Методы лабораторной диагностики вирусных болезней животных и птиц
Методы лабораторной диагностики вирусных инфекций подразделяются на несколько больших групп.
- Прямые методы, состоящие в выявлении непосредственно в биологическом материале самого вируса или антител к нему.
- Непрямые методы-заключаются в искусственной наработке вируса в значительных количествах, и его дальнейшем анализе.
К наиболее актуальным в повседневной практике методам диагностики относятся:
Серологические методы диагностики - выявление в сыворотке крови пациента определенных антител или антигенов в результате реакции антиген-антитело(АГ-АТ). То есть, при поиске у пациента определенного антигена используется соответствующее искусственно синтезированное антитело, и, соответственно, наоборот-при выявлении антител используют синтезированные антигены.
Реакция иммунофлуоресценции (РИФ)
Основана на использовании меченых красителями антител. При наличии вирусного антигена он связывается с мечеными антителами, и под микроскопом наблюдается специфическая окраска, которая говорит о положительном результате. При этом методе, к сожалению, невозможна количественная интерпретация результата, а только лишь качественная.
Возможность количественного определения дает иммуноферментный анализ(ИФА). Он похож на РИФ, однако в качестве маркеров используют не красители, а ферменты, превращающие бесцветные субстраты в окрашенные продукты, что и дает возможность количественной оценки содержания как антигенов, так и антител.
- Отмывают не связавшиеся антитела и антигены.
- Добавляют бесцветный субстрат, и в лунках с антигеном, который мы определяем, произойдет окрашивание, т.к. там будет связанный с антигеном фермент, после чего на специальном приборе оценивают интенсивность свечения окрашенного продукта.
По похожей схеме происходит и выявление антител.
Реакция непрямой(пассивной) гемаглютинации (РПГА).
Метод основан на способности вирусов связывать эритроциты. В норме эритроциты падают на дно планшета, образуя так называемую пуговку. Однако если в исследуемом биологическом материале находится вирус, он свяжет эритроциты в так называемый зонтик, который не упадет на дно лунки.
Теперь остановимся на методах диагностики непосредственно нуклеиновых кислот исследуемых вирусов, и прежде всего о ПЦР ( Полимеразная Цепная Реакция) .
Суть этого метода заключается в обнаружении специфического фрагмента ДНК или РНК вируса путём его многократного копирования в искусственных условиях. ПЦР можно проводить только с ДНК, то есть для РНК-вирусов предварительно необходимо произвести реакцию обратной транскрипции.
Непосредственно ПЦР проводят в специальном приборе, под названием амплификатор, или термоциклер, который поддерживает необходимый температурный режим. ПЦР-смесь состоит из добавленной ДНК, которая содержит интересующий нас фрагмент, праймеров (короткий фрагмент нуклеиновой кислоты, комплиментарный ДНК-мишени, служит затравкой для синтеза комплиментарной цепи), ДНК-полимеразы и нуклеотидов.
Стадии цикла ПЦР:
- Деннатурация-первая стадия. Температура повышается до 95 градусов, цепочки ДНК расходятся друг относительно друга.
- Отжиг праймеров. Температуру понижают до 50-60 градусов. Праймеры находят комплиментарный участок цепи и связываются с ним.
- Синтез. Температуру вновь повышают до 72, это рабочая температура для ДНК-полимеразы, которая, отталкиваясь от праймеров, строит дочерние цепи.
Цикл многократно повторяется. Через 40 циклов из одной молекулы ДНК получается 10*12 степени копий копий искомого фрагмента.
При проведении ПЦР в режиме реального времени синтезируемые копии фрагмента ДНК метятся красителем. Прибор регистрирует интенсивность свечения и по ходу реакции строит графики накопления искомого фрагмента.
Современные методы лабораторной диагностики с высокой достоверностью позволяют выявить присутствие вируса - возбудителя в организме, нередко, задолго до появления первых симптомов заболевания.
С целью диагностики вирусных инфекций применяются следующие методы:
Ø Вирусоскопический – обнаружение в исследуемом материале вирусов с помощью световой (крупные вирусы, внутриклеточные включения вирусов), люминесцентной и электронной микроскопии;
Ø Вирусологический – выделение вирусов из исследуемого материала с последующей их идентификацией (установление вида и типа вируса посредством серологических реакций);
Ø Серологический – обнаружение в исследуемом материале антигенов вирусов или вирусоспецифических антител;
Ø Биологический – заражение вируссодержащим материалом лабораторных животных;
Ø Молекулярно-биологический – выявление в исследуемом материале нуклеиновых кислот вирусов (ПЦР, ДНК-зонды);
Ø Экспресс-методы – выявление антигенов вирусов в короткие сроки (РИФ);
Ø Аллергологический – выявление ГЗТ к вирусу.
Этапы вирусологического метода исследования:
1. Взятие материала (выбор материала определяется клиническими признаками заболевания, местом размножения вируса в организме и путями его выделения), транспортировка в лабораторию и подготовка к исследованию (для подавления сопутствующей бактериальной флоры обрабатывают антибиотиками).
2. Заражение исследуемым материалом чувствительной модели. Вирусы в отличии от бактерий не растут на питательных средах, т.к. являются абсолютными (облигатными) паразитами, поэтому для их культивирования применяются особые модели:
Ø в организме восприимчивых животных;
Ø в куриных эмбрионах (овокультуры);
Ø в культуре клеток.
3. Культивирование вируса в зараженной модели при стандартных условиях (оптимальная температура, продолжительность культивирования).
4. Индикация (обнаружение) вируса в зараженной модели.
5. Идентификация выделенного вируса в серологических реакциях.
Достоинство вирусологического метода – 100% достоверность.
Культивирование вирусов в организме чувствительных животных – на первом этапе развития вирусологии был единственным методом, доказывающим наличие фильтрующихся агентов в исследуемом материале.
Требования, предъявляемые к лабораторным животным:
Ø животное должно быть чувствительным к данному вирусу;
Ø использование новорожденных/молодых особей;
Ø использование инбридных (беспородных) животных/гнотобионтов (выращены в безмикробной среде);
Ø использование здоровых животных одной линии (одного пола, возраста, веса, содержащихся в одинаковых условиях).
Способ заражения животных определяется тропизмом вируса (способностью репродуцироваться в определенных типах клеток):
Ø нейротропен (например, вирус бешенства) – вводится интрацеребрально;
Ø пневмотропен (например, РС-вирусы) – интраназально;
Ø дерматропен (например, вирус натуральной оспы) – внутрикожно;
Ø пантропен – внутривенно/внутрибрюшинно.
Методы индикации вируса в организме лабораторного животного:
1) клинические симптомы заболевания;
2) гибель животного;
3) патоморфологические изменения органов при вскрытии.
Достоинства – выделение тех вирусов, которые не культивируются в куриных эмбрионах и культурах клеток.
Недостатки – контаминация животных посторонними микроорганизмами.
Культивирование вирусов методом овокультур – заражение вирусами куриных эмбрионов.
Требования, предъявляемые к куриным эмбрионам:
Ø должны быть из эпидемиологически благополучных хозяйств;
Ø скорлупа должна быть чистой, непигментированной, без механических повреждений;
Ø возраст – 5-12 дней (недостаточно противовирусных ингибиторов).
Способы заражения куриных эмбрионов:
Ø закрытый (прокол иглой под контролем овоскопа);
Ø открытый (с удалением части скорлупы).
Исследуемый материал вводят в аллантоисную и амниотические полости, хорион-аллантоисную оболочку и желточный мешок. Перед заражением скорлупу над воздушной камерой обрабатывают 70% этиловым спиртом и фломбируют (обжигают на пламени). После заражения отверстие в скорлупе заливают расплавленным парафином. Инкубируют при 35-37 0 С ≈ 48 часов.
Методы индикации вируса в куриных эмбрионах:
1) результаты овоскопии – отсутствие подвижности эмбриона, слабая инъецированность сосудов кровью и отсутствие их пульсации;
2) паталогоанатомические изменения на хорион-аллантоисной оболочке – отечность, кровоизлияния, наличие оспинок (узелков);
3) отставание эмбриона в росте и развитии, пороки развития, гибель;
Достоинства – высокая чувствительность к большому спектру вирусов.
Недостатки – обнаружение вируса только после вскрытия эмбриона.
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ
Студент должен знать:
-морфологию, экологию, физиологию вирусов, методы их изучения;
-основы эпидемиологии вирусных инфекций (типы инфекций);
-основы химиотерапии и химиопрофилактики вирусной инфекции;
-факторы иммунитета при вирусных инфекциях.
Студент должен уметь:
-проводить профилактику вирусных инфекций;
-составлять алгоритмы действия в условиях эпидемии.
Вопросы для фронтального обсуждения:
1.Дайте понятие вирусам. Охарактеризуйте особенности строения и жизни вирусной частицы.
2.Какими факторами осуществляется защита организма человека от вируса.
3.Назовите группу и механизм действия препаратов на вирусы. Приведите примеры препаратов.
4.Назовите типы инфекции, вызываемые вирусами.
5. Назовите представителей кишечных, кровяных, респираторных вирусных инфекций, инфекций кожных покровов и слизистых.
7.Назовите, как называются мероприятия, ликвидирующие эпидемический процесс.
Самостоятельная работа студентов:
Запишите определения методов исследования вирусных инфекций.
Зарисйте в атлас внутриклеточные включения при натуральной оспе (тельца Гварниери), при бешенстве (тельца Бабеша-Негри).
3.Составьте план противоэпидемических мероприятий на вирусную инфекцию (инфекцию определяет преподаватель).
Краткие теоретические положения
Введение
Расширение возможностей в лечении и профилактике вирусных болезней с использованием противовирусных препаратов, иммуномодуляторов и вакцин с различным механизмом действия нуждается в быстрой и точной лабораторной диагностике. Узкая специфичность некоторых противовирусных препаратов также требует быстрой и высокоспецифичной диагностики инфицирующего агента. Появилась необходимость в количественных методах определения вирусов для мониторинга противовирусной терапии. Помимо установления этиологии заболевания лабораторная диагностика имеет важное значение в организации противоэпидемических мероприятий.
Ранняя диагностика первых случаев эпидемических инфекций позволяет своевременно провести противоэпидемические мероприятия – карантин, госпитализацию, вакцинацию и пр. Реализация программ по ликвидации инфекционных заболеваний, например натуральной оспы, показала, что по мере их выполнения возрастает роль лабораторной диагностики. Существенную роль играет лабораторная диагностика в службе крови и акушерской практике, например, выявление доноров, инфицированных вирусом иммунодефицита человека (ВИЧ), вирусом гепатита В (HBV), диагностика краснухи и цитомегаловирусной инфекции у беременных.
Методы диагностики вирусных инфекций
Для успешного выделения вирусов клинический материал должен быть взят в соответствии с патогенезом предполагаемого заболевания и в наиболее ранние сроки.
Как правило, берутся:
– при респираторных инфекциях – носоглоточный смыв;
– при энтеровирусных инфекциях – смыв и фекалии (рео-, энтеровирусы);
– при поражениях кожи и слизистых оболочек – соскобы, содержимое пузырьков (герпес, ветряная оспа);
– при экзантемных инфекциях – смывы (корь, краснуха);
– при арбовирусных инфекциях – кровь, спинномозговая жидкость.
1.Быстрые (экспресс-методы) — прямое обнаружение вируса или его компонентов (антигенов, НК), включений непосредственно в клиническом материале.
А. Вирусоскопический метод заключается в обнаружении вируса в исследуемом материале под микроскопом. Чаще всего используют электронный микроскоп. Световая микроскопия из-за ничтожно малых размеров вирусов практически не применяется. При данном методе можно определить тип НК, размеры вириона, форму вириона, а также выявить внутриклеточные включения, которые образуются в пораженных клетках при некоторых инфекциях.
II. Вирусологический метод основан на:
культивировании вирусов в чувствительных биологических системах (клеточных культурах, курином эмбрионе, организмах лабораторных животных),их индикации по цитопатогенному действию на биологическую систему (рис.1), идентификации по ингибиции действия вирусов соответствующими противовирусными антителами (рис.2).
Рис. 1. Цитопатическое действие вирусов на клетку: А-нормальный рост, Б-ЦПД вирусов на клетку
Рис.2 Ингибиция вируса антителами
Вирусологическое исследование - это "золотой стандарт" вирусологии и должно проводится в специализированной вирусологической лаборатории. В настоящее время оно используется практически только в условиях возникновения эпидемической вспышки того или иного вирусного инфекционного заболевания.
III. Серологический метод — определение противовирусных антител (оптимально — IgM) и/или определение динамики нарастания их титров за определенный период заболевания в парных сыворотках. Диагностически значимым считают нарастание титра антител в 4 и более раз.
Метод парных сывороток:осуществляем сбор венозной крови в количестве 10 мл в начале болезни и в конце, приготавливаем сыворотку, определяем количество антител в первой и второй сыворотке.
При этом четырехкратное нарастание титра антител во второй сыворотке в большинстве случаев служит показателем протекающей или свежеперенесенной инфекции. При исследовании одной сыворотки, взятой в острой стадии болезни, диагностическое значение имеет обнаружение антител класса Ig М, свидетельствующее об острой инфекции.
Современные методы диагностики:
1.ПЦР-выявляют персистирующие вирусы по НК, находящиеся в клиническом материале, с трудом обнаруживаемые или не обнаруживаемые другими методами.
2.Радиоизотопный иммунный анализ (РИА)-метод основан на метке антител радиоизотопами, что обеспечивало высокую чувствительность в определении вирусного антигена. Широкое распространение метод получил в 80-е годы, особенно для определения маркеров HBV и других некультивируемых вирусов. К недостаткам метода относится необходимость работать с радиоактивными веществами и использования дорогостоящего оборудования (гамма-счетчиков).
3.Иммуноферментный анализ (ИФА) – Иммуноферментные методы определения вирусных антигенов в принципе сходны с РИФ, но основываются на мечении антител ферментами, а не красителями. Наиболее широко используется пероксидаза хрена и щелочная фосфатаза, применяют также b-галактозидазу и b-лактамазы. Меченые антитела связываются с антигеном, и такой комплекс обнаруживается при добавлении субстрата для фермента, с которым конъюгированы антитела. Конечный продукт реакции может быть в виде нерастворимого осадка, и тогда учет проводится с помощью обычного светового микроскопа, или в виде растворимого продукта, который обычно окрашен (или может флюоресцировать или люминесцировать) и регистрируется инструментально.
Поскольку с помощью ИФА можно измерять растворимые антигены, то не требуется наличия интактных клеток в образце и таким образом могут использоваться различные виды клинического материала.
Другое важное преимущество метода ИФА – возможность количественного определения антигенов, что позволяет применять его для оценки клинического течения болезни и эффективности химиотерапии. ИФА, как и РИФ, может применяться как в прямом, так и в непрямом варианте.
Твердофазный ИФА, дающий растворимый окрашеный продукт реакции, нашел наибольшее распространение. ИФА может быть использован как для определения антигена (тогда на твердую фазу – дно лунки полистиролового планшета – наносятся антитела), так и для определения антител (тогда на твердую фазу наносятся антигены).
4.Реакция иммунофлюоресценции (РИФ) – Метод основан на использовании антител, связанных с красителем, например флюоресцеинизотиоцианатом. РИФ широко применяется для выявления вирусных антигенов в материале больных и для быстрой диагностики.
В практике применяются два варианта РИФ: прямой и непрямой. В первом случае применяются меченные красителем антитела к вирусам, которые наносятся на инфицированные клетки (мазок, культура клеток). Таким образом, реакция протекает одноэтапно. Неудобством метода является необходимость иметь большой набор конъюгированных специфических сывороток ко многим вирусам.
При непрямом варианте РИФ на исследуемый материал наносится специфическая сыворотка, антитела которой связываются с вирусным антигеном, находящимся в материале, а затем наслаивается антивидовая сыворотка к гамма-глобулинам животного, в котором готовилась специфическая иммунная сыворотка, например антикроличья, антилошадиная и т. п. Преимущество непрямого варианта РИФ состоит в потребности лишь одного вида меченых антител.
Метод РИФ широко применяется для быстрой расшифровки этиологии острых респираторных вирусных инфекций при анализе мазков-отпечатков со слизистой оболочки верхних дыхательных путей. Успешное применение РИФ для прямой детекции вируса в клиническом материале возможно лишь в случае содержания в нем достаточно большого числа инфицированных клеток и незначительной контаминации микроорганизмами, которые могут давать неспецифическое свечение.
5.Другие методы диагностики –
РТГА используется для диагностики заболеваний, вызванных гемагглютинирующими вирусами. Она основана на связывании антителами сыворотки больного добавленного стандартного вируса. Индикатором реакции являются эритроциты, агглютинирующиеся вирусом (формирование характерного "зонтика") при отсутствии специфических антител и оседающие на дно неагглютинированными при их наличии.
РСК является одной из традиционных серологических реакций и используется для диагностики многих вирусных инфекций. В реакции принимают участие две системы: антитела сыворотки больного + стандартный вирус и эритроциты барана + антитела к ним, а также оттитрованный комплемент. При соответствии антител и вируса этот комплекс связывает комплемент и лизиса бараньих эритроцитов не происходит (положительная реакция). При отрицательной РСК комплемент способствует лизису эритроцитов. Недостатком метода является его недостаточно высокая чувствительность и трудность стандартизации реагентов.
Для учета значимости РСК также, как и РТГА, необходимо титрование парных сывороток, то есть взятых в начале заболевания и в период реконвалесценции.
РПГА – агглютинация сенсибилизированных вирусными антигенами эритроцитов (или полистироловых шариков) в присутствии антител. На эритроцитах могут быть сорбированы любые вирусы, независимо от наличия или отсутствия у них гемагглютинирующей активности. В связи с наличием неспецифических реакций сыворотки исследуются в разведении 1:10 и более.
РНГА – агглютинация эритроцитов, сенсибилизированных специфическими антителами в присутствии вирусных антигенов. Наибольшее распространение РОПГА получила при выявлении HBs-антигена как у больных, так и у доноров крови.
Радюк Екатерина Васильевна – врач-лаборант ИВЦ МВА
Инфекционные заболевания весьма часто встречаются в ветеринарной практике. Для владельца животного важно вовремя обратить внимание на симптомы недомогания питомца. Для большинства инфекционных заболеваний эти симптомы неспецифичны: угнетение, отказ от корма, повышенная температура тела, рвота, понос; при некоторых заболеваниях встречается хромота и опухание суставов; возможно изменение цвета мочи.
Для ветеринарного врача, к которому приводят заболевшее животное, важно составить список дифференциальных диагнозов и исключить (или подтвердить) их специальными методами диагностики. Однако стоит помнить, что выбор диагностического метода будет зависеть от вида возбудителя, его локализации и стадии заболевания. Методика, применимая для диагностики одной инфекции, совершенно неприемлема для диагностики другой.
В данной статье представлен обзор основных методов диагностики инфекционных заболеваний, которыми располагает современная ветеринарная медицина.
Возбудители многих заболеваний, как правило, достаточно требовательны к питательным средам и достаточно сложны для культивирования invitro. Не для всех возбудителей определены условия культивирования. В некоторых случаях используют синтетические или полусинтетические среды – однако при этом рост возбудителей очень медленный (до нескольких месяцев) и всегда присутствует значительный риск грибковой или бактериальной контаминации, несмотря строгое соблюдение асептики. Кроме того, проведение работ по культивированию возможно только в специализированных микробиологических лабораториях. Поэтому в ветеринарии данный метод не нашел широкого применения при диагностике инфекционных заболеваний; работы, связанные с культивированием возбудителей, проводятся, как правило, только в специальных исследовательских институтах с целью их более детального изучения и разработки диагностических тест-систем.
2. Световая микроскопия
1) Микроскопия фиксированных окрашенных препаратов
Является наиболее доступным и потому распространенным методом диагностики инфекционных (особенно трансмиссивных) заболеваний в ветеринарной медицине. Основан на выявлении возбудителя в клиническом материале по характерной морфологии. Однако, несмотря на свою простоту и доступность, у этого метода есть свои недостатки.
Во-первых, у метода световой микроскопии достаточно ограниченная чувствительность. При незначительном количестве возбудителей в материале результат микроскопии может быть отрицательным.
Во-вторых, необходимо тщательное приготовление и окраска мазков для минимизации возможных артефактов.
В-третьих, лаборанту или врачу, интерпретирующему мазок, требуется достаточный опыт и хорошее знание морфологии как клеток тканей, так и возбудителей и умение отличать последних от возможных рефракционных артефактов или преципитатов красителя. И, в-четвертых, точное определение вида возбудителя при использовании только световой микроскопии возможно далеко не всегда. Поэтому световую микроскопию стараются дополнять другими методами диагностики, основанными на обнаружении специфических антител либо генетического материала возбудителя.
2)Темнопольная микроскопия
Вид оптической микроскопии, в которой контраст изображения увеличивают за счет регистрации только света, рассеянного изучаемым образцом. Как правило, используется для обнаружения спирохет - боррелий и лептоспир. Из-за необходимости наличия специального оборудования в рутинной ветеринарной практике применяется редко. Кроме того, с помощью темнопольной микроскопии невозможно определить видовую принадлежность возбудителя и его патогенность.
3. Полимеразная цепная реакция (ПЦР)
Полимеразная цепная реакция (ПЦР) – это метод ферментативного получения ампликонов (большого количества копий) исследуемых фрагментов ДНК путем повторных циклов репликации и денатурации (разделения цепи ДНК на отдельные нити); при этом происходит копирование только исследуемого участка ДНК (при условии его присутствия в данном образце), поскольку только этот участок соответствует заданным условиям.
Метод ПЦР идеально подходит для обнаружения микроорганизмов, трудно визуализирующихся, медленно растущих или сложных в культивировании. ПЦР является наиболее предпочтительным методом для диагностики заболевания в острый период. Основным лимитирующим фактором при использовании ПЦР является содержание в исследуемой пробе достаточного количества материала (нуклеиновой кислоты возбудителя). Для многих возбудителей известно, что их количество в крови меняется с течением времени; таким образом, в какой-то момент времени ПЦР может показать ложноотрицательный результат у инфицированного пациента. Таким образом, для врача крайне важно знать тропность возбудителя к тканям организма и отправлять на исследование тот материал, в котором вероятность обнаружения возбудителя наиболее высока (например, мочу – при диагностике лептоспироза, плаценту или пунктат семенников при подозрении на бруцеллез, синовиальную жидкость - при исследовании на боррелиоз).
4. Серологические методы диагностики
Данные методы основаны на выявлении у животных специфических антител. Заражение инфекционным агентом, если оно происходит впервые, в течение недели вызывает у животного умеренный рост иммуноглобулинов класса М (IgM) и постепенное увеличение иммуноглобулинов класса G (IgG), которое достигает пика через 14 дней. Определение уровня антител у животных с остро начинающимся заболеванием (таким как бабезиоз) дает мало полезной диагностической информации. Для диагностики хронических заболеваний (например, моноцитарного эрлихиоза) измерение уровня антител будет более полезным.
Продукция антител у каждого животного может сильно варьироваться; этот процесс зависит от возраста, иммунного статуса и генетической принадлежности. Лучший способ оценки степени сероконверсии заключается в исследовании парных сывороток, взятых с интервалом в 2-3 недели. Растущий титр антител указывают на недавнюю и, следовательно, клинически значимую инфекцию, особенно если это подтверждается соответствующими клиническими признаками. Альтернативным методом определения недавней инфекции является измерение уровня IgM, однако в ветеринарной практике данный метод практически не используется.
1) Твердофазный иммуноферментный анализ (ИФА, ELISA)
Принцип метода заключается в том, один их специфических реагентов (антиген) иммобилизуют на твердой фазе. Затем последовательно добавляют другие специфические реагенты, проводя после инкубации каждого из них промывку с целью удаления несвязавшихся компонентов. Один из специфических реагентов, так называемый конъюгат, содержит ферментную метку. Для визуализации результата в конце реакции добавляют хромогеновый субстрат. Через определенный промежуток времени реакцию останавливают и проводят считывание на спектрофотометре.
Для определения титра антител в сыворотке готовят несколько последовательных разведений; титр антител определяется как обратный последнему видимому разведению (к примеру, если последнее разведение было 1:2000, то титр антител составит 2000). Метод твердофазного ИФА является наиболее предпочтительным для определения наличия антител к возбудителям, антигены которых легкодоступны (т.е. это либо легко культивируемые микроорганизмы, либо те, для которых получены рекомбинантные антигены). Кроме того, он может использоваться и для выявления антигенов возбудителя – например при диагностике инвазии Dirofilariaimmitisили вируса лейкемии кошек.
Для использования полноценного твердофазного иммуноферментного анализа необходимо наличие специального лабораторного оборудования. Однако существует экспресс-модификация ИФА (SNAP, IDEXX Laboratories), где антиген/антитела иммобилизированы не на плашке, а на мембранном фильтре. Эти тесты широко используются в клиниках для диагностики трансмиссивных заболеваний (лейшманиоза, дирофиляриоза, анаплазмоза, эрлихиоза и боррелиоза). Однако они не дают возможность зафиксировать рост или снижение титра антител, а также определить их принадлежность к M или G классу.
2) Метод флюоресцирующих антител (МФА, IFA)
В случае, когда культивирование микроорганизма сопряжено с техническими сложностями либо небезопасно, применяют метод иммунофлюоресценции. При этом может быть обнаружен как сам организм в зараженных клетках и тканях пациента (прямой МФА) либо наличие в сыворотке специфичных антител (непрямой МФА). В непрямом МФА зараженные клетки (как правило, культурального происхождения) зафиксированы на предметных стеклах либо планшетках. Сама процедура исследования схожа с таковой в ИФА. Однако в конъюгате вместо фермента здесь используется специальный краситель, дающий при определенной длине волны флюоресцентное свечение, которое можно видеть в специальный микроскоп. Количество антител также определяется по последнему разведению, давшему положительный результат.
Прямой МФА считается менее чувствительным; используется в тех случаях, когда число зараженных клеток невелико (например, для выявления в мазках крови морул Anaplasmaphagocytophilum).
3) Иммуноблот (вестерн-блот)
Таким образом, в статье были рассмотрены основные методы, применяемые сегодня для диагностики инфекционных заболеваний животных. Особое внимание хотелось бы уделить тому, что не существует какого-либо универсального метода для диагностики того или иного заболевания. Поэтому от врача при постановке диагноза требуется комплексный подход; необходимо учитывать анамнез, длительность заболевания, клинические признаки и данные общих лабораторных исследований.
Кроме того, необходимо умение правильно интерпретировать результаты – ведь даже обнаружение антител (особенно класса G) к тому или иному возбудителю не говорит о том, что именно этот этиологический агент является причиной нынешнего состояния животного. Только грамотное применение и интерпретация специальных методов исследования (не только при диагностике трансмиссивных заболеваний) в сочетании с клинической картиной дает возможность правильно поставить диагноз и назначить адекватное лечение.
Читайте также: