Факторы патогенности и вирулентности вирусов
ВНИМАНИЕ! САЙТ ЛЕКЦИИ.ОРГ проводит недельный опрос. ПРИМИТЕ УЧАСТИЕ. ВСЕГО 1 МИНУТА.
Вирусный инфекционный процесс
Вирусный инфекционный процесс (вирусная инфекция) – это процесс взаимодействия вирусов с макроорганизмом в конкретных условиях окружающей и социальной среды. Вирусный инфекционный процесс варьирует от бессимптомной персистенции вирусов до клинически манифестных вариантов вирусных заболеваний, которые являются его крайними формами проявления. Развитие того или иного типа инфекционного процесса определяется биологическими свойствами вирусов, их инфицирующей дозой и состоянием макроорганизма. Факторы окружающей и социальной среды влияют на распространенность инфекционного вирусного процесса в популяции людей или других живых существ.
Факторы патогенности вирусов.
Вирусы абсолютно патогенны, поскольку не способны размножаться вне живой клетки. Непатогенных вирусов нет. Патогенность вирусов – это потенциальная их способность вызывать инфекционный процесс. Патогенность вирусов генетически детерминирована. Патогенность даже гомологичных вирусов для разных типов клеток различна, что определяется в вирусной популяции удельным весом вирусов-мутантов, проявляющих больший или меньший тропизм к той или иной клеточной культуре. Фенотипическим проявлением патогенности вирусов является вирулентность (инфекционность) – способность прикрепляться, проникать и размножаться в чувствительной клетке.
Факторами патогенности вирусов являются: адгезины, нуклеиновые кислоты, белки и ферменты.
Адгезины – это протеиновые, гликопротеиновые или гликолипопротеиновые структуры, расположенные на вирусном суперкапсиде или капсиде и выполняющие функцию рецепторов. Посредством адгезинов вирионы прикрепляются к чувствительным клеткам, имеющим гомологичный вирусному рецептору клеточный антирецептор. Вирионы, полностью лишенные адгезинов, неинфекционны. Клетка, не имеющая антирецепторов к адгезинам конкретного вируса, данным вирусом не инфицируется, что лежит в основе видового иммунитета. Аналогичная ситуация развивается при блокаде клеточных антирецепторов лекарственными веществами.
Нуклеиновые кислоты – основной фактор патогенности вирусов. Вирусные РНК и ДНК инфекционны – обладают способностью проникать в клетки и обеспечивать репродукцию вирусов. Вирусные геномы содержат гены, продукты которых обеспечивают переключение рибосом клетки-хозяина на синтез вирусных белков, прежде всего, ферментов, участвующих в репликации вирусной нуклеиновой кислоты. Блокада клеточного метаболизма сопровождается нарушением специфических функций клетки; развитием гипоксии и активации перекисного окисления липидов, которое ведет к дестабилизации клеточных мембран и к их разрушению. Вирусные РНК и ДНК являются индукторами продукции клеткой интерферона, молекулы которого фиксируются на клеточных цитоплазматических мембранах и являются активаторами натуральных киллеров, разрушающих инфицированные вирусами интерферонпродуцирующие клетки. Вирусные нуклеиновые кислоты при интеграции в ДНК клетки-хозяина способны вызывать либо мутации, ведущие к опухолевой трансформации клеток, либо персистенцию вирусов.
Вирусные белки могут вызывать интоксикацию организма как непосредственно, так и за счет стимуляции гиперпродукции макрофагами интерлейкина-1β (эндогенного пирогена) и фактора некроза опухолей-β (кахектина). Белки многих вирусов способны индуцировать клеточный апоптоз – программируемую гибель клетки. Встроенные в состав суперкапсидов в клеточные цитоплазматические мембраны, вирусные белки являются мишенью для Т-киллеров и антител, разрушающих вирусинфицированные клетки. Белки некоторых вирусов обладают канцерогенным и мутагенным действием. Вирусные белки обладают иммуносупрессивным действием.
Ферменты вирусов участвуют в проникновении в клетку и раздевании вирионов (нейраминидаза, протеазы), интеграции вирусного геном в геном клетки-хозяина; способны индуцировать апоптоз клеток путем расщепления клеточного рецептора bcl-2. Ферменты вирусов способны модифицировать (дефосфорилировать) клеточные гены роста и пролиферации, что ведет к их активации и развитию опухолевой трансформации клетки. Вирусные ферменты обладают антигистоновой активностью: они инактивируют белки-гистоны, которые принимают участие в структурно-функциональной организации хроматина клетки и являются регуляторами иммунитета.
Вирулентность (лат. Virulentus - ядовитый) - степень болезнетворности (патогенности) определенного инфекционного агента (штамма бактерии или вируса).
Вирулентность микроорганизмов зависит как от свойств инфекционного агента, так и от восприимчивости (чувствительности) инфицированного организма.
Факторы вирулентности и патогенности бактерий
Выраженность патогенного свойства зависит от наличия в микроорганизмы соответствующих генов патогенности и контролируемых ими факторов патогенности - структур и веществ, обеспечивающих взаимодействие с макроорганизмом в ходе инфекции. К факторам вирулентности, в частности, относят многие поверхностных структур микроорганизмов (ворсинки, капсулы), компоненты внешней мембраны и клеточной стенки (липополисахарид, белки адгезины и инвазины, тейхоеви кислоты), ферменты и токсины, выделяемые возбудителем.
Изменение патогенность и вирулентность бактерий и их штаммов может быть результатом приобретения или потери тех или иных факторов патогенности, а также следствием изменения выраженности патогенных свойств. В основе этих процессов лежат закономерности функционирования генов.
Вирулентность микробов состоит из ряда патогенных свойств микроорганизма:
- адгезивность - способности микроорганизма распознавать и прочно связываться с поверхностью клеток хозяина;
- инвазивность - способности к внутриклеточного и внеклеточного проникновения и распространения возбудителя в тканях хозяина;
- персистентных свойств (антифагоцитарни, антикомплементарных, антигенная мимикрия и др.) - способности уклоняться от защитных реакций макроорганизма или преодолевать их; цитотоксичность - способности повреждать клетки хозяина;
- токсичности и токсигенности - способности к синтезу токсинов, нарушающих функции органов и систем хозяина.
Штаммы могут быть сгруппированы по выраженности отдельных патогенных свойств, например, высоко-, умеренно или слабоинвазивни, неинвазивные. Согласно наибольшей выраженности той или иной патогенной свойства микроорганизмы могут получать специальные названия и обозначения, например. энтеротоксигенные кишечная палочка, выделяет экзотоксин с преимущественным действием на кишечный эпителий.
Каждый штамм или клон микроорганизмов патогенного или условно-патогенного вида имеет свой (индивидуальный) степень выраженности патогенного потенциала болезнетворности, которая называется вирулентность.
В отличие от патогенности, эта характеристика имеет количественное выражение, которое может меняться (под влиянием различных причин) у того же штамма. Об уровне вирулентности микроорганизма судят по тяжести заболеваний, вызываемых микробом или вирусом, в экспериментах на животных - по смертельной дозой инфекционного агента.
Вирулентность как мера патогенности определяется не только способностью микроорганизма проникать в восприимчивый организм, размножаться и распространяться в нем, но и тем, что микроб (или вирус) производит ядовитые продукты жизнедеятельности - токсины.
Вирулентность - не видовой, а штаммовый признак микроба (вируса) и может колебаться в широких пределах у разных штаммов. При сравнении в строго контролируемых условиях нескольких штаммов их вирулентности может иметь количественное выражение.
Показателями вирулентности является условные величины - минимальная летальная (DLM, dosis letalis minima - наименьшее количество микроорганизмов, вызывает гибель 95% зараженных восприимчивых лабораторных животных определенного вида стандартной массы) и 50% летальная доза (LD50 - минимальная доза микроорганизмов, вызывающая гибель 50 % экспериментальных животных).
Искусственное изменение вирулентности микробов применяется при получении вакцин. Методы снижения вирулентности бактерий ,вирусов, грибков:
- воздействие на микробы неблагоприятных физических и химических факторов (низкая температура - противочумная; действие желчи - БЦЖ)
- адаптация микробов в организм невосприимчивых животных или адаптация путем пассажа через органы и ткани, которые не являются входными воротами для этой инфекции (например, вирус уличного бешенства - через мозг кроликов, вследствие чего В. вируса для человека снижается и он может быть использован для прививок против бешенства - антирабической вакцины)
- пассажи через куриные эмбрионы (гриппозная, сыпнотифозные), пассажи через культуры тканей (против кори)
- подбор авирулентных штаммов из коллекции музейных культур (против туляремии, сибирской язвы)
- генетическая рекомбинация (гриппозная)
- специальный отбор генетически близких штаммов к возбудителю определенного заболевания.
- БМЭ. - М., 1975. - Т. 3, Борисов Л.Б., Фрейдлин И.С. Краткий справочник микробиологическое терминологии. - М .; 1985;
- Краткая медицинская энциклопедия / Под ред. В.И. Покровского. - М., 2001;
- Советский энциклопедический словарь. - М., 1980.
Полезно знать
Патогенные свойства вирусов складываются из следующих компонентов:
1.способности вируса проникать в организм и адсорбироваться на клеточных мембранах,
2.проникать в чувствительные к ним клетки;
3.способности этих клеток депротеинизировать вирусный геном и делать его функционально активным;
4.пермиссивности клеток или возможности этих клеток обеспечить транскрипцию и репликацию генетического материала, полноценную сборку вирионов;
5.возможности воспроизведения в клетках нескольких циклов репродукции вирусов, цитопатического действия вируса;
6.способности вирусов распространяться на новые клетки, расположенные рядом с пораженными; распространения вирусов за пределы первичного очага поражения по всему организму;
7.способности вызывать местные и общие патологические цроцессы, лежащие в основе клинических проявлений вызываемых ими заболеваний;
8.способности вйируса к переходу в новый организм и обеспечение его эстафетной передачи.
Все эти свойства необходимы, но в то же время сами по себе они могут быть недостаточными для патогенного действия вируса. Некоторые из этих свойств обусловлены клетками, в которых они размножаются, что получило название хозяйского ограничения клеткой.
Многие вирусы проникают в организм непосредственно через слизистые оболочки, которые служат входными воротами инфекции и защищены целым рядом неспецифических факторов резистентности, поэтому вирусы должны быть устойчивы к действию данных неблагоприятных факторов, что детерминируется генами вирусов. Например, кишечные вирусы обычно устойчивы к кислым значениям рН, детергентному действию солей желчных кислот и к разрушающему их действию протеолитических ферментов.
Способность вирусов адсорбироваться на мембранах чувствительных к вирусам клеток является специфическим процессом для вирусов. Этот процесс протекает при участии прикрепительных белков (антирецепторов) у вирусов и чувствительных к ним клеточных рецепторов. Простые вирусы содержат прикрепительные белки в составе капсида, а сложноустроенные вирусы — в составе супер-капсида. Такие сложные вирусы, как вирус осповакцины и вирус простого герпеса, могут иметь прикрепительные белки нескольких видов. Способность вирусов адаптироваться к новому хозяину обусловлена изменением первичной структуры в области участка прикрепительного белка, узнающего клеточный рецептор. Эти участки консервативны по своему строению и расположены в углублениях-каньонах, которые чрезвычайно малы по своим размерам, благодаря чему недоступны для активных центров антител, реагирующих лишь с окружающими эти углубления гипервариабельными участками, что позволяет вирусам избежать иммунологического пресса. Мутации в генах, кодирующих антирецепторы, иногда приводят к полной потере способности вирусов взаимодействовать с клеточными рецепторами.
В отличие от парамиксовирусов, у вирусов гриппа белком слияния является гемагглютинин, обуславливающий также адсорбцию вирусов к клетке. Однако функции прикрепления и слияния разделены между разными его участками большой (НА1) и малой (НА2) субъединицами соответственно. Важным фактором патогенности у вирусов гриппа является нейраминидаза, которая, удаляя остатки сиаловой кислоты с вирусного гемагглютинина, делает его доступным для протеолитического расщепления, необходимого для проявления инфекционности вирусов.
Очевидно, что сходный по функции с белками слияния сложных вирусов белок существует в составе капсида простых вирусов, и один из поверхностно расположенных белков капсида вызывает дестабилизацию клеточной мембраны, что способствует проникновению модифицированного капсида из эндоцитарной вакуоли в цитоплазму.
Взаимодействие вируса и клетки — это всегда взаимодействие вирусного и клеточного генома. В результате адсорбции вируса, его проникновения в клетку и раздевания происходит освобождение генетического материала вирусов, который становится функционально активным, так как освобождается от внешних защитных оболочек, препятствующих его экспрессии. Степень активности генома обусловлена разной степенью депротеинизации у вирусов разных семейств. Депротеинизация
клетки приспособлен для трансляции только моноцистронных мРНК, так как он не распознает внутренних участков инициации в мРНК. В результате вирусы вынуждены синтезировать либо отдельные мРНК для каждого гена, либо мРНК, включающие несколько генов и кодирующие большой полипротеин, который затем разрезается на индивидуальные белки. Транскрипция вирусного генома строго регулируется на протяжении инфекционного процесса многочисленными вирусо-специфическими и клеточными факторами. Со степенью транскрипции нередко связан характер инфекции, ее тип (от продуктивной до абортивной инфекции).
Важную роль в регуляции процессов транскрипции играют гены усилители и трансактиваторы. Они расположены в специальной области генома вирусов и содержат гены, усиливающие и активирующие экспрессию структурных генов. Усилители— это генетические элементы, усиливающие транскрипцию. Структура вирусных усилителей не отличается от структуры клеточных. Факторы транскрипции, связывающиеся с промотором и усилителем, выполняют одну и ту же функцию и могут представлять собой как клеточные, так и вирусные белки. Усилители, контролирующие уровень экспрессии генов, обнаружены у паповавирусов, гепаднавиру-сов, герпесвирусов, ретровирусов и ряда других вирусов.
Белки трансактиваторыне обладают специфичностью действия. Они связываются с регуляторными областями генов и одновременно активируют усиленную транскрипцию всех генов, в том числе и других вирусов, что сопровождается взрывной продукцией вирусных частиц, а также включают экспрессию бактериальных генов и клеточных онкогенов. Они действуют не только на стадии транскрипции, но и на посттранскрипционном уровне. Взаимодействие вирусных и клеточных трансактиваторов может приводить к переходу латентной инфекции в литическую, а также к онкогенной трансформации зараженных клеток. Как и усилители, трансактиваторы содержат две важные для их функции области. Одна из них определяет транспорт и связывание белка с мишенью, а другая пред-
Усилители и трансактиваторы являются необходимым атрибутом вирусов как генетических паразитов, конкурирующих с клеточным геномом. Неравные шансы небольших по размерам вирусов на победу уравновешиваются возникшими в ходе эволюции генетическими элементами, позволяющими гораздо меньшей по величине молекуле вирусного генома успешно завершить экспрессию своих генов и создать вирусное потомство. При этом вирусы широко используют механизмы клеточного происхождения, которые теперь обращены против клетки хозяина.
Важную роль в формировании патогенное -ти сложных вирусов, помимо посттрансляционной модификации вирусных белков,.играет синтез М-белка (матриксного белка), участвующего в сборке вирусной частицы. Включение М-белка в плазматическую мембрану является лимитирующим событием, определяющим возможность почкования вирусных частиц. Синтез М-белка жестко регулируется как ви-русоспецифическими, так и клеточными механизмами. Количество М-белка в зараженных клетках во многом определяет особенности репродукции вируса в данной клеточной системе. Аберрантный синтез М-белка и его нарушенный внутриклеточный транспорт служат одной из частых причин абортивных и персис-тентных вирусных инфекций. Экспрессия гена М значительно варьирует в клетках разного происхождения.
Патогенность вирусов обусловлена также их белковыми продуктами, блокирующими апоптоз клетки и изменяющими защитные реакции в макроорганизме, подавляя продукцию цитокинов, что способствует репродукции вирусов и их распространению по макроорганизму. Например, вирусы натуральной оспы образуют TNF-связывающий белок, белки, подавляющие созревание антигенов МНС 1 класса и аналог рецепторов у-интерферона. Вирус иммунодефицита человека, наоборот, усиливает продукцию цитокинов пораженными им клетками, что ведет к усилению воспалительной реакции и развитию нейротоксического действия. Как и другие микробы, вирусы, благодаря наличию внешней липидсодержащей оболочке, образованной из мембраны клетки хозяина, вариабельности структуры поверхностных антигенов, интеграции в геном клетки, гибели Т-лимфоцитов и т. д., обладают способностью уходить от воздействия иммунной системы макроорганизма.
Заражение восприимчивых клеток вовсе не означает, что в клетках неизбежно будет происходить размножение вируса, так как восприимчивость не идентична пермиссивнос-ти клеточной системы. Это одна из главных концепций в вирусологии. Многие стадии взаимодействия вируса с клеткой имеют не столько вирусоспецифическую, сколько опосредованную клеткой природу (эндоцитоз, де-протеинизация, синтез вирусоспецифических белков и т.д.). Клетка принимает активное участие в формировании патогенных вирусов лишь в пермиссивной клеточной системе, содержащей весь набор необходимых факторов, используемых вирусами на разных стадиях инфекционного процесса, а репликативный цикл завершается и приводит к образованию инфекционного потомства, что не будет происходить в полупермиссивных и непермис-сивных клеточных системах (хозяинная или хозяйская рестрикция).
Тканевой тропизм определяется не только наличием на клетках рецепторов, но и возможностью осуществления в клетках ви-русоспецифических синтезов. В зависимости от пермиссивности клеточной системы инфекция восприимчивых клеток может быть продуктивной, ограниченной и абортивной.Продуктивная инфекция происходит в пер-миссивных клетках и характеризуется полным циклом репродукции, который заканчивается формированием инфекционного потомства. Пермиссивность клеточной системы обуславливает и многократную цикличность размножения в ней вирусов.
Абортивной называется инфекция, которая не завершается образованием инфекционных вирусных частиц или при которой они образуются в гораздо меньшем количестве, чем при продуктивной инфекции. Абортивная инфекция может наступить в силу двух обстоятельств. Во-первых, несмотря на восприимчивость к заражению, клетки могут оказаться непермиссивными, так как в них могут экспрессироватся не все, а лишь некоторые гены вирусов. В основе механизмов генетически обусловленной непермиссивнос-ти клеток лежит либо отсутствие клеточных факторов, необходимых для репродукции, либо наличие факторов, нарушающих процессы репродукции вирусов. Во-вторых, абортивная инфекция может быть результатом заражения как пермиссивных, так и непермиссив-ных клеток дефектными вирусами,у которых отсутствует полный набор вирусных генов, необходимых для репродукции. Дефектные вирусы представляют собой крайнюю форму паразитизма, так как они используют генные продукты, образованные другими, часто не родственными им, не гомологичными вирусами. Примером таких вирусов являются аденоассоциированные вирусы и вирус гепатита D, помощником которого служит вирус гепатита В. Абортивную инфекцию вызывают также дефектные интерферирующие вирусные
частицы,которые тоже лишены части генетического материала. В отличие от дефектных вирусов, в ходе репликации они интерферируют с гомологичными инфекционными вирусами, в связи с чем их назвали дефектными интерферирующими вирусными частицами (ДИ-частицами). Образование ДИ-частиц играет важную роль в ослаблении летального действия полноценных вирусов в силу интерференции и предрасполагает некоторые клетки к формированию в них длительной персистентной инфекции.
Наконец, клетки могут быть только временно пермиссивными, вследствие чего вирус либо сохраняется в клетках до момента, когда они становятся пермиссивными, либо в любой данный момент вирусное потомство образуется только в немногих клетках популяции. Этот вид инфекции одними исследователями был определен как рестриктив-ный (restrictive), другими — как ограниченный (restringent). В ряде случаев цитолитические вирусы могут только лишь изменять функциональную активность клеток, не вызывая их морфологических повреждений (изменять синтез гормонов, холестерина и т. д.), или вызывать опухолевую трансформацию клеток. Дополнительным следствием как ограниченной, так и абортивной инфекции является сохранение в клетке вирусного генома.
Если геном вируса реплицируется независимо от клеточного генома, такая инфекция называется автономной. Если вирусный геном интегрирует в состав генома клетки и реплицируется вместе с ним, то такая инфекция называется интегративной (вирогения). Интегрировать может как полный геном, так и часть его. Например, при гепатите В возможна интеграция полного генома, при аденовирусной или герпесвирусной инфекциях обычно интегрирует часть генома, при заражении онковирусами может интегрировать как полный геном, так и часть его. Вирусные последовательности, входящие в состав генома клетки, называются провирусом или про-вирусной ДНК. Интеграционный тип инфекционного процесса возможен при заражении адено-, папиллома-, герпесвирусами, вирусом гепатита В и обязателен для ретровирусов, имеющих фермент — обратную транскриптазу. Возникшая интеграция может явиться причиной ряда хронических и автоиммунных заболеваний.
По исходу взаимодействия с клеткойинфекция может быть
Среди бактерий по способности вызывать заболевания выделяют: 1)патогенные; 2) условно-патогенные; 3) сапрофитные.
Патогенные видыпотенциально способны вызывать инфекционное заболевание. Патогенность – это способность микроорганизмов, попадая в организм, вызывать в его тканях и органах патологические изменения. Это качественный видовой признак, детерминированный генами патогенности – вирулонами. Они могут локализоваться в хромосомах, плазмидах, транспозонах.
Условно-патогенныебактерии могут вызывать инфекционное заболевание при снижении защитных сил организма.
Сапрофитные бактерииникогда не вызывают заболевния, так как они не способны размножаться в тканях макроорганизма.
Реализация патогенности идет через вирулентность– это способность микроорганизма проникать в макроорганизм, размножаться в нем и подавлять его защитные свойства.
Вирулентность – это степень патогенности, поддается количественной характеристике.
Количественными характеристиками вирулентности являются:
DLM(минимальная летальная доза) – это количество бактерий, при введении которых соответствующим путем в организм лабораторных животных получают 95%-98% случаев гибели животных в эксперименте;
LD 50– это количество бактерий, вызывающее гибель 50% животных в эксперименте;
DCL (смертельная доза) – вызывает 100% гибель животных в эксперименте.
Факторы патогенности:
адгезия – способность бактерий прикрепляться к эпителиальным клеткам. Факторами адгезии являются реснички адгезии, адгезивные белки, липополисахариды у грамотрицательных бактерий, тейхоевые кислоты у грамположительных бактерий, у вирусов – специфические структуры белковой или полисахаридной природы;
колонизация – способность размножаться на поверхности клеток, что ведет к накоплению бактерий;
пенетрация – способность проникать в клетки;
инвазия – способность проникать в подлежащие ткани, которая связана с продукцией таких ферментов, как гиалуронидаза и нейраминидаза;
агрессия – способность противостоять факторам неспецифической и иммунной защиты организма. К факторам агрессии относят: а) вещества разной природы, входящие в состав поверхностных структур клетки: капсулы, поверхностные белки; б) ферменты (протеаза, коагулаза, фибринолизин, лецитиназа); в) токсины (экзо- и эндотоксины).
Токсины бактерий, их природа, свойства, получение.
Токины бактерий – продукты метаболизма, оказывающие непосредственное токсическое воздействие на специфические клетки макроорганизма, либо опосредованно вызывающие развитие симптомов интоксикации в результате индукции ими образования биологически активных веществ.
По физико-химической структуре и биологическим свойствам токсины бактерий делятся на 2 группы: белковые токсины и эндотоксины.
По степени связи с бактериальной клеткой белковые бактериальные токсины подразделяют на три класса:
Класс А– секретируемые во внешнюю (дифтерийный гистотоксин, дермонекротксин, холероген холерного вибриона);
Класс В– токсины, частично связанные с микробной клеткой и частично секретируемые в окружающую среду (столбнячный тетаноспазмин, ботулинистический нейротоксин);
Класс С– токсины, связанные с микробной клеткой и попадающие в окружающую клетку среду лишь в результате ее гибели (дизинтерийный шигатоксин).
По строению белковые токсины делятся на простые и сложные. Простые токсины представляют собой активную бифункциональную В-А структуру. Часть В необладает токсичностью. Это природный анатоксн, который выполняет транспортную функцию, образуя канал в цитоплазматической мембране клетки и обусловливает проникновение токсической группы А или активатора в цитоплазму клетки. Сложные токсины представляют собой сложную бифункциональную структуру, состоящую из одной или нескольких В-субъединиц, соединенных с А-субъединицей, как, например холерный энтеротоксин, у которого субъединица А окружена пятью абордажными В-субъединицами.
По механизму действия токсины делят на 5 групп:
токсины, повреждающие клеточные мембраны. Такие повреждения вызывают не только лизис клеток, но и способствуют распространению бактерий в макроорганизме (альфа-токсинCl.Perfringens, гемолизинE.coli, О-листериолизинL.monocytogenes, пневмолизинS.pneumoniae, О-стрептолизинS.pyogenes, альфа-токсинS.aureus;
токсины, ингибирующие синтез белка(дифтерийный гистотоксин, дизентерийный шигатоксин). Данные токсины нарушают синтез белка не только в эпителиоцитах, но и в других клетках, что приводит к развитию гемолитического уремического синдрома;
токсины, активирующие пути метаболизма, контролируемые вторичными посредниками мессенджерами(термолабильный и термостабильный токсиныE.coli, отечный факторB.Anthracis, коклюшный и дерматонекротический токсиныB.Pertussis, холерный энтеротоксин –нарушает всасывание ионов натрия, калия и воды);
протеазы(ботулинический и столбнячный нейротокины, сибиреязвенный летальный фактор). Ботулотоксин связывается с рецепторами на поверхности пресинаптической мембраны двигательных нейронов переферической нервной системы и вызывает протеолиз белков в нейронах. Это приводит к ингибированию секреции ацетилхолина, что препятствует мышечным сокращениям и проявляется развитием вялых параличей переферических нервов. Тетаноспазмин внедряется в тормозящие и вставочные нейроны спинного мозга. В результате расщепления везикуло-ассоциированного мембранного протеина приводит к блокаде секреции глицина и гамма-аминобутировой кислоты, что вызывает перевозбуждение мотонейронов и ведет к стойким мышечным сокращениям (спастическим параличам). Действие летального фактора проявляется в продуцировании активных форм кислорода в макрофагах и нейтрофилах, что сопровождается увеличением перекисных соединений в макрофагах и деструкции последних (цитотоксическое действие);
активаторы иммунного ответа(токсин синдрома токсического шока, энтеротоксины и эксфолиативные токсиныS.aureus, пирогенные экзотоксиныS.pyogenes). Например, токсин синдрома токсического шока ведет к массивной пролиферации Т-клеток, сопровождающейся образованием большого количества лимфоцитарных и моноцитарных цитокинов. Совместно эти цитокины вызывают развитие гипотензии, высокую температуру, диффузную эритематозную сыпь. Эксфолиативный токсин разрушает межклеточные контакты зернистого слоя эпидермиса, что ведет к отслоению поверхностных слоев эпидермиса и образованию лопающихся пузырей, наполненных серозным или гнойным содержимым.
Белковые токсины, помимо химической структуры и специфичности действия, обладают высокойтоксичностью. Они вызывают гибель лабораторных животных. Это полноценные тимусзависимыеантигены, к ним образуются антитела, нейтрализующие их – антитоксины. Из белковых токсинов можно получитьанатоксины, т.е. токсины, лишенные своих токсических свойств, но сохранившие антигенные свойства, что используют при проведении вакцинопрофилактики. Большинство белковых токсинов разрушается пищеварительными ферментами и оказывает свое воздействие только при парентеральном введении. Исключение составляют: ботулотоксин, энтеротоксиныCl.Perfringens,Cl.Difficile,S.aureusи энтеротоксины грамотрицательных бактерий. Синтез белковых токсинов кодируется генами, локализованными в хромосоме и в плазмидах.
Эндотоксины относятся к бактериальным модулинам, индуцирующих синтез цитокинов и др. медиаторов. В отличие от белковых токсинов, эндотоксины термостабильны и образуются грамотрицательными бактериями. Это сложные белковолипополисахаридные комплексы. Данные комплексы состоят из белка – пептида, обусловливающего иммуногенность комплекса; фосфолипида В, включающего в свой состав фосфатидилхолин – основной компонент клеточной стенки бактерий, ионы Са и Мg; ЛПС, входящего в состав наружной мембраны клеточной стенки грамотрицательных бактерий и является собственно эндотоксином. В основе действия ЛПС лежит его взаимодействие с мембранными компонентами разных типов клеток, которые под его действием выделяют биологически активные вещества. Образование больших доз эндотоксина сопровождается угнетением фагоцитоза, явлениями выраженного токсикоза, слабостью, одышкой, диареей, нарушением сердечно-сосудистой системы, снижением давления, гипогликемией, лейкопенией, возможно развитие эндотоксического шока. В отличие от белковых токсинов из эндотоксинов нельзя получить анатоксины.
Изучение антигенной специфичности ЛПС используется при проведении идентификации грамотрицательных бактерий.
Кроме токсинов, в результате размножения микробы образуют целый ряд других токсических продуктов метаболизма: ядовитые амины, холин, нейрин, высшие жирные кислоты. Одновременно с их действием происходит отравление организма токсическими продуктами распада собственных клеток и тканей, что играет важную роль в развитии интоксикации.
Читайте также: