Как сделать из пластилина вирус бактериофаг
Прошло сто лет с того времени, как английский микробиолог Ф. Туорт отметил прозрачные стекловидные пятна в колониях микрококков, где погибли бактериальные клетки. После открытия бактериофагов их исследования долгое время имели феноменологический характер из-за недостаточного развития экспериментальных методов. Ученые не имели возможности детально изучить особенности противобактериального воздействия бактериофагов, так как последние нельзя увидеть не только невооруженным глазом, но и с помощью светового микроскопа. Изучение вирусов, в том числе вирусов бактерий, вышло на принципиально новый уровень лишь с созданием и внедрением в научную практику электронного микроскопа
С появлением электронной микроскопии стало понятно, что бактериофаги являются даже не микро- а наноорганизмами, так как их размеры не превышают 100 нм. Также оказалось, что по своему строению они отличаются колоссальным разнообразием. Соответственно, возник вопрос об их номенклатуре. В основу первой классификации, которая была предложена еще в 1943 г., легли особенности строения фагов, установленные с помощью электронной микроскопии. Один из ее основоположников, Э. Руска, в своей общей схеме классификации вирусов выделил бактериофаги отдельно, разделив их на три типа по морфологическим характеристикам (Ackermann, 2009).
В основу современной систематики бактериофагов, созданной в 1967 г., легла классификация, включавшая шесть морфотипов. Но по мере открытия новых бактериофагов в нее включались новые семейства, роды и виды. С развитием методов молекулярной биологии появились дополнительные критерии классификации, учитывающие тип нуклеиновой кислоты и (или) композицию белков в составе фага.
Применение в исследованиях бактериофагов современных молекулярных методов, позволило выявить множество особенностей этих интересных организмов. Сами бактериофаги в свою очередь оказались для молекулярных биологов очень полезным методологическим инструментом (Brussow, 2013).
Была бы голова, а хвост будет
Чтобы узнать вид бактериофага, нужно определить его ультраструктурные характеристики, для чего используют метод негативного контрастирования. Образцом может служить любая суспензия, содержащая фаги: вода из природного источника, смывы с кишечника животных или суспензия бактериальных клеток после инкубации с бактериофагом в условиях лаборатории. На каплю подготовленной суспензии помещают специальную медную сетку, покрытую тонкой полимерной пленкой, на которую и сорбируются бактериофаги. Затем сетку обрабатывают контрастирующим веществом (обычно уранилацетатом или фосфорно-вольфрамовой кислотой), которое окружает частицы бактериофага и создает темный фон, на котором бактериофаги, имеющие низкую электронную плотность, становятся видны в электронном микроскопе.
Охота на бактерию
Сочетание методов негативного контрастирования и ультратонких срезов* позволяет проследить все этапы воспроизводства бактериофагов, включая сорбцию частиц фага на поверхности бактериальных клеток, их проникновение в клетки и копирование. К сожалению, эта область исследований разработана существенно хуже, чем визуализация и идентификация бактериофагов методом негативного контрастирования. Между тем ультраструктурные характеристики каждого из этапов жизненного цикла бактериофагов могут быть полезны для адекватной оценки эффективности разрабатываемых методов фаговой терапии.
* При методе ультратонких срезов клетки заливают в особую смолу, и из получившихся твердых блоков готовят срезы толщиной 60—80 нм на ультрамикротоме с помощью стеклянного или алмазного ножа
Ackermann H. W., Prangishvili D. Prokaryote viruses studied by electron microscopy. 2012. N. 157. P. 1843—1849.
Ackermann H. W., Tiekotter K. L., Murphy’s law – if anything can go wrong, it will // Bacteriophage. 2012. N. 2:2. P. 122—129.
Bacteriophages methods and protocols / Ed. A. M. Kropinski, R. J. Clokie. Humana Press, 2009. V. 1.
Duckworth D. H. Who discovered bacteriophage? // Bacteriological reviews. 1976. V. 40. N. 4. P. 793—802.
Introduction: a short history of virology // Viruses and man: a history of interactions / Ed. M. W. Taylor. Springer, 2014. P. 1—21.
Krylov V. N. Phage therapy in therms of Bacteriophage genetics: hopes, prospects, safety, limitation // Rus. J. of genetics. 2001. V. 37. N. 7. P. 869—887.
Matsuzaki S., Rashel M., Uchiyama J., et al. Bacteriophage therapy: a revitalized therapy against bacterial infectious deseases // J. Infect. Chemother. 2005. N. 11. P. 211—219.
В публикации использованы фото авторов и рисунки Жени Власова
Как сделать модель живой (животной) клетки из пластилина своими руками (тема "Строение клетки", 5 класс).
Модель клетки (строение клетки) из пластилина
Так как моя старшая дочь из-за плановой госпитализации некоторое время не посещала школу, пропущенные темы мы с ней изучали самостоятельно. "Строение клетки" - одна из таких тем. Я вспомнила, что сама когда-то делала в школу в качестве домашнего задания по биологии модель инфузории-туфельки из пластилина, которая так мне понравилось, что даже отдавать не хотелось. И предложила дочке закрепить изучение этой темы изготовлением модели клетки из пластилина.
Модель клетки дочка отнесла в школу. Оказалось, что это было домашним заданием, и другие дети тоже делали клетку из пластилина.
Для макета лучше всего подойдет не обычный пластилин, поделки из которого могут деформироваться от падения, от высокой температуры (например, от летнего зноя или под прямыми солнечными лучами) и т.д., а эластичная мягкая полимерная глина, застывающая на воздухе. Подробнее я писала о ней в статье "Легкая самозатвердевающая масса для лепки". Мы очень любим из нее лепить, но у нас она закончилась, поэтому в этот раз пришлось работать с простым пластилином.
Сделать модель живой животной клетки из пластилина можно несколькими способами (в статье использованы иллюстрации из учебника "Биология. Введение в биологию", 5 класс, авторы: А. А. Плешаков, Н. И. Сонин, 2014, художники: П. А. Жиличкин, А.В. Пряхин, М. Е. Адамов).
Модель растительной клетки можно выполнить аналогично, ориентируясь на изображение растительной клетки из учебника.
Самый простой способ изобразить схему строения клетки, на изготовление которого потребуется меньше всего времени, это слепить из пластилина клетку в соответствии с изображением из учебника.
- Скатать из пластилина длинную тонкую колбаску и небольшой шарик. Шарик расплющить. Это детали, изображающие наружную мембрану и ядро.
- Приклеить детали на прямоугольный лист картона. Роль цитоплазмы будет играть поверхность картона внутри замкнутого контура (наружной мембраны).
- Сделать сноски и подписи.
Эта модель похожа на предыдущую, но немного сложнее.
- Вырезать из плотного глянцевого картона основу овальной или слегка изогнутой формы.
- Приклеить детали, изображающие главные части клетки:
- наружную мембрану (сделать ее из скатанного колбаской пластилина)
- ядро (сделать его из расплющенного пластилинового шарика). - По желанию приклеить некоторые важные органоиды живой клетки: митохондрии, лизосомы.
- Подписи можно сделать прямо на картоне внутри клетки.
Этот же вариант модели клетки можно еще немного усложнить, если в начале работы на основе из картона тонким слоем размазать светлый пластилин (это будет цитоплазма).
Так как пластилин через некоторое время оставляет жирные пятна даже на глянцевом картоне, то модель клетки получится более долговечной, если сделать ее на основе из пластика. При использовании прозрачного пластика можно не покрывать основу пластилином. А сноски или надписи, сделанные не на самой модели, а на бумаге под ней, будут хорошо видны через прозрачный материал.
Модель мы делали на основе иллюстраций из пункта 5 "Живые клетки" первой части учебника.
- Подготовить основу из прозрачного пластика. Это может быть пластик от упаковки различных товаров. Например, крышка от пластикового продуктового контейнера.
- Вырезать по краям пластика выемки.
- Сделать ядро: скатать шарик из коричневого пластилина, расплющить и приклеить на основу в центр или недалеко от центра. По желанию можно изобразить ядрышко, находящееся внутри ядра, из расплющенного маленького шарика более темного цвета.
- Сделать лизосомы: скатать маленькие шарики (4 штуки), приклеить их на основу.
- Сделать митохондрии: скатать шарики немного побольше, чем для лизосом, немного раскатать их как для колбаски, расплющить, приклеить на основу.
- По желанию сделать другие элементы животной клетки: эндоплазматическую сеть, аппарат Гольджи, центриоли и т.д.
- Сделать наружную мембрану: скатать из пластилина тонкую колбаску, немного ее расплющить и приклеить по контуру основы. Сразу сделать колбаску нужной длины сложно, но можно соединить друг с другом несколько коротких колбасок.
- Оформить работу в программе "Word": сверху поместить заголовок "Строение клетки", в левом нижнем углу - информацию об ученике, выполнившем работу, сделать рамочку. Распечатать. Или написать это от руки. Затем приклеить этот лист на картон.
- Сделать сноски, подписи.
- Приклеить модель клетки в центр. Пластик очень хорошо держится на картоне, если приклеить его с помощью двусторонней клейкой ленты (скотча). На нашей модели кусочек двустороннего скотча размером с ядро под ним и расположен, поэтому его не видно.
- Поместить работу в файл - специальный прозрачный полиэтиленовый пакет для документов.
- Для основы скатать из пластилина большой шарик, придать ему форму яйца и вырезать из него четверть.
- Для экономии пластилина можно сделать эту деталь из мягкой фольги, а затем облепить ее пластилином. Еще проще сделать эту деталь из пенопластового яйца для поделок.
- Приклеить детали из пластилина (аналогично тому, как описано в предыдущей инструкции).
Также можно сделать макет клетки из соленого теста (в этой статье рецепт соленого теста, который я использую).
- Соленое тесто раскатать скалкой в пласт толщиной около половины сантиметра.
- Вырезать из него основу для макета клетки.
- Приклеить основные детали.
- Оставить на сутки или двое в теплом месте для высыхания.
- Раскрасить красками.
Напоследок небольшая галерея с фотографиями моделей клеток из кабинета биологии. Прошу прощения за качество фотографий - дочка делала их в школе телефоном, а там, где стоит шкаф с работами детей, плохое освещение.
А эта работа мне очень понравилась, потому что у меня тоже была идея сделать модель еще и из бумаги, в технике объемной аппликации. Модель клетки выполнена из бумаги в техниках рисования, аппликации и квиллинга.
Всего доброго! Если статья была вам полезна, пожалуйста, помогите развитию сайта, поделитесь ссылкой на нее в соцсетях.
Размещение материалов сайта (изображений и текста) на других ресурсах без письменного разрешения автора запрещено и преследуется по закону.
13 февраля 2017
- 994
- 0,8
- 0
- 1
Как известно, вирусы — объекты странные: вроде, и не живые сами по себе, но стоит только попасть в клетку. Внутриклеточные подвиги бактериофагов описаны давно, однако эти вирусы сумели сохранить парочку секретов — настоящих жареных фактов, по меркам научной периодики. Например, в этом году мы узнали, что если фаги и не очень живые, то уж точно очень общительные: находясь в разных клетках, они методично высылают друг другу сигналы — маленькие, но судьбоносные для фагов пептиды.
Бактериофаги (или просто фаги) — это вирусы, поражающие бактерий . После впрыскивания генома фага в клетку события могут развиваться по одному из двух сценариев:
- литическому — когда фаг размножается, и армия новых его частиц бесцеремонно, нанося смертельные повреждения, покидает клетку;
- лизогенному — когда геном фага встраивается в клеточную ДНК и остается до поры до времени в неактивном состоянии, подспудно защищая клетку от вторжения конкурентов — фагов своего вида.
В зависимости от условий бактериофаг выбирает, какой сценарий в данный момент для него выгоднее. Выбор пути регулируется чрезвычайно сложными механизмами. Заподозрить это позволяет даже количество работ, посвященных этой тематике: не одна сотня статей написана об одном только фаге λ и его выборе между лизисом и лизогенией. И всё равно система принятия решения осталась непонятой [1].
До сих пор quorum sensing считался прерогативой бактерий, и молекулярную коммуникацию между вирусами, находящимися в разных клетках, не обнаруживали.
Удивительная случайность (как всегда)
Израильская ученая Зохар Эрез с коллегами изучала бактерий, зараженных фагами группы SPbeta: пыталась обнаружить, секретируют ли Bacillus subtilis какие-либо молекулы, подготавливающие собратьев к фаговой атаке. Через три часа после заражения исследователи начали ловить в бактериальной культуре молекулы, которые могли бы предотвратить дальнейшую инфекцию. К своему удивлению они выделили белок не бактериального, а фагового происхождения. Этот маленький пептид синтезировал вирус phi3T, блокируя тем самым лизис клеток и стимулируя лизогению [1], [4].
Рисунок 1. Фаги используют сигнальные пептиды для общения. а — После заражения бацилл фагом phi3T синтезируется вирусный белок AimP, от которого отрезается и секретируется из клетки маленький пептид арбитриум. б — Арбитриум попадает в другую клетку с помощью олигопептидной пермеазы, OPP. Если концентрация пептида мала, то развитие фага в этой клетке идет по литическому пути, и клетка разрушается. в — Высокая концентрация арбитриума способствует встраиванию вирусного генома в ДНК бациллы, клетка выживает, а другой phi3T уже не может ее инфицировать.
Белки фагового кворума и их гены
Рисунок 2. Гены кворума фага phi3T и структура белка AimP. Условные обозначения: HTH-домен — домен связывания с ДНК, TPR-домен — рецептор арбитриума.
Чтобы показать, что SAIRGA — это и есть арбитриум, израильские ученые заражали культуру бацилл фагом phi3T при высокой концентрации SAIRGA и наблюдали явное снижение числа лизированных клеток. Эффекта не было при проведении эксперимента с более короткими версиями пептида (SAIRG или AIRGA) и с бациллярным пептидом PhrC, участвующим в бактериальном кворуме [4].
Перед aimP в геноме фага расположен ген aimR, кодирующий белок длиной 378 а.о. Выяснили, что белок AimR — это внутриклеточный рецептор арбитриума: его С-концевой домен взаимодействует с сигнальной молекулой. В то же время N-концевой домен AimR приспособлен для специфического связывания с ДНК бактериофага (рис. 2) [4].
Как работает система кворума бактериофагов?
На начальной стадии инфекции phi3T экспрессирует ранние гены — aimP и aimR. Белок AimR в виде гомодимера связывается со специфическим сайтом между aimP и aimX и активирует транскрипцию последнего (рис. 3а). В то время как новые порции AimP превращаются в арбитриум и выходят из клетки, AimX активирует литический цикл (а может, ингибирует лизогенный) — собираются фаговые частицы следующего поколения, разрушают клетку и заражают соседних бацилл [4].
Рисунок 3. Модель работы системы quorum sensing фага phi3T. а — Развитие по литическому пути. б — Развитие по лизогенному пути. Подробные объяснения — в тексте.
Так происходит, пока в среде не создастся достаточно высокая концентрация арбитриума. В этом случае в инфицированные phi3T клетки через транспортер ОРР будет поступать настолько много сигнального пептида, что он сможет связаться со всеми рецепторными молекулами AimR, разбить димер на мономеры и тем самым помешать ему активировать транскрипцию aimX (рис. 3б) [4].
Рисунок 4. Демографическая ситуация — главный вопрос в беседах бактериофагов.
С обнаружением первой системы фаговой коммуникации пришло понимание того, что не только прокариоты, но и вирусы — не такие уж простачки. Геномы многих фагов еще не расшифрованы, и кто знает, какие новые сюрпризы преподнесут нам эти недоорганизмы? А что, если вирусы эукариот тоже общительны, и весь этот вирусный мир беседует не только о демографии?
Открытие вирусов
В 1892 году Д.И. Ивановский (см. Рис. 1), изучая мозаичную болезнь табака (см. Рис. 2), установил, что причиной заболевания является некое инфекционное начало, содержащееся в листьях больных растений, которое проходит через фильтр, задерживающий обыкновенные бактерии. Если профильтрованный сок внести в листья здоровых растений, то они также заболевают мозаичной болезнью.
Рис. 1. Д.И. Ивановский
Рис. 2. Мозаичная болезнь табака
В 1898 году независимо от Ивановского аналогичные результаты получил голландский микробиолог М. Бейеринк. Однако он предположил, что мозаичную болезнь табака вызывают не мельчайшие бактерии, а некое жидкое заразное начало, которое он назвал фильтрующим вирусом.
Размеры вирусов определяются нанометрами (20-200 нм), поэтому их изучение началось после открытия электронного микроскопа. В настоящее время описаны вирусы практически всех групп живых организмов.
Строение вирусов
Вирусы – неклеточные формы жизни. Они состоят (см. Рис. 3) из фрагмента генетического материала (РНК или ДНК), составляющего сердцевину вируса, и защитной оболочки, которая называется капсид. У некоторых вирусов (герпес, грипп) есть дополнительная липопротеидная оболочка – суперкапсид, которая возникает из плазматической мембраны клетки-хозяина.
Рис. 3. Строение вируса
Вирусы не способны к самостоятельной жизнедеятельности. Они могут проявлять свойства живого, только попав в клетку-хозяина. Они используют потенциал и энергию этой клетки для создания своих новых вирусных частиц, следовательно, вирусы являются внутриклеточными паразитами.
Размножение вирусов
Обычно вирус связывается с поверхностью клетки-хозяина и проникает внутрь. Каждый вирус ищет своего хозяина, то есть клетки строго определенного вида. Например, вирус – возбудитель гепатита (желтуха) проникает и размножается только в клетках печени, а вирус эпидемического паротита (свинка) – только в клетках околоушных слюнных желез человека.
Проникнув внутрь клетки-хозяина, вирусная ДНК или РНК начинает взаимодействовать с ее генетическим аппаратом таким образом, что клетка начинает синтезировать белки, свойственные вирусу (см. Рис. 4).
Рис. 4. Схема репродукции вируса
При заражении ретровирусом (например, вирус иммунодефицита человека (ВИЧ)), у которого в качестве генетического материала используется молекула РНК, наблюдается другая картина. При попадании ретровируса в клетку-хозяина происходит обратная транскрипция. То есть на основе вирусной РНК синтезируется вирусная ДНК, которая встраивается в ДНК человека. Такой тип взаимодействия вируса с клеткой называется интегративным, а встроенная в состав хромосомы клетки ДНК вируса называется провирусом. Далее провирус реплицируется (удваивается) в составе хромосомы и переходит в геном дочерних клеток. Однако под влиянием некоторых физических и химических факторов провирус может выщепляться из хромосомы клетки и переходить к продуктивному типу взаимодействия, то есть синтезировать новые вирусные частицы.
При заражении ВИЧ человек чувствует себя здоровым, пока вирусный генетический материал встроен в хромосому человека. Однако при выщеплении этого вирусного генетического материала из клетки она начинает образовывать новые вирусные частицы, вследствие чего развивается смертельное заболевание – синдром приобретенного иммунодефицита (СПИД).
Вирусы являются возбудителями большого количества заболеваний человека: корь, грипп, оспа, краснуха, энцефалит, свинка, гепатиты, СПИД. Известен также целый ряд заболеваний растений, вызываемых вирусами, например мозаичная болезнь табака, томатов, огурцов или скручивание листьев картофеля. Всего описано около 500 видов вирусов, поражающих клетки позвоночных животных, и около 300 вирусов растений. Некоторые вирусы участвуют в злокачественном перерождении клеток и тем самым провоцируют онкологические заболевания.
ДНК- и РНК-содержащие вирусы
В зависимости от содержащегося генетического материала вирусы подразделяются на ДНК-содержащие и РНК-содержащие.
Одноцепочные РНК-содержащие вирусы подразделяются на:
1. Плюс-нитевые (положительные). Плюс-нить РНК этих вирусов выполняет наследственную (геномную) функцию и функцию информационной РНК (иРНК).
2. Минус-нитевые (отрицательные). Минус-нить РНК этих вирусов выполняет только наследственную функцию.
К РНК-содержащим вирусам относятся более
вирусов, вызывающих респираторные заболевания, а также вирус гриппа, кори, краснухи, свинки, ВИЧ. Также существует специфическая группа вирусов – арбовирусы, которые переносятся членистоногими.
Двухцепочные ДНК-содержащие вирусы вызывают такие заболевания, как папиллома человека или герпес, гепатит В (гепатит А и гепатит С вызывается РНК-содержащими вирусами).
ДНК-содержащие вирусы поражают также растения. Они вызывают, например, золотую мозаику бобов или полосатость у кукурузы.
Вирус гепатита С
По своему строению вирус гепатита С – это РНК-содержащий вирус, имеющий сферическую форму, сложно устроенный (см. Рис. 5).
В качестве генетического материала такой вирус содержит линейную однонитчатую молекулу РНК.
Рис. 5. Гепатит С
Вопреки бытующим предрассудкам, подцепить вирус гепатита C невозможно через социальные контакты (поцелуи, объятия), через продукты или воду, через грудное молоко. Вы ничем не рискнете, если разделите с носителем вируса трапезу или напитки. Заразиться гепатитом C можно при контакте с кровью инфицированного человека либо половым путем.
В настоящее время для лечения гепатита С используют два препарата: Интерферон альфа и Рибавирин.
Бактериофаги
Рис. 6. Бактериофаг (Источник)
Особую группу вирусов составляют бактериофаги (или просто фаги), которые заражают бактериальные клетки (см. Рис. 6). Фаг укрепляется на поверхности бактерии при помощи специальных ножек и вводит в ее цитоплазму полый стержень, через который проталкивает внутрь клетки свою ДНК или РНК. Таким образом, генетический материал фага попадает внутрь бактериальной клетки, а капсид остается снаружи. В цитоплазме начинается репликация генетического материала фага, синтез его белков, построение капсида и сборка новых фагов. Уже через 10 мин после заражения в бактерии формируются новые фаги, а через полчаса бактериальная клетка разрушается, и из нее выходят около 200 заново сформированных вирусов – фагов, способных заражать другие бактериальные клетки (см. Рис. 7). Некоторые фаги используются человеком для борьбы с болезнетворными бактериями, вызывающими холеру, дизентерию, брюшной тиф.
Рис. 7. Схема размножения бактериофага (Источник)
Список литературы
- Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
- Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.
- Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.
- Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Домашнее задание
Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.
Читайте также: