных цепей). В настоящее время установлено, что в составе эукариотической ДНК присутствуют два типа повторов — умеренноповторяющиеся п.н. и высокоповторяющиеся п.н. Умеренные повторы встречаются в виде десятков и сотен копий; средний размер их составляет ≈ 300-400 п.н. Они могут быть прямыми и инвертированными (палиндромы). Между повторами располагаются неповторяющиеся участки ДНК. Высокоповторяющиеся п.н. представляют собой короткие фрагменты ДНК (десятки п.н.), которые представлены большим количеством копий (до 106). В ряде случаев состав оснований в этих повторах отличается от такового в геноме в целом, в результате чего повторы могут образовывать отдельную фракцию с определенной плавучей плотностью. Эта фракция называется сателлитной ДНК. Она никогда не транскрибируется, в связи с чем ее называют также “молчащей”. Установлено, что сателлитная ДНК локализована в гетерохроматических районах хромосом: в теломерах, около центромеры, в ядрышке. Считается, что она выполняет регуляторную функцию, обеспечивая структурные преобразования хромосом во время процесса передачи генетической информации от клетки к клетке.
Избыточность ДНК в геноме эукариот в значительной мере создается также за счет того, что в его составе много нуклеотидных последовательностей, которые не кодируют структуру белков. Некоторые из них входят в состав генов, как например, интроны — вставки. Кроме того, есть так называемые сигнальные последовательности, которые не транскрибируются, а служат лишь для связывания белков-регуляторов. К их числу относятся промоторы, участки, контролирующие спирализацию хромосом; участки прикрепления хромосом к веретену и др.
Лишь немногие гены присутствуют в эукариотическом геноме в единственной копии. Основная их масса представлена разным числом копий. Расположенные рядом идентичные гены образуют кластеры. Существование кластеров говорит о большой роли дупликаций генов в эволюции геномов. Пример кластеров: гены белков эритроцитов — глобинов. Гемоглобин является тетрамером, состоящим из 4-х полипептидных цепей: 2α и 2β. Каждый тип цепей кодируется генами, организованными в кластер. У человека α-кластер располагается в 11-й хромосоме, а β-кластер — в 16-й хромосоме. β-кластер занимает участок ДНК в 50 тыс. п.н. и включает в себя пять функционально активных генов и один псевдоген. Псевдогены — это нефункционирующие, реликтовые гены, произошедшие в результате мутационных изменений от некогда активных генов. Они не экспрессируются. Гены в составе кластера отделены друг от друга спейсерами — нетранскрибируемыми вставками, в которых иногда могут присутствовать регуляторные участки.
Основным отличием эукариотических генов от генов прокариот является то, что большинство из них имеют прерывистую структуру и состоят из кодирующих участков — экзонов и некодирующих вставок — интронов. Длина экзонов от 100 до 600 п.н., а интронов — от нескольких десятков до многих тысяч п.н. Интроны могут составлять до 75% от длины гена. Прерывистая структура генов создает основу для более тонкого контроля их работы.
В результате транскрипции прерывистых генов образуется первичный продукт — про-иРНК, которая является полной копией гена и содержит в себе участки, соответствующие как экзонам, так и интронам. В процессе транскрипции участвуют три разных типа РНК-полимераз, которые считывают разные гены. РНКП-I считывает гены, кодирующие структуру разных форм рРНК (5,8S, 18S, 28S). РНКП-II ведет транскрипцию генов, кодирующих структуру белков и некоторых мяРНК. И, наконец, РНКП-III считывает гены 5S рРНК, транспортных РНК и мяРНК. В инициации процесса транскрипции принимает участие белковый комплекс, состоящий из различного числа белковых факторов транскрипции. У млекопитающих в его состав входят 12-14 полипептидов с общей массой в 600 кДА. В регуляции интенсивности транскрипции принимают участие специфические регуляторные участки — энхансеры и сайленсеры. Первые усиливают, вторые ослабляют процесс транскрипции. Они могут быть удалены от промотора на тысячи п.н. Под их контролем синтезируются регуляторные белки. В процессе транскрипции промотор и энхансер (или сайленсер) сближаются за счет структурных изменений ДНК, и регуляторные белки взаимодействуют с факторами транскрипции или с РНК-полимеразой.
Для того, чтобы про-иРНК могла играть роль матрицы для синтеза белка, она должна пройти период созревания (процессинг). Главное событие этого периода — удаление из про-иРНК участков, соответствующих интронам, и соединение в единую цепочку оставшихся экзонов. Процесс “сшивания” экзонов называется сплайсингом. В осуществлении сплайсинга большая роль принадлежит малым ядерным РНК (мяРНК) и белкам. Процесс протекает аналогично у всех эукариот. Молекулы мяРНК комплементарно взаимодействуют как с про-иРНК, так и друг с другом. Они обеспечивают удаление интронов и удерживают экзоны вблизи друг от друга.
Процесс сплайсинга может носить альтернативный характер, т.е. сшивание экзонов может осуществляться в разных комбинациях. Многие гены содержат десяток и более экзонов, поэтому число вариантов зрелой иРНК = 2 n , где n — число экзонов. Альтернативный сплайсинг делает систему записи информации экономичной, так как с одного гена можно считывать информацию для синтеза разных белков. Кроме того, он создает возможность регулирования потока информации в зависимости от потребности клетки в том или ином белковом продукте. Альтернативный сплайсинг, в частности, используется при синтезе иммуноглобулинов, факторов транскрипции и других белков.
Полное созревание иРНК включает модификацию обоих ее концов: навешивание кэп-структуры с 5'-конца и присоединение полиадениловой цепочки с 3'-конца. Кэп-структура образуется за счет присоединения к концевому основанию иРНК 5'-конца гуанинового нуклеотида.
Схема сплайсинга
Механизм трансляции у эукариот принципиально не отличается от прокариотического. Однако в обслуживании этого этапа синтеза белка принимает участие значительно большее количество белковых факторов трансляции, чем у бактерий.
При характеристике структуры генома эукариот нельзя не сказать о специализированных концевых участках хромосом — теломерах. Теломерная ДНК состоит из многократно повторяющихся коротких блоков нуклеотидов. Впервые теломерная ДНК была изучена у одноклеточных простейших.
В ее состав входят блоки по 6-8 пар нуклеотидов. В одной цепи — это блок TTGGGG (G-богатая цепь), в другой — AACCCC (C-богатая цепь). У человека эта последовательность отличается одним основанием TTAGGG, у растений имеется универсальный блок TTTAGGG. Протяженность теломерной ДНК у человека колеблется от 2 до 20 тыс. п.н. Теломерная ДНК никогда не транскрибируется и входит в состав сателлитной ДНК. С теломерными районами хромосом взаимодействует фермент теломераза, который устраняет возникающие в них повреждения. С укорочением теломер в результате потери концевых участков, вызванной снижением активности этого фермента, связывают процесс старения клеток.
Существенным отличием функционирования эукариотического генома по сравнению с прокариотическим является многоуровневый характер регуляции действия генов. У прокариот возможен только один тип регуляции — на уровне транскрипции с помощью оперонной системы. У эукариот, благодаря прерывистой структуре генов, к этому типу регуляции добавляется еще посттранскрипционная (сплайсинг, модификация) регуляция и регуляция на уровне трансляции (неоднозначность трансляции). Кроме того, присутствие в хромосомах гистонов позволяет осуществлять групповой контроль за действием генов с помощью механизма структурных преобразований ДНК — перевода участков хромосом из активного (эухроматического) в неактивное (гетерохроматическое) состояние. Такие преобразования иногда затрагивают целые хромосомы и даже весь геном целиком. В качестве примера хромосомного уровня регуляции можно привести образование в клетках женского пола млекопитающих и человека полового хроматина (тельца Барра). Это — крупная гранула хроматина, представляющая собой одну из двух Х-хромосом, максимально конденсированную, и, следовательно, неактивную. Примером инактивации всего генома служит процесс спермиогенеза у животных, во время которого конденсацией охвачены все хромосомы сперматозоида, что делает их неактивными. Это является защитным механизмом для половых клеток в случае повреждения их ДНК (например, при облучении). Возникающие в них мутации, если они не летальны, могут проявиться только при восстановлении функциональной активности мужского генома при дифференциации зародыша. Однако рецессивность большинства мутаций отодвигает их возможное проявление, по крайней мере, до следующего поколения (до перехода в гомозиготное состояние) или вообще исключает его.
Читайте также другие статьи темы 7 "Ген и геном":
Перейти к чтению других тем книги "Генетика и селекция. Теория. Задания. Ответы":
Прокариоты | Эукариоты |
ДНК не ограничена ядерной мембраной (располагается в цитоплазме свободно) | ДНК ограничена ядерной мембраной |
ДНК суперспирализована | ДНК не суперспирализована |
Циркулярная ДНК (замкнута в кольцо) | Линейная ДНК |
Не содержат гистонные белки | Содержат гистонные белки |
Гаплоидный набор хромосом | Диплоидный набор хромосом |
Бинарное деление | Делятся митозом |
Наличие обособленных фрагментов ДНК (плазмиды, транспозоны, Is-элементы и др.) | Отсутствие обособленных фрагментов ДНК |
Передача генетической информации как по вертикали (от материнской клетки – дочерним), так и по горизонтали (от клетки-донора к клетке-реципиенту) | Передача генетической информации только по вертикали (от родителей – детям) |
Особенности репликации бактериальной ДНК.
Репликация – это воспроизведение ДНК путем самоудвоения.
Репликация ДНК у бактерий начинается в строго определенной точке хромосомы (локусе – oriC), носит полуконсервативный характер, идет одновременно в двух противоположных направлениях и заканчивается также в строго фиксированной точке (terminus).
Стадии репликации ДНК:
1. Разрезание молекулы ДНК с помощью фермента рестриктазы.
2. Раскручивание цепей ДНК с участием изомеразы и их разделение хеликазами с образованием репликаторной вилки.
3. Стабилизация однонитевых участков ДНК ДНК-связывающим белком.
4. Каждая из спиралей становиться матрицей, на которой достраивается молекула ДНК по закону комплементарности пар оснований:
v особенность репликации ДНК является необходимость в затравке – коротких фрагментов РНК, которые синтезируются с помощью ДНК-праймазы;
5. Суперспирализация вновь синтезированных нитей ДНК с участием топоизомеразы.
6. Ревизия ДНК-полимеразой вновь синтезированных фрагментов ДНК (для исключения ошибочного включения нуклеотидов).
Внехромосомные факторы наследственности.
Внехромосомные факторы наследственности входят в состав многих микроорганизмов, особенно бактерий. Они представлены плазмидами и мигрирующими элементами – Is -последовательностями, транспозонами ( Tn ), конъюгативными транспозонами ( CTn ), интегронами ( In ), генными островами (ГО) и бактериофагами, которые являются молекулами ДНК, отличающиеся друг от друга молекулярной массой, объемом закодированной в них информации, способностью к самостоятельной репликации и другими признаками. Они не являются жизненно важными для бактериальной клетки элементами, поскольку не несут информации о синтезе ферментов, участвующих в пластическом или энергетическом метаболизме, но они могут передавать бактериям определенные селективные преимущества, например резистентность к антибиотикам.
Плазмиды – это автономные кольцевые молекулы двунитевой ДНК с молекулярной массой меньше, чем у нуклеоида (размеры варьируют от 1,5 до 200 mD=10 3 -10 6 пар нуклеотидов), способные к саморепликации.
Спонтанная/индуцированная утрата плазмид называется элиминацией.
v саморегулируемая репликация;
v явление поверхностного исключения (не позволяют проникать в клетку, уже содержащую плазмиду, другой родственной ей плазмиде);
v явление несовместимости (две близкородственные плазмиды не могут стабильно сосуществовать в одной клетке);
v контроль числа копий плазмиды на хромосому клетки (реализуется собственными плазмидными генами репликации);
v контроль стабильного сохранения плазмид в клетке;
v контроль равномерного распределения дочерних плазмид в дочерние бактериальные клетки;
v способность к самопереносу у конъюгативных плазмид;
v способность к мобилизации на перенос у неконъюгативных плазмид (способность к передаче только в присутствии трансмиссивных плазмид, используя их аппарат конъюгации);
v способность наделять клетку дополнительными важными для нее биологическими свойствами, способствующими выживанию бактерий.
v регуляторная (компенсируют нарушения метаболизма ДНК бактериальной клетки, регулируют саморепликацию, контролируют самоперенос или мобилизацию на самоперенос и другие функции самой плазмиды);
v кодирующая (внесение в бактериальную клетку новой информации, наделяя ее дополнительными свойствами).
Ø По молекулярной массе:
v крупные (1-2 на клетку);
Ø По способности передаваться от одной клетки к другой:
v конъюгативные (трансмиссивные);
v неконъюгативные (мобилизуемые).
Ø По совместимости в одной клетке:
v несовместимые (близкородственные).
Ø По фенотипическому проявлению признака:
v криптические (скрытые);
Ø По детерминированному признаку:
v R-плазмиды (от англ. resistance – противодействие, содержат гены – r-гены, ответственные за устойчивость к лекарственным препаратам).
Обусловленная R -плазмидами лекарственная устойчивость связана:
§ с изменением проницаемости поверхностных структур бактериальной клетки для антибиотиков;
§ с синтезом ферментов, разрушающих или модифицирующих антибиотики (β-лактамазы, ацетилирование хлорамфеникола).
v Плазмиды патогенности – Ent и Hly (содержат tox-гены, ответственные за синтез токсинов – энтеротоксинов и гемолизинов соответственно);
v Бактериоциногенные плазмиды (например, Col-плазмида у E. coli содержат гены, ответственные за синтез бактериоцинов).
Бактериоцины – антибиотические вещества белковой природы, синтезируемые бактериями и подавляющие рост и размножение близкородственных микроорганизмов, не лизирую последних. Синтез бактерицинов является для клетки-продуцента летальным, но потенциальные бактерии-продуценты, не продуцирующие их в данный момент, устойчивы к воздействию бактериоцинов. Обозначение бактериоцина определяется видовым название микроорганизма-продуцента:
Бактерия-продуцент | Бактериоцин |
E. coli | колицин |
St. aureus | стафилоцин |
Y. pestis | пестицин |
Kl. pneumoniae | пневмоцин |
В отличии от других плазмид, факторы бактериоциногенности реже интегрируются в хромосому, редко элиминируются, многие не обладают конъюгативностью.
v F-плазмида (половой фактор/фактор фертильности, содержит гены, контролирующие конъюгацию).
Варианты F -плазмид:
Состояние F-плазмиды в клетке | Обозначение бактериалной клетки |
в автономном состоянии | F + -донор |
в интегрированном в хромосому | Hfr-донор |
в автономном состоянии с фрагментами хромосомной ДНК | F ' -донор |
отсутствует в клетке | F – -реципиент |
v Плазмиды биодеградации (несут информацию об утилизации некоторых органических соединений, которые бактерии используют в качестве источников углеводов и энергии, например урологические штаммы E. coli содержат плазмиду гидролизации мочевины).
Мигрирующие генетические элементы – отдельные участки ДНК, способные осуществлять собственный перенос (транспозицию) внутри генома. Их транспозиция связана со способностью кодировать специфический фермент рекомбинации – транспозазу. В настоящее время к мигрирующим элементам относят: Is-элементы, транспозоны (Tn), конъюгативные транспозоны (CTn), интегроны (In), генные острова (ГО) и бактериофаги.
Транспозоны ( Tn -элементы) – нуклеотидные посдедовательности, включающие 2000-20500 пар нуклеотидов. Состав – фрагмент ДНК (специфический, несущий гены) и два концевых Is-элемента. Могут находиться в свободном состоянии в виде кольцевой молекулы.
v не способны к самостоятельной репликации (воспроизведению), только в составе хромосом;
v несут генетическую информацию, необходимую для транспозиции (перемещение);
v каждый транспозон содержит гены, привносящие важные для бактерий характеристики (устойчивость к антибиотикам, токсинообразование и т.д.);
v содержат гены, определяющие фенотипические признаки (легче выявить).
v способны к перемещению с одного репликона (хромосомная ДНК) на другой (плазмиды, хромосома другой бактерии, бактериофаг) и наоборот: при включении в ДНК вызывают дупликации, а при перемещении – делеции и инверсии;
Is -элементы (от англ. insertion – вставка, sequenc – последовательность) – вставочные (инсерционные) последовательности,величиной до 1500 (800-1400) пар оснований.
v самостоятельно не реплицируются;
v не кодируют распознаваемых фенотипических признаков;
v содержат гены, обеспечивающие их перемещение из одного участка ДНК в другой (транспозицию).
v регуляция активности генов бактериальной клетки;
v индукция мутаций типа делеции (выпадение нуклеотидов) или инверсии (поворот участка ДНК на 180 0 ) при перемещении и дупликации (повтор участка ДНК) при встраивании в хромосому;
v координация взаимодействий плазмид, транспозонов и профагов (между собой и бактериальной хромосомой).
Бактериофаги (умеренные и дефектные) – мигрирующие генетические элементы, могут захватывать участки ДНК и переносить от одной бактериальной клетки к другой, вызывая ее лизогенизацию (приобретение новых свойств).
Дата добавления: 2018-10-27 ; просмотров: 963 ;
Конспирологическими версиями коронавирус начал обрастать с первых дней своего появления на свет. Covid-19 заявил о себе в Ухани, а там как раз располагается Уханьский институт вирусологии, где в 2015 году была оборудована первая в материковом Китае лаборатория четвертого - самого высокого уровня биобезопасности (BSL-4). Пазл, как говориться, сложился. Поначалу конспирологи заботливо взращивали версию о том, что коронавирус избирательно поражает представителей монголоидной расы (непонятно зачем нужно было выводить такой вирус китайским вирусологам), но теперь мы на примере России и других стран знаем, что это неправда. Другая популярная теория утверждала, что Covid-19 это бактериологическое оружие. Но затем энтузиасты к этой версии охладели: кому нужно оружие, которое практически безопасно для молодых людей призывного возраста, а угрожает представителям возрастной категории 65+?
Сторонники теории заговора сосредоточились на версии о том, что SARS-CoV-2 (это название вируса, а Civid19 - болезнь, которую вирус вызывает) случайно “сбежал” из лаборатории во время научных экспериментов. Тем более, что вскоре конспирологи получили возможность опереться на научную основу.
В 2015 году в журнале Nature Medicine вышла статья об успешном эксперименте по созданию искусственного коронавируса, который способен поражать легкие человека и практически не лечится. В исследовании участвовали специалисты Университета Северной Каролины ( США ), Института микробиологии Цюриха ( Швейцария ) и Уханьского института вирусологии (Китай). Сторонники теории заговора восприняли эту публикацию, как камин-аут: ученые сами признались, что сконструировали вирус-химеру, который четыре года спустя вырвался на свободу и терроризирует все человечество!
Искусственный вирус генетически далек от коронавируса, который нас заражает
Подробный разбор этой гипотезы на своей странице в “Фейсбуке” и YouTube-канале провел известный популяризатор научного знания, кандидат биологических наук, старший научный сотрудник сектора молекулярной эволюции Института проблем передачи информации РАН Александр Панчин. К нему мы и обратились за комментарием.
- Коронавирус SARS-CoV-2, который вызвал сегодняшнюю пандемию, не может быть “сбежавшим” из Уханьской лаборатории искусственным вирусом сконструированным в 2015 году, - объясняет Александр Панчин. - Это легко доказать, сравнив геномы того и другого вируса. В статье 2015 года подробно описывается, как ученые делали свой вирус. В качестве основы исследователи взяли штамм SARS-CoV MA15 (в природе существует множество разновидностей коронавируса - Ред) и внесли туда ген, который кодирует шиповидный белок другого коронавируса летучей мыши - SHC014-Cov. Шиповидный белок помогает вирусу проникать внутрь клетки, из-за этих шипов - короны, коронавирусы и получили свое название. Получившийся гибрид назвали SHC014-MA15. Если конспирологическая теория верна, то последовательность аминокислот белков искусственного вируса SHC014-MA15 должна совпадать с SARS-CoV-2, который сейчас всех заражает. Но этого не происходит. Я проводил сравнение с помощью компьютерной программы BLAST.
- Что это такое?
- Эта программа чем-то напоминает всем хорошо знакомый контекстный поиск офисной программы Word - ищет совпадения и различия в “буквах” (только в геноме буквами обозначается последовательность аминокислот или нуклеотидов - Ред). Так вот шиповидный белок искусственного вируса, имеет лишь 77.31% сходства с SARS-CoV-2. Это очень большое расхождение. Если мы посмотрим на другие белки - например полипроеин 1аb, то увидим такие же большие различия. Для сравнения разные вариации SARS-CoV-2 имеют между собой сходства от 97.8 до 100%. Что это значит? Это значит, что искусственный вирус эволюционно очень далек от коронавируса, который вызвал пандемию.
Кандидат биологических наук, старший научный сотрудник сектора молекулярной эволюции Института проблем передачи информации РАН Александр Панчин
Какая мутация сделала его таким опасным?
- Но ведь могли быть и другие версии искусственно созданных вирусов, статьи о которых не публиковались. И в качестве деталей конструктора могли использовать вирусы-исходники, которые не так радикально отличались. Существуют ли признаки, по которым точно можно отличить искусственно сконструированный вирус (даже если он более тщательно “склеен”) от мутировавшего естественным путем?
- Cамый близкий родственник SARS-CoV-2 это штамм коронавируса летучих мышей RaTG13 - его шиповидный белок дает 97.41% сходства, а полипротеин 1ab - 98.53% сходства. Он был открыт в 2013 году, сам людей не заражал, и в 2015 году для создания искусственного вируса не использовался. Если мы сравним геном нового человеческого SARS-COV-2 с геномом коронавируса мыши RaTG13 с то опять же не увидим никаких признаков чужеродных вставок. При этом геном SARS-COV-2 все же отличается по всей своей длинне от геномов всех остальных известных коронавирусов, так что пока нет даже кандидата на "исходник", с которым работали бы гипотетические генные инженеры. Мы видим у SARS-CoV-2 признаки эволюции, а не дизайна.
- Какая мутация сделала коронавирус таким опасным?
- Мы не знаем точно, какая именно мутация сделала коронавирус таким заразным для людей. Упомянутый выше коронавирус RaTG13 людей не заражает, промежуточные варианты пока не найдены. Были работы про изучение мутаций в участке, который кодирует шиповидный белок, использующийся вирусом для проникновения в клетки. Вероятно, эти мутации сыграли свою роль, но не факт, что ими все ограничивается.
Зачем нужны вирусы-химеры
- А зачем ученые создавали искусственный вирус? Это выглядит как-то подозрительно…
- Идея таких экспериментов вполне понятна: мы хотим заранее знать какие эпидемии могут нам угрожать и какие меры можно принять? Пытаемся понять, как вирусы могут мутировать? Учимся заранее придумывать лекарства, чтобы их создание занимало не 10 лет, как это обычно бывает в практике клинических исследований новых препаратов, а хотя бы год или полгода. Как раз тут нет ничего подозрительного.
- В зарубежных СМИ приводят косвенные доказательства того, что вирус мог “сбежать” из Уханьской лаборатории: в ноябре 2019 года в самом начале вспышки институт открыл вакансии для вирусологов для работы с коронавирусом летучих мышей. Называют имя пропавшей аспирантки лаборатории, которая гипотетически могла быть тем самым “нулевым” пациентом, который вынес вирус наружу…
- То, что в Уханьском институте были специалисты, которые работали с коронавирусами из летучих мышей, никогда не скрывалось, это общеизвестный факт. Коронавирусы уже перескакивали от летучих мышей к людям, как было в случае атипичной пневмонии. Та же статья в Nature Medicine 2015 года была ровно про то, что такое перескакивание может случиться снова. Поэтому странно приводить это, как довод в пользу конспирологической теории. Заявление о том, что кому-то известен нулевой пациент вызывает у меня большие сомнения. Такое очень сложно выяснить. Я бы даже сказал, что абсолютно не решен вопрос о том, действительно ли все началось именно в Ухане ? Мы даже не знаем напрямую ли люди получили коронавирус от летучих мышей или с переходом от каких-то других млекопитающих (как вариант рассматривают панголинов). Потребуется немало времени, чтобы выяснить, как именно произошло первое заражение. Выстраивать на этой почве какие-то теории просто абсурдно.
- 6550
- 5,0
- 0
- 5
Вопрос о происхождении вирусов
Существует три основные теории возникновения вирусов [1]:
Зарождение жизни. Идея последнего универсального общего предка: каким он мог бы быть и что ему предшествовало?
Рисунок 1. Схема трехдоменной классификации, предложенная Вёзе. В основании этой схемы должен находиться последний универсальный общий предок (англ. last universal common ancestor, LUCA). Рисунок из Википедии.
Самый сильный аргумент в пользу существования LUCA — сохранившаяся общая система экспрессии генов (передачи наследственной информации от гена с образованием РНК или белков), одинаковая для всех живущих организмов. Все известные клеточные формы жизни используют один и тот же генетический код из 20 универсальных аминокислот и стоп-сигналов, закодированных в 64 кодонах (единицах генетического кода). Трансляция генетической информации в процессе синтеза белков по заданной матрице выполняется рибосомами, состоящими из трех универсальных молекул РНК и примерно 50 белков, из которых 20 так же одинаковы для всех организмов.
В 2010 году американский биохимик Даглас Теобальд математически проверил вероятность существования LUCA [6]. Он выбрал 23 белка, встречающихся у организмов из всех трех доменов, но имеющих разную структуру у различных видов. И исследовал эти белки у 12 различных видов (по четыре из каждого домена), после чего использовал компьютерное моделирование различных эволюционных сценариев, чтобы понять, при каком из них наблюдаемая картина будет наиболее вероятной. Оказалось, что концепция, включающая существование универсального предка, значительно вероятнее концепций, где его нет. Еще более вероятна модель, основанная на существовании общего предка, но допускающая обмен генами между видами [7].
Предположение о том, что LUCA был прокариотической клеткой, похожей на современные, часто принимается по умолчанию. Однако мембраны архей и бактерий имеют разное строение (рис. 2). Получается, что общий предок должен был обладать комбинаторной мембраной. Новая информация о мембранах LUCA появилась в 2012 году, когда несколько групп ученых подробно проанализировали историю генов всех ферментов биосинтеза компонентов липидов у бактерий, архей и эукариот [8].
Родственными у архей и бактерий оказались ферменты для синтеза терпеновых спиртов и пришивания полярных голов к спиртам. Значит, эти реакции мог проводить и LUCA. Проще всего было предположить, что липиды LUCA состояли из одного остатка терпенового спирта, остатка фосфата и полярной группы (серина или инозитола). Подобные липиды были синтезированы искусственно. Образующиеся из них мембраны обладают высокой подвижностью по сравнению с современными мембранами, хорошо пропускают ионы металлов и малые органические молекулы. Это могло позволять древним протоклеткам поглощать готовую органику из внешней среды даже без транспортных белков.
Реконструкции LUCA методами сравнительной геномики указывают на то, что это должен быть сложный организм без обширного ДНК-генома (геном, состоящий из нескольких сотен РНК-сегментов или ДНК провирусного типа). Но даже если считать возможность существования общего предка доказанной, остается загадкой, в какой среде он мог бы появиться.
Предполагается, что идеальные условия для формирования жизни существовали вблизи термальных геоисточников (морских или наземных) в виде сети неорганических ячеек, обеспечивающих градиенты температуры и рН, способствующих первичным реакциям, и предоставляющих универсальные каталитические поверхности для примитивной биохимии [10].
Эти отсеки могли быть населены разнородной популяцией генетических элементов. Вначале сегментами РНК. Затем более крупными и сложными молекулами РНК (один или несколько белок-кодирующих генов). А позднее и сегментами ДНК, которые постепенно увеличивались (рис. 3).
Такие простейшие генетические системы использовали неорганические соединения из раствора и продукты деятельности других генетических систем. Сначала они должны были подчиняться индивидуальному отбору ввиду большого разнообразия. Но ясно, что важным фактором такого отбора была способность передавать генетическую информацию, то есть, копировать себя. Присутствие одновременно в одной ячейке молекул, способных копировать РНК, кодировать полезные белки и управлять синтезом новых молекул, давало больше шансов выживать в каждой отдельной ячейке. И в такой системе рано или поздно должны были появиться паразитирующие элементы. А если это так, то вирусные элементы стоят у самых истоков эволюции [11].
Возникновение паразитов — неизбежное последствие эволюционного процесса
Рисунок 4. Схематическое представление структуры модели эволюции РНК-подобной системы. На втором этапе цепочки последовательностей начинают соединяться комплементарными связями сами с собой. В результате у двух видов (cat-C и cat-A) возникает вторичная структура молекулы, которая обладает каталитическим свойством. Она ускоряет собственную репликацию (или репликацию несвернувшихся соседей). Два вида при этом приобретают паразитические свойства (par-G и par-U). Пояснения в тексте. Рисунок из [12].
Таким образом, паразитарные репликаторы способствуют эволюции разнообразия, вместо того, чтобы мешать этому разнообразию. Это также делает существующую систему репликатора чрезвычайно стабильной при эволюции паразитов.
Согласно гипотезе Черной Королевы, чтобы поддержать свое существование в постоянно эволюционирующем мире, вид должен реагировать на эти эволюционные изменения и должным образом приспосабливаться к среде. Поэтому, если мы говорим о вирусах как о паразитах, мы обязаны представлять себе взаимоотношения вируса с хозяином. В борьбе с вирусом хозяева развивают новые защитные механизмы, а паразиты отвечают, развивая механизмы для атаки и взлома защиты. Этот процесс может длиться бесконечно либо до вымирания одной из противоборствующих сторон. Так множественные системы защиты составляют существенную часть геномов всех клеточных организмов, а взлом защиты — одна из основных функций генов у вирусов с большими геномами*.
Механизмы клеточной защиты против вирусов
Механизмы защиты от вирусов стандартны, поскольку все вирусы уникальны, и приспособиться к каждому не представляется возможным. Это такие механизмы как:
- Деградация РНК (вирусных и клеточных) — РНК-интерференция;
- Угнетение синтеза белков (вирусных и клеточных);
- Ликвидация зараженных клеток — апоптоз (программируемая клеточная смерть);
- Воспаление.
Получается, что клетка борется с вирусом, нарушая собственные обмен веществ и/или структуру. Защитные реакции клетки — это в основном самоповреждающие механизмы.
Вирус заражает конкретную клетку потому, что его механизмы нападения направлены именно против данного типа клеток. Это такие механизмы как:
- Угнетение синтеза клеточной РНК;
- Угнетение синтеза клеточных белков;
- Нарушение клеточной инфраструктуры и транспорта;
- Подавление/включение апоптоза и других видов клеточной смерти.
Схемы защитных приемов клетки и противозащиты вирусов во многом идентичны. Вирусы и клетки применяют одни и те же приемы. Для подавления синтеза вирусных белков клетка использует интерферон, а чтобы подавить образование интерферона, вирус угнетает синтез белков.
Поскольку узнавание вируса неспецифическое, клетка не может знать намерения конкретного вируса. Она может бороться с вирусом лишь стандартными приемами, поэтому ее оборонные действия часто могут быть чрезмерными.
Понятие о вирусном геноме, типы вирусных генов, концепция генов-сигнатур
В исследовании, проведенном вирусологом Евгением Куниным и его коллегами [16], анализ последовательностей вирусных геномов выявил несколько категорий вирусных генов, принципиально отличающихся по происхождению. Можно обсуждать, какая степень дробности классификации оптимальна, но четко различаются пять классов, укладывающихся в две более крупные категории.
Гены с четко опознаваемыми гомологами у клеточных форм жизни:
- Гены, присутствующие у узких групп вирусов (обычно это гены, гомологичные генам хозяев этих вирусов).
- Гены, консервативные среди большой группы вирусов или даже нескольких групп и имеющие относительно отдаленные клеточные гомологи.
Таким образом, отличительные особенности генов-сигнатур:
- Происхождение из первичного пула генов;
- Наличие лишь очень отдаленных гомологов среди генов клеточных форм жизни, из чего можно сделать вывод, что они никогда не входили в геномы клеточных форм;
- Необходимость для репродукции вирусов.
Из всего вышесказанного следует, что эти гены переходили от вируса к вирусу (или к элементу, подобному вирусу) на протяжении четырех миллиардов лет эволюции жизни, а вирусные геномы появились благодаря перемешиванию и подгонке друг к другу генов в гигантской генетической сети, которую представляет собой мир вирусов. Многочисленные гены клеточных форм жизни также пронизывают эту сеть, прежде всего благодаря геномам крупных вирусов, таких как NCDLV и крупным бактериофагам, которые позаимствовали множество генов от своих хозяев на разных этапах эволюции. Однако большинство заимствованных генов сами по себе не критичны для репликации и экспрессии вирусного генома (исключая некоторые случаи возможного неортологичного замещения генов-сигнатур); обычно эти гены участвуют во взаимодействии между вирусом и хозяином. Таким образом, несмотря на интенсивный взаимообмен генами с хозяевами, вирусы всегда происходят от других вирусов.
Вирусы, встроенные в геном, и горизонтальный перенос генов
В процессе эволюции многие вирусы встроились в геномы клеточных форм жизни путем горизонтального переноса генов (ГПГ). Впервые горизонтальный перенос был описан в 1959 году, когда ученые продемонстрировали передачу резистентности к антибиотикам между разными видами бактерий. В 1999 году Рави Джайн, Мария Ривера и Джеймс Лейк в своей статье писали о произошедшей значительной передаче генов между прокариотами [17]. Этот процесс, по-видимому, оказал некоторое влияние также и на одноклеточные эукариоты. В 2004 году Карл Вёзе опубликовал статью, в которой утверждал, что между древними группами живых организмов происходил массивный перенос генетической информации. В древнейшие времена преобладал процесс, который он называет горизонтальным переносом генов. Причем, чем дальше в прошлое, тем это преобладание сильнее [18].
Горизонтальный перенос генов — процесс, в котором организм передаёт генетический материал другому организму, не являющемуся его потомком. Горизонтальная передача генов реализуется через различные каналы генетической коммуникации — процессы конъюгации, трансдукции, трансформации, переноса генов в составе плазмидных векторов, вирусов, мобильных генетических элементов (МГЭ).
Трансдукция — перенос бактериофагом (агентами переноса генов, АПГ) в заражаемую клетку фрагментов генетического материала клетки, исходно содержавшей бактериофаг [19]. Такой бактериофаг обычно переносит лишь небольшой фрагмент ДНК хозяина от одной клетки (донор) к другой (реципиент). В зависимости от типа трансдукции — неспецифической (общей), специфической или абортивной, геном фага или хозяина-бактерии может быть изменен тем или иным образом:
- При неспецифической трансдукции (рис. 5) ДНК клетки-хозяина включаются в частицу фага (дополнительно к его собственному геному или вместо него);
- При специфической трансдукции гены фага замещаются генами хозяина;
- При абортивной трансдукции внесённый фрагмент ДНК донора не встраивается в ДНК хозяина-реципиента, а остаётся в цитоплазме и не реплицируется. Это приводит к тому, что при клеточном делении он передаётся только одной из дочерних клеток и затем теряется в потомстве.
Рисунок 5. Схема общей трансдукции. Фото с сайта vkjournal.ru.
Наиболее известным примером специфической трансдукции служит трансдукция, осуществляемая фагом λ. Поскольку этот фаг при переходе в состояние профага включается в хромосому бактерий между генами, кодирующими синтез галактозы и биотина, именно эти гены он может переносить при трансдукции.
Вот несколько примеров важных эволюционных событий, связанных с молекулярным одомашниванием:
- Ферменты теломеразы, служащие для восстановления концевых участков хромосом, возможно, ведут свое происхождение от обратных транскриптаз, кодируемых ретровирусами и ретротранспозонами [22];
- Белки RAG, играющие ключевую роль в системе адаптивного иммунитета, по-видимому, происходят от прирученных транспозаз — ферментов, кодируемых транспозонами;
- Ген Peg10, необходимый для развития плаценты, был позаимствован древними млекопитающими у ретротранспозона (рис. 6) [23].
Рисунок 6. Роль гена Peg10 в эмбриональном развитии. Ученые под руководством Рюичи Оно из Токийского медицинского университета Японии показали, что у мышей с выключенным геном Peg10 нарушается развитие плаценты, от чего эмбрион погибает через 10 дней после зачатия [24]. Фото с сайта flickr.com.
В 2008 году в ходе целенаправленного поиска неиспорченных вирусных генов в геноме человека исследователи нашли два очень похожих друг на друга ретровирусных гена (их назвали ENVV1 и ENVV2), которые, по всей видимости, находятся в рабочем состоянии [25]. Это гены белков оболочки ретровируса. Каждый из них входит в состав своего эндогенного ретровируса (ЭРВ), причем все остальные части этих ЭРВ давно не функционируют.
Вирусные гены ENVV1 и ENVV2 у человека и обезьян работают в плаценте и, скорее всего, выполняют следующие функции:
Таким образом, как минимум три полезных применения нашли себе вирусные гены в плаценте приматов. Это показывает, что генетические модификации, которым ретровирусы подвергают организмы, в долгосрочной перспективе могут оказаться полезными или даже определить развитие вида. И с учетом всего вышесказанного древо доменов должно выглядеть как на схеме ниже (рис. 7).
Рисунок 7. Горизонтальный перенос генов в рамках трехдоменного дерева. Рисунок из [26].
Заключение
Возникновение паразитов — обязательная черта эволюционирующих систем репликаторов, а соревнование хозяев и паразитов движет эволюцию тех и других. Любой организм является результатом миллионов лет борьбы клеток с невероятно разнообразным миром вирусов. Их действия и их эволюция пронизывают всю историю клеточной эволюции, и сейчас меняется само наше представление о них. Когда-то вирусы считали деградировавшими клетками, но чем больше мы узнаем о вирусах, тем очевиднее, что их роль в общей эволюции значительна. И невероятно много нам еще предстоит узнать.
Статья написана в соавторстве с Евгенией Щепенок.
Читайте также: