Что такое биопроба на вирусы
Биопробу на лабораторных животных ставят с целью воспроизведения клиники заболевания, патогенеза, выявления экзотоксинов бактерий, определения типа токсина, получения чистых культур микроорганизмов, определения DLM, LD50, DCL, для испытания новых препаратов, для контроля выпускаемых медицинских препаратов на безвредность, реактогенность и иммуногенность.
Наиболее широко в микробиологической практике используют кроликов, морских свинок, белых мышей, крыс. Лабораторные животные являются донорами, у которых берут кровь для получения сывороток, плазмы, эритроцитов, лейкоцитов, необходимых при постановке многих серологических реакций и для приготовления кровяных питательных сред.
В зависимости от цели исследования пользуются различными методами заражения: внутрикожным, подкожным, внутримышечным, внутривенным, внутрибрюшинным, пероральным или интраназальным. При выборе способа заражения следует учитывать, прежде всего, механизм распространения возбудителя инфекции (аэрогенный, фекально-оральный, трансмиссивный, контактный и др.) и тропизм возбудителей.
Внутрикожный способ заражения. При этом способе применяют тонкие (№ 18 - 20) острые иглы с небольшим скосом. Кожу в месте введения материала растягивают I и II пальцами левой руки, правой рукой вводят иглу под очень острым углом, почти касаясь кожи. Конец иглы должен быть виден через эпидермис: при введении материала эпидермис приподнимается в виде четко ограниченного бугорка, кожа над ним становится прозрачной и пористой, вследствие чего ее сравнивают иногда с лимонной корочкой. Материал вводят в объеме до 0,1 мл обычно в кожу спины или живота.
Подкожный способ заражения. Кожу в месте введения материала берут у ее основания, приподнимают I и II пальцами левой руки. Иглу шприца вкалывают снизу образовавшейся складки. Проколов кожу и пройдя вглубь на несколько миллиметров, иглу отклоняют вправо или влево и затем медленно вводят материал, содержащийся в шприце. Изменять направление иглы под кожей рекомендуется для того, чтобы введенное вещество не выступало через прокол кожи наружу. Затем складку кожи отпускают, на место укола накладывают ватный тампон, смоченный спиртом или спиртовым раствором, а иглу быстро вынимают. Наиболее удобными местами для подкожного введения материала у кроликов и морских свинок являются область спины и боковые поверхности несколько ниже подмышечных впадин, у крыс и мышей - область спины, крестца и затылка. Количество жидкости, вводимой подкожно, не должно превышать 30 мл - для кроликов, 15 мл - для морских свинок, 10 мл - для крыс и 1 мл для мышей.
Внутримышечный способ заражения. Выбирают участок тела с наиболее развитым мышечным слоем. У кроликов и морских свинок, крыс и мышей таким местом является наружная верхняя треть бедра задней лапы. Захватывают I и II пальцами левой руки толстую мышечную складку и вводят иглу почти под прямым углом вглубь мышц. Объем жидкости, допустимый для внутримышечного введения, составляет для кроликов 8 мл, для морских свинок - 5 мл, для крыс 3 мл, для мышей - 0,5 мл.
Внутрибрюшинный способ заражения. Помощник держит животное вниз головой. В этом положении кишечник смещается в сторону диафрагмы, что в значительной мере уменьшает возможность его повреждения в момент прокола. У животных (за исключением мышей) в нижней трети живота, несколько отступя от средней линии, делают скальпелем или остроконечными ножницами надсечку кожи длиной 2 -3 мм и через нее вводят притуплённую иглу, держа шприц перпендикулярно к брюшной стенке. Преодолевая сопротивление, очень осторожно, буравящими движениями иглу продвигают вглубь. Чувство "провала", исчезновение ощущения сопротивления на пути говорят о проникновении иглы в брюшную полость. После этого иглу переводят в вертикальное положение и вводят содержащийся в шприце материал в полость брюшины. Внутрибрюшинно можно вводить до 30 мл жидкости кроликам, до 10 мл морским свинкам, до 5 мл - крысам, до 2 мл - мышам.
Заражение через пищеварительный тракт.Наиболее простым и естественным является способ заражения через пищевые продукты. Инфекционный материал подмешивают к пище или питью животного. Однако этот метод в лабораторной практике нашёл ограниченное применение в связи с трудностью дозирования применяемого препарата. Поэтому для заражения животных чаще используют шприц, игла которого имеет незначительный изгиб и утолщение на конце в виде оливы.
Интраназальное заражение. Животному прикладывают к носу кусочек ваты, смоченной эфиром или хлороформом. К заражению приступают после того, как у животного появится состояние легкого наркоза. Зараженный материал с помощью шприца вводят в нос небольшими каплями на глубину 1-1,5 мм мышам, 2-3 мм крысам, 4 мм кроликам и морским свинкам. Чтобы не поранить слизистые оболочки, для введения материала берут абсолютно тупую иглу. Фиксация мышей
Мышь пускают по столу, придерживая ее I и II пальцами правой руки за кончик хвоста. Когда, продвигаясь в каком - либо направлении, мышь натянет хвост, быстрым движением левой руки хватают ее за складку кожи в области затылка, ближе к ушам, чтобы она не могла поворачивать голову. Подняв мышь над столом, помощник держит ее на весу одной рукой за хвост, другой - за складку кожи на затылке, несколько растягивая в положении, удобном для экспериментатора.
Работать с мышами можно и без помощника, фиксируя их левой рукой: I и II пальцами левой руки животное захватывают за складку кожи в области затылка, а остальными 3 пальцами, прижав их к запястью, придерживают хвост и кожу в области крестца. При таком способе фиксирования правой свободной рукой можно производить различные операции.
Материал для исследований от заболевших, павших или вынужденно убитых животных следует брать как можно быстрее после появления четких признаков болезни или не позднее 2-3 часов после клинической смерти или убоя. Это связано с тем, что сразу после заболевания или в первые 1-2 дня значительно ослабевает барьерная роль кишечника, что наряду с повышенной проницаемостью кровеносных сосудов способствует диссеминации кишечной флоры. Кроме того, по мере продолжения и даже углубления инфекционного процесса количество вируса может уменьшаться в результате воздействия защитных механизмов организма. При взятии материала для выделения вируса следует исходить из патогенеза изучаемой инфекции (входные ворота, пути распространения вируса в организме, места его размножения и пути выделения). При респираторных инфекциях для выделения вирусов берут носоглоточные смывы, мазки из носа и глотки; при энтеровирусных - кал; при дермотропных - свежие поражения кожи. Материалов для выделения вируса могут служить различные экскреты и секреты, кусочки органов, кровь, лимфа. Кровь берут из яремной вены, у свиней - из кончика хвоста или уха. Смывы с конъюнктивы, со слизистой носа, с задней стенки глотки, прямой кишки и клоаки у птиц берут стерильными ватными тампонами и погружают их в пенициллиновые флаконы. При взятии материала из носоглотки можно пользоваться прибором, сконструированным Томасом и Скотом. Вытекающую изо рта слюну можно собрать прямо в пробирку. Мочу собирают при помощи катетера в стерильную посуду. Фекалии берут из прямой кишки шпателем или палочкой и помещают в стерильную пробирку. Везикулярную жидкость можно собирать шприцем или пастеровской пипеткой в стерильную пробирку. Стенки афт, корочки с поверхности кожи снимают пинцетом. После смерти животного важно как можно быстрее взять кусочки органов, т.к. при многих вирусных инфекциях наблюдается феномен посмертной аутостерилизации, в результате чего вирус мб вообще не обнаружен или его количество окажется очень малым. Далее патматериал помещают в низкие температуры (сухой лед+спирт; снег+соль) или глицерин на ИХН. Патматериал должен быть снабжен надежной и четкой этикеткой. Нужно написать какой материал и от какого животного получен. На термос с пробами ПМ навешивают бирку из картона или фанеры на которой указывают хозяйство, вид животного, вид материала, дату. Термос должен быть опечатан и доставлен нарочным. Доставленные в лабораторию пробы рекомендуется немедленно использовать для выделения вируса. В лаборатории полученный патматериал освобождают от консерванта, оттаивают, отмывают от глицерина, взвешивают и измеряют. Часть берут на исследование, часть в холодильник. Подготовку органов и тканей проводят так: вирус высвобождают из клеток органов и тканей - материал тщательно измельчают и растирают в ступке со стерильным кварцевым песком. Из растертого материала обычно готовят 10% суспензию на Хенксе или фосфатном буфере. Суспензию центрифугируют при 1500-3000 обмин, надосадочную жидкость отсасывают и освобождают от микрофлоры обрабатывая антибиотиками (пенициллин, нистатин). Проводят экспозицию суспензии с АБ не менее 30-60 минут при комнатной температуре, затем материал подвергают бактериологическому контролю путем посева на МПА, МПБ, МППБ, среду Сабуро. Суспензию хранят при минус 20- минус 70 С.
I. Индикация вируса в патологическом материале.
- 1. Обнаружение - световая микроскопия крупных вирусов (Poxviridae), электронная микроскопия.
- 2. Обнаружение телец-включений (тельца Бабеша-Шенегри при бешенстве).
- 3. Обнаружение вирусных антигенов: серологические реакции.
- 4. Обнаружение вирусных НК (ДНК-зонды и ПЦР - полимеразно-цепная реакция).
- 5. Обнаружение активной формы вируса путем биопробы (лабораторные животные, куриные эмбрионы, культура клеток).
- 6. Обнаружение гемаглютининов у гемаглютинирующих вирусов (в настоящее время практически не используется по причине наличия более точных методов).
Для идентификация выделенного вируса - серологические реакции.
- 1. РИФ - реакция иммунофлюорисценции. АГ + АТ меченные флюорохромом. Дают контакт 30 минут при 37 С, затем производят тщательный отмыв в ИХН. Метод обнаружения - флюоресцентное свечение под микроскопом.
- 2. ИФА - иммуно-ферментный анализ. АГ + АТ с ферментом. Контакт, отмыв, затем добавляют субстрат, который при контакте с АТ-ферментным комплексом дает цветную реакцию.
- 3. РСК - реакция связывания комплемента. АГ + АТ + комплемент. Контакт. Затем добавляют гем-систему (гемолизин + эритроциты барана). Контакт. Если гемолиза не происходит, значит АГ и АТ связали комплемент. Задержка гемолиза - реакция положительная. Если произошел гемолиз, значит комплемент связан гем-системой - реакция отрицательная.
- 4. РДП - реакция диффузной преципитиции. АГ + АТ (диффузия в агаровом геле). Метод обнаружения - образование контура преципитации.
- 5. РНГА - реакция непрямой гемаглютинации. Эритроциты нагружают АГ и при образовании комплекса АГ-АТ происходит агглютинация эритроцитов.
- 6. РТГА - реакция торможения гамаглютинации.
- 7. РТГАд - реакция торможения гемадсорбции.
- 8. РН - реакция нейтрализации. Вирус + АТ. Контакт. Ввод в чувствительную к вирусу систему. Метод обнаружения - нейтрализация инфекционной активности вируса.
Россия готовится к тотальному тестированию, новые тест-системы позволяют быстро провести масштабную проверку на вирус. К массовому выпуску приступил один из разработчиков нового продукта, два других начинают производство. Олег Гусев, ведущий научный сотрудник Научно-клинического центра прецизионной и регенеративной медицины Казанского федерального университета и института физико-химических исследований RIKEN (Япония) помог РБК Тренды разобраться в том, как устроено тестирование на коронавирус в России и в мире.
Что предлагает ВОЗ
Глава Всемирной организации здравоохранения Тедрос Гебреисус еще в середине марта призвал страны проводить как можно больше тестов на вирус, который вызывает заболевание SARS-CoV-2, даже людям без симптомов. Согласно руководству ВОЗ, анализы на коронавирус COVID-19 должны проводиться методом полимеразной цепной реакции (ПЦР) с обратной транскрипцией. Как говорится в рекомендациях, на сегодня это самый точный и надежный метод диагностики вирусной инфекции. Он позволяет определить даже очень небольшое количество РНК вируса в биологическом материале человека. Это помогает выявить болезнь в инкубационном периоде.
Изобретенный в 1983 году метод и сейчас считается фундаментальным в молекулярной диагностике. Американский ученый, который придумал способ значительного увеличения малых концентраций фрагментов ДНК в биологической пробе, получил за него Нобелевскую премию. Выявление ДНК/РНК методом ПЦР позволяет диагностировать такие заболевания, как ВИЧ, вирусные гепатиты, инфекции, передающиеся половым путем, туберкулез, боррелиоз, энцефалит и многие другие. Метод используют в археологии, криминалистике, генетике.
Как работает ПЦР-тест
Для анализа из физиологических жидкостей извлекают одноцепочечную РНК, моделируют на ее основе двуцепочечную ДНК и многократно дублируют с помощью специального фермента (полимеразы). Увеличение числа копий ДНК называется амплификацией. В результате концентрация определенных фрагментов ДНК/РНК в биологическом образце, изначально минимальная, значительно увеличивается. При исследовании копируется только необходимый для теста участок ДНК. И, конечно, дублирование происходит только в том случае, если искомый участок вирусной ДНК или РНК присутствует в исследуемом биоматериале. В случае с коронавирусом мазок для анализа берут из ротоглотки или носоглотки, поскольку в крови или в кале вирус появляется на более продвинутой стадии болезни.
Тест-система EMG — продукт совместной разработки российских и японских разработчиков, проводившейся с 2016 года, рассказывает Олег Гусев. На данный момент эти тесты включены в систему обязательного медицинского страхования в Японии.
В ближайшее время планируется производить до 2,5 млн. тестов и 1 тыс. портативных лабораторий в неделю. Сами тесты, как и многие реагенты производятся в России. Планируется, что цена на тесты EMG будет в среднем в пять раз меньше, чем на стандартные ПЦР-тесты в Европе.
Российско-японские тесты основаны на методе изотермальной молекулярной диагностики SmartAmp, превосходящем метод ПЦР по скорости работы в восемь раз, а переносная лаборатория позволяет тестировать до 20 пациентов в час, говорит Гусев.
Ключевое отличие теста EMG в том, что многие тесты, которые производятся сейчас, это тесты ИФА (имунноферментный анализ), а не ПЦР. Данные системы определяют антитела, которые организм начинает вырабатывать не ранее, чем через неделю после заражения. Российско-японская разработка позволяет получать результат уже за 30 минут, с точностью, равной почти 100%. Кроме того, тест EMG позволяет определить наличие вируса уже на самых ранних стадиях, в то время как другие системы диагностики короновируса обладают меньшей чувствительностью и не могут выявлять вирус на ранней стадии инфицирования.
Принцип технологии российско-японского теста, по сути, не отличается от классической ПЦР — это наращивание количества целевых фрагментов ДНК и их детекция. Однако в изотермической амплификации, в отличие от классической ПЦР, где необходимы циклы нагрева и охлаждения, все происходит при одной температуре. Это позволяет многократно увеличивать скорость реакции. Метод SmartAmp был изобретен более 15 лет назад (как и LAMP — другая популярная технология изотермальной амплификации, предшествующая SmartAmp). Впервые для инфекционных заболеваний эту технологию применили в 2009 году для быстрого выявления пандемического гриппа (H1N1) в Японии.
Повторные тесты необходимы при любом методе. Отрицательный тест на COVID-19 не гарантирует, что человек не заразится этим вирусом на следующий день. Поэтому, например, в японских лабораториях персонал тестируют каждые несколько дней. Повторный тест нужен и для того, чтобы подтвердить, что человек излечился.
Эта тест-система будет использоваться для диагностики COVID-19 не только в России и Японии. 40 тыс. тестов закупила Австрия, поступили заказы из других стран Европы, Ближнего Востока, и Латинской Америки. Подана заявка в Управление по контролю качества пищевых продуктов и лекарственных препаратов США (FDA) для поставок в эту страну.
На данный момент в России прошли регистрацию еще три теста на коронавирус.
По некоторым данным, в Москве проводится около 700 тестов на коронавирус в сутки. В планах у московских властей увеличить этот показатель до 10 тыс. тестов в сутки, а затем довести его до 25—28 тыс. тестов ежедневно.
Новые разработки за рубежом
Компания Bosch выводит на рынок свой тест на коронавирус, который сначала будет доступен в Германии, а вскоре появится в других странах. В его основе лежит диагностический аппарат Vivalytic, который, по словам изготовителей, станет первым автоматизированным тестом на COVID-19. Тест распознает не только коронавирус, но еще шесть респираторных заболеваний, например, вирусы гриппа А и B. Во время лабораторных испытаний аппарата его точность составила 95%.
Как пишет издание ZME Science, анализ может проводиться прямо в стационаре или медицинском центре — не нужно отправлять образцы в лабораторию и ждать, пока придет ответ. Врачи смогут быстрее идентифицировать и изолировать зараженных, а пациентам не придется пребывать в неизвестности несколько дней. Тест прост в обслуживании и не требует специальной подготовки. Медперсоналу нужно только взять мазок из носа или горла пациента, нанести его на картридж, содержащий реагент, и вставить картридж в анализатор. Каждый аппарат может выполнять до десяти анализов за 24 часа.
Еще более оперативный тест на COVID-19 разработали в Великобритании. Он позволяет выявить COVID-19 всего за 30 минут. Чтобы провести его, достаточно портативного оборудования стоимостью около $120 и набора полосок для мазков из носа и горла по $5 каждая. Одновременно проходить тест могут до шести человек.
FDA в экстренном порядке одобрило сверхбыстрый тест на коронавирус, разработанный калифорнийской компанией Cepheid. С его помощью диагноз можно будет поставить всего за 45 минут. Как отмечает Business Insider, для обработки результатов теста не требуется специальное обучение. Нужен лишь доступ к системе Cepheid GeneXpert — в США их 5 тыс., а по всему миру — 23 тыс.
Начало тотального тестирования людей на COVID-19 во всем мире — хорошая новость как для людей, так и для национальных органов здравоохранения. До сих пор в мире нет четкого представления о том, сколько людей заражены коронавирусом и выявление тех, у кого он уже есть: их госпитализация или отправка на домашний карантин позволит быстрее оценить масштаб угрозы и вовремя принять правильные меры.
08 октября 2018
- 3699
- 3,0
- 0
- 4
Даже домашние животные могут быть переносчиками бешенства
Спонсором приза зрительских симпатий выступил медико-генетический центр Genotek.
Стоит начать с истории
Первые упоминания о болезни от укуса собак, весьма напоминающей бешенство, встречаются на клинописных глиняных табличках Древней Месопотамии в третьем тысячелетии до н.э. [1].
Древнегреческий философ Демокрит описал бешенство собак в V веке до н.э., то же сделал и Аристотель, однако он считал, что человек бешенством не болеет. Корнелий Цельс, древнеримский ученый, в I веке н.э. все же заметил аналогичное заболевание у людей и назвал его водобоязнью [2].
Начиная с XIII века у нас появляются сведения о крупных эпизоотиях бешенства на территории Европы. Вероятно, они вспыхивали и на других континентах, так как это заболевание в современном мире распространено практически повсеместно.
Эпизоотия — эпидемия среди животных.
И если вы думаете, что это все было давно, и сейчас вирус не представляет никакой опасности, вы крупно ошибаетесь: согласно данным ВОЗ 2007 года, он ежегодно уносил жизни 55 тысяч человек по всему миру [3]. Это около 151 смерти в день! Такой постоянно высокий показатель говорит о человеческой уязвимости, эпизоотии вспыхивают каждый год, что ставит под опасность жизнь каждого человека. На данный момент случаи заражения бешенством носят регулярный характер в более чем 150 странах мира, в том числе и в России [4] (рис. 1 и 2).
Рисунок 1. Оценка риска заражения бешенством в мире
Рисунок 2. Неблагополучные по бешенству регионы России, данные 2014 года подпись
Давайте знакомиться, Neuroiyctes rabid
Смертоносная пуля длиной 180 нм и шириной 75–80 нм [6] имеет двухслойную липидную оболочку, которая довольно сильно по строению напоминает привычную нам мембрану клеток. На своей поверхности вирион имеет шипы длиной 10 нм и шириной 3 нм. Упорядоченное расположение шипов на мембране обеспечивает особый гликопротеид, далее мы будет к нему возвращаться еще несколько раз, запомните его, товарищи.
Вирион — полноценная вирусная частица, находящаяся вне клетки-хозяина.
Под прочной оболочкой внутри вируса залегает одна молекула РНК, свернутая в спираль, она мало похожа на привычные нам РНК клеток и вообще не способна к инфицированию. Но она имеет важное значение для жизни хитрого вируса, поскольку несет в себе минус-цепь РНК или, как её еще называют, рибонуклеопротеид (РНП), который послужит матрицей для синтеза вирусной РНК (вРНК) по правилу комплементарности, как только попадет в клетку-хозяина.
РНК вируса бешенства довольно небольшая и содержит всего 5 генов, кодирующих необходимые белки. Чтобы лучше понимать, что необходимо Neuroiyctes rabid для существования, нам вместе с тобой, уважаемый читатель, стоит лучше разобраться в этом вопросе.
Итак, мы знаем, что у цепи РНК есть два конца: 5′ (место присоединения остатка фосфорной кислоты) и 3′ (место присоединения рибозы).
Начиная с 3′ гены вируса бешенства расположены так:
- Ген нуклеокапсидного белка N, окружающего цепь РНК.
- Ген белка NSV — одного из компонентов вирусной транскриптазы, входящего в состав капсида.
- Ген, кодирующий матриксный белок M, выстилающий липидную мембрану с внутренней стороны.
- Ген белка G — внешнего гликопротеида вирусного суперкапсида (оболочки, покрывающей капсид с внешней стороны и содержащей шипы), который отвечает за адсорбцию и внедрение вируса в клетку, обладает антигенными и иммуногенными свойствами (антитела именно к этому гликопротеиду нейтрализуют вирус бешенства).
- Ген белка L — высокомолекулярного компонента вирусной транскриптазы [5] (рис.4).
Рисунок 4. Схематичное изображение РНК вируса бешенства, белки, синтезируемые на определенных участках, и их функции
рисунок автора статьи
Когда все необходимые белки синтезируются в клетке-хозяине, то белки G и M будут располагаться с двух сторон от оболочки вируса, а N, NSV и L прилегать к минус-цепи РНК (рис. 5).
Рисунок 5. Схематичное строение вируса бешенства
На самом деле различают несколько диких и один культивированный штаммы вируса бешенства. Первые циркулируют в природе, имеют длительный инкубационный период, чаще образуют специфические тельца, локализуются в нервных клетках, слюнных железах и роговице глаза. К ним относят [7]:
- вирус классического бешенства — RABV;
- вирус рукокрылых Лагос — LBV;
- вирус Дювенхейдж — DUVV;
- лиссавирусы европейских рукокрылых EBLV-1 и EBLV-2;
- лиссавирус австралийских рукокрылых — ABLV;
- вирус Мокола — MOKV.
Культивированный (фиксированный) вирус впервые выделил Луи Пастер в 1885 году путем длительного заражения лабораторных кроликов дикой формой вируса, которая мутировала и приобрела определенные, выгодные для нас, качества. Например, она опасна только для лабораторных животных, на которых ее выводили, имеет очень короткий инкубационный период, не образует специфических телец и поражает только ЦНС. Организм человека она не убивает, но заставляет иммунную систему вырабатывать антитела, которые могут защитить и от других, более опасных, штаммов вируса бешенства. Стоит ли говорить, что люди с радостью стали использовать взвесь мозга больных животных в качестве вакцины и успешно практиковали такой метод до сравнительно недавнего времени [5].
Чтобы создать подобные себе копии, вирусу бешенства, как и любому другому клеточному паразиту, для начала нужно попасть в организм хозяина и найти интересующую его клетку. Мы уже знаем, что излюбленным местом для его размножения является нервная ткань, в особенности — ЦНС. После попадания с зараженной слюной в ткани, шипастый негодяй проводит в мышечной ткани нового хозяина до нескольких дней, затем адсорбируется на нервные окончания с помощью уже известного гликопротеида G и проникает в нервную клетку путем эндоцитоза (рис. 6).
Рисунок 6. Схематичное изображение жизненного цикла вируса бешенства. RNA = РНК.
Дальнейшая скорость протекания жизненного цикла вируса зависит от места попадания в организм: чем дальше от ЦНС, тем дольше вирус будет распространяться по аксонам, ведь скорость его передвижения составляет примерно 3 мм/ч.
Проникнув в клетку, вирус бешенства сливается с мембраной лизосомы, и его внутреннее содержимое высвобождается. Затем в ход идет вирионная транскриптаза, которая обусловливает считывание информации с минус-РНК, и синтез на ней, как на матрице, вРНК. Далее все идет по стандартной схеме биосинтеза белка: к кодонам вРНК по правилу комплементарности пристраиваются антикодоны тРНК, последние перемещаются к рибосомам, где в дальнейшем синтезируются вирусспецифические белки, с которыми мы уже знакомы. вРНК связывается с N, L и NSV в нуклеокапсид, который подходит к назначенному месту, где уже в плазмалемму (клеточную мембрану) клетки-хозяина успешно встроились M и G. Затем генетическая информация и прилежащие белки обволакиваются мембраной, и путем эндоцитоза в области дендритов (отростков нервных клеток) выходят новые вирионы.
Кроме того, вирус бешенства может блокировать биосинтез нормальных белков клетки [5] и повышать экспрессию и выделение цитокинов (клеточных медиаторов) в близлежащих, незараженных клетках, что, вероятно, способствует развитию энцефалита [9].
Когда меры предосторожности не сработали
Я искренне надеюсь, что вам никогда в жизни не понадобится несколько следующих абзацев, но с моей стороны было бы преступно упустить это.
Итак, если вас все же покусал или облизал зверь (рис. 6), лучше не надеяться на лучшее, а экстренно применять необходимые меры. Для начала хорошенько промойте место укуса водой с мылом, а затем прижгите спиртовым раствором йода. Если вы вдруг врач-эпидемиолог, спешащий на работу, или обычный смертный, в руках у которого почему-то есть антирабический иммуноглобулин, то это как раз то время, когда стоит его применить по назначению. Сходить к врачу все равно придется, но шансы на выживание у вас резко возрастут.
Если вы хотите, чтобы больше никто не пострадал (а я уверена, что хотите), то вызовите бравую бригаду СББЖ (станции по борьбе с болезнями животных), они усыпят животное и доставят его в лабораторию целиком или только голову, иногда могут достать головной мозг и законсервировать его 50-процентным глицерином, если поездка обещает быть достаточно долгой. Трупный материал упаковывают в плотный полиэтиленовый мешок, а мозг в банку с пробкой, которую к тому же заливают парафином, а потом все это дополнительно помещают в водонепроницаемую тару, чтобы полностью себя обезопасить.
На СББЖ материал с подозрением на бешенство без очереди и всякого промедления исследуют смелые ветеринары, ведь в данном случае речь может идти о сохранении жизни укушенного человека. Работая с, вероятно, зараженным мозгом, надевают две пары перчаток, защитные очки на глаза и шесть марлевых повязок, прикрывающих нос и рот, все манипуляции проводят в стерильных условиях [10]. Представляете, как все серьезно?
Скорость течения болезни может сильно варьировать: инкубационный период длится от 10 до 90 дней и более, но обычно около месяца. Быстрее всего он проходит при попадании вируса в области лица и головы, причем для этого не обязательно, чтобы вас за щечки покусала собака с пеной у рта, ведь проникновение вируса в организм возможно не только через повреждение кожных покровов, но и через слизистые оболочки.
Как только вирус попал в рану или на слизистую, он не спешит оттуда уходить и только через 1–4 дня проникает в нервную ткань. Конечно, ему не терпится скорее попасть в ЦНС и вызвать смертельный энцефалит, но ведь тело хозяина имеет еще парочку пригодных мест, интересующих вирус бешенства, а именно: слюнные железы и роговица глаза. Проникновение в первые из перечисленных имеет принципиальное значение для передачи вируса новым хозяевам.
В развитии заболевания выделяют три стадии: начальную (она идет сразу после инкубационного периода), возбуждения и параличей [11], [12]. В любом случае, не советую вам ждать ни одну из них. Когда появятся симптомы, будет уже слишком поздно, ведь излечение возможно только во время инкубационного периода. Впрочем, существует гипотеза, согласно которой бешенство можно вылечить путем ингибирования пептидов вируса непосредственно в зараженном организме [13], так что, вероятно, через несколько лет данная проблема будет решена, но пока что будем читать и бояться.
1. Начальная стадия.
Появляются беспокойство и страх, тошнота, головокружение, зуд и покраснение в области укуса. Длится от 1 до 3 дней.
2. Стадия возбуждения.
Возбуждение, судороги гортани и глотки, водобоязнь, агрессивность, галлюцинации. Именно в этот период появляются наиболее привычные симптомы бешенства. Из-за невозможности глотать слюну, она взбивается в пену и валит изо рта. Есть даже предположение, что водобоязнь провоцирует животное разбрасывать слюну, так как даже вид жидкости вызывает болезненные спазмы глотки. Домашние животные, которые обычно не отходят от дома дальше, чем на один километр, беспокойно бегают, превращаются в бродяг и стремятся напасть на все, что движется (или даже не движется), что, конечно, способствует распространению заболевания. Дикие животные теряют страх перед человеческими поселениями и выходят из леса, чаще всего, кусая домашних животных, реже — человека. Иногда может наблюдаться, наоборот, излишняя ласковость зараженных животных, их стремление поскорее облизать вас, что на самом деле еще более опасно, так как вызывает меньше подозрений.
3. Стадия параличей.
Через 5–7 дней после начала появления симптомов смерть наступает от паралича дыхательной или сердечной мускулатуры, так как нервная система перестает посылать им сигналы о необходимых сокращениях.
Современные же вакцины имеют ряд неоспоримых преимуществ [14]:
- Их выращивают не в живых существах, а в культурах клеток эмбрионов птиц, что делает процесс создания вакцины более контролируемым и гуманным.
- Они более безопасны, так как почти не вызывают побочных эффектов.
- Они экономичнее. Объем для успешной вакцинации нужен меньший, а хранить такие вакцины можно дольше.
Сплошные плюсы! Более того, в настоящее время используют препарат, состоящий не из цельных вирусных частиц, а из гликопротеина вируса бешенства (того самого G), который обладает высокой иммуногенностью. В этом случае количество необходимых инъекций снижается до шести, а в некоторых случаях даже до трех. Активный иммунитет к бешенству достигается последовательностью инъекций ослабленного вируса и может не снижаться от одного года до трех лет [3].
Если вирус попал в область головы и шеи, то, как я уже говорила, он развивается очень быстро, поэтому людям вводят готовый специфический иммуноглобулин, который создает пассивный иммунитет, что несколько продлевает инкубационный период и несколько отдаляет момент гибели зараженного. Антирабический иммуноглобулин получают из 10-процентной сыворотки крови зараженных бешенством лошадей [15].
Просто о сложном. Лабораторная диагностика
В лаборатории СББЖ проводится четырехступенчатый анализ материалов, которые были добыты от того животного, которое на вас напало. Принято придерживаться данной последовательности методов лабораторной диагностики:
1. Гистологический метод для обнаружения телец Бабеша—Негри.
В зараженных клетках можно обнаружить специфические включения, так называемые тельца Бабеша—Негри, которые могут быть размером до 25 мкм, а значит, они хорошо видны в световой микроскоп. Их точная функция до сих пор не ясна.
Из головного мозга животного с левой и правой сторон берут материал на гистологические срезы или мазки. Вирус бешенства локализуется в определенных частях головного мозга, таких как Аммонов рог (гиппокамп), мозжечок, кора полушарий и продолговатый мозг (рис. 7). Суммарно получается восемь гистопрепаратов. Мазки или срезы подвергаются окраске по Селлерсу (тельца получаются розово-красного цвета (рис. 8)) или Муромцеву (окраска телец фиолетовая с темно-синими включениями (рис. 9)).
Рисунок 7. Места локализации телец Бабеша—Негри в головном мозге: гиппокамп, продолговатый мозг, мозжечок, кора полушарий
Рисунок 8. Тельца Бабеша—Негри насыщенного розового цвета, окраска по Селлерсу
Читайте также: