Действие биологических веществ на вирусы
Вирусы в активном состоянии находятся внутри клетки (вирусные частицы) и вне клетки в покоящемся состоянии (вирионы). В период репродукции вирусная частица тесно связана с клеточными элементами, и сохранение ее зависит от устойчивости клетки. Следует отметить, что наиболее полно изучена устойчивость вирионов.
Устойчивость вирусов животных сравнительно хорошо изучена при воздействии внешних факторов: температуры, излучений (ионизирующего, рентгеновского, ультрафиолетового и светового), ультразвука, давления, рН среды, формалина, гидроксиламина, органических растворителей, фенола и др. Для защиты от этих воздействий у вирионов имеется белковая оболочка. Различное строение и химический состав белковых оболочек, характер связей между составными частями вирионов обуславливают неодинаковую устойчивость вирусов. В зависимости от этих особенностей один и тот же фактор может разрушать одни вирионы полностью, другие частично, а на третьи совершенно не оказывать влияния. Например, в кислой среде (рН 3,0…6,0) большая группа миксомирусов проявляет значительную устойчивость, а некоторые вирусы из семейства Picornaviridae быстро инактивируются. Такое же явление наблюдают по отношению к органическим растворителям: те вирионы, в оболочках которых нет липидов, устойчивы к этим веществам, а липидосодержащие вирусы быстро разрушаются при их воздействии.
Избирательная чувствительность вирусов к физико-химическим факторам - это довольно стойкое свойство, которое передается по наследству. Устойчивость вирусов имеет большое практическое значение.
Способность вирусов частично или полностью инактивироваться при воздействии одних факторов и сохранять свои биологические свойства при действии других широко используют в производстве инактивированных вакцин, при дезинфекции, консервации вирусов.
Инактивация вирусов означает полную или частичную утрату их биологической активности (инфекционности и иммуногенности), которая наступает в результате действия физико-химических факторов. При изменении вирусной нуклеиновой кислоты и белка наступает полная инактивация, то есть потеря всех биологических свойств вируса. Когда изменения происходят только в нуклеиновой кислоте или только в белковой оболочке, говорят о частичной инактивации вируса. В первом случае вирус теряет только инфекционные свойства, но сохраняет иммуногенность, во втором случае сохраняется инфекционность.
Все агенты химической и физической природы в той или иной степени вызывают изменения белковой оболочки и нуклеиновой кислоты вызывают изменения белковой оболочки и нуклеиновой кислоты нуклеоида вируса. Характер и степень этих изменений зависят от природы инактивирующего фактора, его дозы, продолжительности действия и от вида вируса.
При инактивации вируса может происходить или расщепление (гидролиз) белков оболочки с последующим распадом ее на отдельные морфологические единицы, или коагуляция и уплотнение белков с сохранением общей структуры оболочки. Расщепление и распад белковой оболочки наблюдают у вирусов при инактивации их в кислой и щелочной среде при продолжительном, но слабом нагревании. При воздействии этих факторов вирусная нуклеиновая кислота обнажается и подвергается разрушительному действию того же фактора, который вызвал распад оболочки или клеточного фермента нуклеазы, постоянно содержащейся в неочищенных тканевых суспензиях вируса. При действии нуклеаз в вирусной нуклеиновой кислоте происходит разрыв связей между остатком фосфорной кислоты и молекулой сахара.
Коагуляция и уплотнение белковой оболочки вирусов происходят при воздействии на них формальдегида, высокой (выше 70 0 С) температуры или фенола. Механизм инактивации вирусов формальдегидом зависит от концентрации и продолжительности воздействия: высокие концентрации вызывают быструю коагуляцию и уплотнение белков, формальдегид не успевает проникнуть внутрь вириона, и вирусная нуклеиновая кислота сохраняет свою инфекционность.
Указанный механизм инактивации вирусов наблюдают и при воздействии высоких температур, а также раствора карболовой кислоты. При низких концентрациях формальдегида уплотнение белковой оболочки наступает не сразу. Вначале формальдегид реагирует не только с белком оболочки, но, проникая в центр вириона, действует и на нуклеиновую кислоту, нарушая ее водородные связи с белком и ковалентные связи аминогрупп пуриновых и пиримидиновых оснований. В результате целостность молекулы нуклеиновой кислоты нарушается, и она теряет свои инфекционные свойства. вирус ветеринария оспа бронхит
Таким образом, в одних случаях коагуляция белковой оболочки сопровождается разрушением нуклеиновой кислоты и у вируса наступает необратимая потеря инфекционности. В других случаях у вирусной нуклеиновой кислоты способность к репродукции сохраняется, однако, при такой инактивации изменения в белковой оболочке часто носят обратимый характер. При соответствующих условиях физико-химические свойства ее восстанавливаются, в результате чего наступает реактивация вируса, то есть восстановление его инфекционности.
В целях инактивации вирусов были испытаны химические и физические агенты, которые действуют преимущественно на нуклеиновую кислоту: I-пропиолактон, гидроксиламин, ультрафиолетовое излучение некоторых красителей (фотодинамическое действие). Эти агенты, проникая через белковую оболочку, не нарушают ее структуру, но сильно повреждают нуклеиновую кислоту, в результате чего вирус теряет свои инфекционные свойства.
Инактивация вирусов во всех случаях представляет собой физико-химический процесс, который происходит в определенной последовательности по законам течения химических реакций. Развитие этого процесса во времени зависит от дозы (или концентрации) инактивирующего фактора, чувствительности вириона, условий инактивации и других причин.
Для уничтожения вирусов используют кипячение, сухой жар, автоклавирование, ультрафиолетовое излучение, растворы фенола, едкого натра, лизола (2…5%), особенно горячие (70…90 0 С).
Температура. Устойчивость разных вирусов к повышенной температуре, когда они находятся вне организма хозяина, весьма различна. Характеристика термоустойчивости вирусов обычно дается путем испытания инфекционности экстрактов зараженных тканей, выдерживаемых в течение 10 мин при критической температуре. Большую роль при этом играют условия, создающиеся в экстрактах. Например, вирус табачной мозаики при рН 7 инактивируется в течение 10 мин при 75° С, но при рН 5,5 за то же время инактивация оказывается неполной даже при 90° С.
По устойчивости к повышенной температуре среди вирусов исключительное место занимает вирус С1 коровьего гороха, инактивирующийся при температуре, превышающей 108° С (Варид и Плэкидес, 1952). Замораживание зараженных листьев или отжатого из них сока обычно мало повреждает вирусы. Однако в очищенных препаратах вирусы менее стойки. Прибавление к таким препаратам глюкозы или солей повышает их устойчивость. Большое значение имеет рН среды. Очищенный препарат вируса табачной мозаики выдерживает повторное замораживание при нейтральной среде, но денатурируется, если замораживание производится при рН 3.
Многие зоопатогенные вирусы длительно сохраняют активность в замороженном состоянии в условиях среды, богатой органическими веществами. Например, вирус японского энцефалита, находясь в среде, состоящей из 10%-ной суспензии мозга в физиологическом растворе, полностью сохраняет инфекционность в течение года при —70° С, но при комнатной температуре его инфекционность сильно снижается уже через 10 дней. Вирус трахомы при —70° С сохраняется до 6 месяцев. Вирус пситтакоза в высушенном состоянии при —75° С сохраняется до года, в то время как при комнатной температуре он инактивируется за несколько дней. Вирус гриппа при —70° С сохраняет активность 6 месяцев и, возможно, дольше.
Высушивание. Большинство фитопатогенных вирусов быстро инактивируется при обычном высушивании на воздухе зараженных тканей или сока. Даже вирус табачной мозаики, отличающийся высокой стойкостью, при высушивании теряет значительную часть инфекционности. Однако, если инфицированные листья быстро высушивать при 1° С и в дальнейшем выдерживать листья в условиях отсутствия влажности, то и нестойкие вирусы могут сохранить инфекционность в течение нескольких месяцев или года (вирусы огуречной мозаики 1, кольцевой пятнистости табака, Y-вирус картофеля).
Для многих зоопатогенных вирусов характерна высокая стойкость к быстрому высушиванию. Вирус весенне-летнего клещевого энцефалита, высушенный в вакууме, может храниться не менее 5 лет. Длительно сохраняются в высушенном состоянии вирусы бешенства, лимфоцитарного менингита, оспы, герпеса, гриппа, кори, желтой лихорадки, денге. В большинстве случаев устойчивость перечисленных вирусов испытывалась при высушивании их в вакууме. В этих условиях устойчивость фито- и зоопатогенных вирусов оказывается близкой.
Ультрафиолетовый свет. Все вирусы быстро инактивируются при действии ультрафиолетового света. Вирусы, инактивированные ультрафиолетовыми лучами, сохраняют нормально присущие им физические свойства и антигенный состав.
Некоторые вирусы после инактивации ультрафиолетовыми лучами могут восстанавливать инфекционность при последующем облучении зараженных тканей видимым светом. При освещении инактивированного вируса вне клеток хозяина реактивация не происходит. У разных вирусов степень фотореактивации различна; особенно высока она у вирусов кольцевой мозаики капусты, мозаики огурца и кольцевой пятнистости табака. В сходных условиях она выражена у бактериофагов и наблюдается также у некоторых бактерий и спор грибов,
Ионизирующая радиация. При действии ионизирующих радиации на вирусы наблюдается инактивация последних, скорость которой зависит от некоторых условий среды. Радиация может возбуждать в растворах, содержащих вирус, образование перекисей, Н и ОН радикалов, инактивирующих вирусы в той или иной степени. Вторичный характер этих инактивирующих веществ виден из того, что скорость инактивации вируса может быть снижена при добавлении в среду желатина, пептона и других защитных веществ. Однако и в защищенных условиях наблюдается некоторая постоянная величина инактивации вируса под действием радиации, которая принимается за непосредственный прямой эффект лучей на частицы вируса (Луриа и Икснер, 1941).
Вирусы, имеющие наиболее мелкие частицы, могут, инактивироваться почти при каждой ионизации, происходящей внутри них. Крупные вирусы, представляющие собой более сложную систему, могут переносить несколько ионизации, протекающих внутри их системы. Прямое инактивирующее действие облучения на вирусы определяется дозой радиации и не зависит от температуры или от времени, в течение которого длилось облучение.
Ультразвук. Звуковые волны высокой частоты разрушают вирус табачной мозаики, взвешенный в жидкостях, содержащих растворенный воздух. При этом происходит разламывание палочковидных частиц вируса на более мелкие фрагменты. Антигенные свойства инактивированного вируса сохраняются, но поведение его в серологических реакциях меняется. Измельченный ультразвуком вирус связывает большее количество антител, чем исходный препарат.
Гидростатическое давление. Некоторые вирусы проявляют относительно большую устойчивость к высоким давлениям. Давление до 5000 атм слабо повреждает вирус табачной мозаики, находящийся в соке. При этом же давлении водные растворы очищенных препаратов вируса подвергаются сильной инактивации. При действии 8000 атм вирус инактивируется и в соке. Вирус некроза табака менее устойчив и разрушается в соке при давлении в 3000—5000 атм.
Из физических факторов наибольшее влияние на микроорганизмы оказывают: температура, высушивание, лучистая энергия, ультразвук, давление.
Температура: жизнедеятельность каждого микроорганизма ограничена определенными температурными границами. Эту температурную зависимость обычно выражают тремя точками: минимальная (min) температура — ниже которой размножение прекращается, оптимальная (opt) температура — наилучшая температура для роста и развития микроорганизмов и максимальная (max) температура — температура, при которой рост клеток или замедляется, или прекращается совсем. Впервые в истории науки Пастером были разработаны методы уничтожения микроорганизмов при воздействии на них высоких температур.
Оптимальная температура обычно приравнивается к температуре окружающей среды.
Высушивание. Для нормальной жизнедеятельности микроорганизмов нужна вода. Высушивание приводит к обезвоживанию цитоплазмы, нарушается целостность цитоплазмагической мембраны, что ведет к гибели клетки. Некоторые микроорганизмы под влиянием высушивания погибают уже через несколько минут: это менингококки, гонококки. Более устойчивыми к высушиванию являются возбудители туберкулеза, которые могут сохранять свою жизнеспособность до 9 месяцев, а также капсульные формы бактерий. Особенно устойчивыми к высушиванию являются споры. Например, споры плесневых грибов могут сохранять способность к прорастанию в течение 20 лет, а споры сибирской язвы могут сохраняться в почве до 100 лет.
Лучистая энергия. В природе бактериальные клетки постоянно подвергаются воздействию солнечной радиации. Прямые солнечные лучи губительно действуют на микроорганизмы. Это относится к ультрафиолетовому спектру солнечного света (УФ-лучи), они инактивируют ферменты клетки и разрушают ДНК. Патогенные бактерии более чувствительны к действию УФ-лучей, чем сапрофиты. Поэтому в бактериологической лаборатории микроорганизмы выращивают и хранят в темноте.
Бактерицидное действие УФ-лучей используют для стерилизации закрытых помещений: операционных, родильных отделений, перевязочных, в детских садах и т. д. Для этого используются бактерицидные лампы ультрафиолетового излучения с длиной волны 200—400 нм.
На микроорганизмы оказывают влияние и другие виды лучистой энергии — это рентгеновское излучение, а-, р- и у-лучи оказывают губительное действие на микроорганизмы только в больших дозах. Эти лучи разрушают ядерную структуру клетки. В последние годы радиационным методом стерилизуют изделия для одноразового использования — шприцы, шовный материал, чашки Петри.
Малые дозы излучений, наоборот, могут стимулировать рост микроорганизмов.
Ультразвук вызывает поражение клетки. Под действием ультразвука внутри клетки возникает очень высокое давление. Это приводит к разрыву клеточной стенки и гибели клетки. Ультразвук используют для стерилизации продуктов: молока, фруктовых соков.
Высокое давление. К атмосферному давлению бактерии, а особенно споры, очень устойчивы. В природе встречаются бактерии, которые живут в морях и океанах на глубине 1000— 10 000 м под давлением от 100 до 900 атм. Сочетанное действие повышенных температур и повышенного давления используется в паровых стерилизаторах для стерилизации паром под давлением.
Влияние химических веществ на микроорганизмы различно. Оно зависит от химического соединения, его концентрации, продолжительности воздействия.
В малых концентрациях химическое вещество может являться питанием для бактерий, а в больших — оказывать на них губительное действие.
Многие химические вещества изспользуются в медицине в качестве дезинфицирующих средств. К ним относятся фенолы, соли тяжелых металлов, кислоты, щелочи. Активность дезинфицирующих веществ не одинакова и зависит от времени экспозиции, концентрации, температуры. В качестве контрольных микроорганизмов для изучения действия дезрастворов используют S. typhi и S. aureus. Виды дезинфекций: профилактическая— для предупреждения и распространения инфекций; текущая — при возникновении эпидемического очага и заключительная — после окончания эпидемической вспышки
Некоторые химические вещества используются в качестве антисептиков. Антисептики — это противомикробные вещества, которые используются для обработки биологических поверхностей. Антисептика — это комплекс мероприятий, направленных на уничтожение микробов в ране или организме в целом, на предупреждение и ликвидацию воспалительного процесса. К антисептикам относятся:препараты йода (спиртовый раствор йода, йодинол, йодоформ, раствор Люголя);соединения тяжелых металлов (соли ртути, серебра, цинка);химические вещества нитрофуранового ряда (фуразо-лидон, фурациллин); окислители (перекись водорода, калия перманганат); кислоты и их соли (салициловая, борная);красители (метиленовый синий, бриллиантовый зеленый).
Открытие вирусов
В 1892 году Д.И. Ивановский (см. Рис. 1), изучая мозаичную болезнь табака (см. Рис. 2), установил, что причиной заболевания является некое инфекционное начало, содержащееся в листьях больных растений, которое проходит через фильтр, задерживающий обыкновенные бактерии. Если профильтрованный сок внести в листья здоровых растений, то они также заболевают мозаичной болезнью.
Рис. 1. Д.И. Ивановский
Рис. 2. Мозаичная болезнь табака
В 1898 году независимо от Ивановского аналогичные результаты получил голландский микробиолог М. Бейеринк. Однако он предположил, что мозаичную болезнь табака вызывают не мельчайшие бактерии, а некое жидкое заразное начало, которое он назвал фильтрующим вирусом.
Размеры вирусов определяются нанометрами (20-200 нм), поэтому их изучение началось после открытия электронного микроскопа. В настоящее время описаны вирусы практически всех групп живых организмов.
Строение вирусов
Вирусы – неклеточные формы жизни. Они состоят (см. Рис. 3) из фрагмента генетического материала (РНК или ДНК), составляющего сердцевину вируса, и защитной оболочки, которая называется капсид. У некоторых вирусов (герпес, грипп) есть дополнительная липопротеидная оболочка – суперкапсид, которая возникает из плазматической мембраны клетки-хозяина.
Рис. 3. Строение вируса
Вирусы не способны к самостоятельной жизнедеятельности. Они могут проявлять свойства живого, только попав в клетку-хозяина. Они используют потенциал и энергию этой клетки для создания своих новых вирусных частиц, следовательно, вирусы являются внутриклеточными паразитами.
Размножение вирусов
Обычно вирус связывается с поверхностью клетки-хозяина и проникает внутрь. Каждый вирус ищет своего хозяина, то есть клетки строго определенного вида. Например, вирус – возбудитель гепатита (желтуха) проникает и размножается только в клетках печени, а вирус эпидемического паротита (свинка) – только в клетках околоушных слюнных желез человека.
Проникнув внутрь клетки-хозяина, вирусная ДНК или РНК начинает взаимодействовать с ее генетическим аппаратом таким образом, что клетка начинает синтезировать белки, свойственные вирусу (см. Рис. 4).
Рис. 4. Схема репродукции вируса
При заражении ретровирусом (например, вирус иммунодефицита человека (ВИЧ)), у которого в качестве генетического материала используется молекула РНК, наблюдается другая картина. При попадании ретровируса в клетку-хозяина происходит обратная транскрипция. То есть на основе вирусной РНК синтезируется вирусная ДНК, которая встраивается в ДНК человека. Такой тип взаимодействия вируса с клеткой называется интегративным, а встроенная в состав хромосомы клетки ДНК вируса называется провирусом. Далее провирус реплицируется (удваивается) в составе хромосомы и переходит в геном дочерних клеток. Однако под влиянием некоторых физических и химических факторов провирус может выщепляться из хромосомы клетки и переходить к продуктивному типу взаимодействия, то есть синтезировать новые вирусные частицы.
При заражении ВИЧ человек чувствует себя здоровым, пока вирусный генетический материал встроен в хромосому человека. Однако при выщеплении этого вирусного генетического материала из клетки она начинает образовывать новые вирусные частицы, вследствие чего развивается смертельное заболевание – синдром приобретенного иммунодефицита (СПИД).
Вирусы являются возбудителями большого количества заболеваний человека: корь, грипп, оспа, краснуха, энцефалит, свинка, гепатиты, СПИД. Известен также целый ряд заболеваний растений, вызываемых вирусами, например мозаичная болезнь табака, томатов, огурцов или скручивание листьев картофеля. Всего описано около 500 видов вирусов, поражающих клетки позвоночных животных, и около 300 вирусов растений. Некоторые вирусы участвуют в злокачественном перерождении клеток и тем самым провоцируют онкологические заболевания.
ДНК- и РНК-содержащие вирусы
В зависимости от содержащегося генетического материала вирусы подразделяются на ДНК-содержащие и РНК-содержащие.
Одноцепочные РНК-содержащие вирусы подразделяются на:
1. Плюс-нитевые (положительные). Плюс-нить РНК этих вирусов выполняет наследственную (геномную) функцию и функцию информационной РНК (иРНК).
2. Минус-нитевые (отрицательные). Минус-нить РНК этих вирусов выполняет только наследственную функцию.
К РНК-содержащим вирусам относятся более
вирусов, вызывающих респираторные заболевания, а также вирус гриппа, кори, краснухи, свинки, ВИЧ. Также существует специфическая группа вирусов – арбовирусы, которые переносятся членистоногими.
Двухцепочные ДНК-содержащие вирусы вызывают такие заболевания, как папиллома человека или герпес, гепатит В (гепатит А и гепатит С вызывается РНК-содержащими вирусами).
ДНК-содержащие вирусы поражают также растения. Они вызывают, например, золотую мозаику бобов или полосатость у кукурузы.
Вирус гепатита С
По своему строению вирус гепатита С – это РНК-содержащий вирус, имеющий сферическую форму, сложно устроенный (см. Рис. 5).
В качестве генетического материала такой вирус содержит линейную однонитчатую молекулу РНК.
Рис. 5. Гепатит С
Вопреки бытующим предрассудкам, подцепить вирус гепатита C невозможно через социальные контакты (поцелуи, объятия), через продукты или воду, через грудное молоко. Вы ничем не рискнете, если разделите с носителем вируса трапезу или напитки. Заразиться гепатитом C можно при контакте с кровью инфицированного человека либо половым путем.
В настоящее время для лечения гепатита С используют два препарата: Интерферон альфа и Рибавирин.
Бактериофаги
Рис. 6. Бактериофаг (Источник)
Особую группу вирусов составляют бактериофаги (или просто фаги), которые заражают бактериальные клетки (см. Рис. 6). Фаг укрепляется на поверхности бактерии при помощи специальных ножек и вводит в ее цитоплазму полый стержень, через который проталкивает внутрь клетки свою ДНК или РНК. Таким образом, генетический материал фага попадает внутрь бактериальной клетки, а капсид остается снаружи. В цитоплазме начинается репликация генетического материала фага, синтез его белков, построение капсида и сборка новых фагов. Уже через 10 мин после заражения в бактерии формируются новые фаги, а через полчаса бактериальная клетка разрушается, и из нее выходят около 200 заново сформированных вирусов – фагов, способных заражать другие бактериальные клетки (см. Рис. 7). Некоторые фаги используются человеком для борьбы с болезнетворными бактериями, вызывающими холеру, дизентерию, брюшной тиф.
Рис. 7. Схема размножения бактериофага (Источник)
Список литературы
- Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
- Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.
- Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.
- Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Домашнее задание
Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.
- 16293
- 12,7
- 2
- 4
Обратите внимание!
Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.
Эволюция и происхождение вирусов
В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.
Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.
Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?
Строение вирусов и иммунный ответ организма
Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).
Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].
Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).
Причины поражений в борьбе с ВИЧ
Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.
Рисунок 5. Схема развития феномена ADE при вирусных инфекциях. а — Взаимодействие между антителом и рецептором FcR на поверхности макрофага. б — Фрагмент С3 комплемента (компонент комплемента, после присоединения которого весь этот комплекс приобретает способность прилипать к различным частицам и клеткам) и рецептор комплемента (complement receptor, CR) способствуют присоединению вируса к клетке. в — Белки комплемента С1q и С1qR способствуют присоединению вируса к клетке (в составе молекулы C1q имеется рецептор для связывания с Fc-фрагментом молекулы антитела). г — Антитела взаимодействуют с рецептор-связывающим сайтом вирусного белка и индуцируют его конформационные изменения, облегчающие слияние вируса с мембраной. д — Вирусы, получившие возможность реплицироваться в данной клетке посредством ADE, супрессируют противовирусные ответы со стороны антивирусных генов клетки. Рисунок с сайта supotnitskiy.ru.
Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.
Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.
Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].
* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.
Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.
Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.
Читайте также: