Морфология вирусов микробиология зверев
Вирусы относят к царству Vira. Это мельчайшие микроорганизмы, не имеющие клеточного строения, белоксинтезирующей системы, содержащие только один тип нуклеиновой кислоты (ДНК или РНК). Они отличаются особым разобщенным (дисъюнктивным) способом размножения (репродукции): в клетке отдельно синтезируются нуклеиновые кислоты вирусов и их белки и затем происходит их сборка в вирусные частицы. Вирусы, являясь облигатными внутриклеточными паразитами, размножаются в цитоплазме или ядре клетки. Сформированная вирусная частица называется вирионом.
Морфологию и структуру вирусов изучают с помощью электронного микроскопа, так как их размеры малы и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), в виде сперматозоида (многие бактериофаги).
Размеры вирусов определяют с помощью электронной микроскопии, методом ультрафильтрации через фильтры с известным диаметром пор, методом ультрацентрифугирования. Одним из самых мелких вирусов является вирус полиомиелита (около 20 нм), наиболее крупным – натуральной оспы (около 350 нм).
Вирусы имеют уникальный геном, так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНК-содержащие вирусы. Они обычно гаплоидны, т.е. имеют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными. Среди РНК-содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов выполняет наследственную функцию и функцию информационной РНК (иРНК). Имеются также РНК-содержащие вирусы с отрицательным (минус-нить РНК) геномом. Минус-нить РНК этих вирусов выполняет только наследственную функцию. Геном вирусов способен включаться в состав генетического аппарата клетки в виде провируса, проявляя себя генетическим паразитом клетки. Нуклеиновые кислоты некоторых вирусов (вирусы герпеса и др.) могут находиться в цитоплазме инфицированных клеток, напоминая плазмиды.
Капсид и суперкапсид защищают вирионы от влияния окружающей среды, обусловливают избирательное взаимодействие (адсорбцию) с клетками, определяют антигенные и иммуногенные свойства вирионов. Внутренние структуры вирусов называются сердцевиной.В вирусологии используют следующие таксономические категории: семейство (название оканчивается на viridae), подсемейство (название оканчивается на virinae), род (название оканчивается на virus).
Однако названия родов и особенно подсемейств сформулированы не для всех вирусов. Вид вируса биноминального названия, как у бактерий, не получил.
В основу классификации вирусов положены следующие категории:
§ тип нуклеиновой кислоты (ДНК или РНК), ее структура, количество нитей (одна или две),
§ особенности воспроизводства вирусного генома;
§ размер и морфология вирионов, количество капсомеров и тип симметрии;
§ чувствительность к эфиру и дезоксихолату;
§ место размножения в клетке;
§ антигенные свойства и пр.
Вирусы поражают позвоночных и беспозвоночных животных, а также растения и бактерии. Являясь основными возбудителями инфекционных заболеваний человека, вирусы также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирус краснухи, цитомегаловирус и др.), поражая плод человека. Они могут приводить к постинфекционным осложнениям – развитию миокардитов, панкреатитов, иммунодефицитов и др.
Кроме обычных вирусов, известны и так называемые неканонические вирусы – прионы – белковые инфекционные частицы, являющиеся агентами белковой природы, имеющие вид фибрилл размером 10.20x100.200 нм. Прионы, по-видимому, являются одновременно индукторами и продуктами автономного гена человека или животного и вызывают у них энцефалопатии в условиях медленной вирусной инфекции (болезни Крейтц-фельдта.Якоба, куру и др.). Другими необычными агентами, близкими к вирусам, являются вироиды – небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие белка, вызывающие заболевания у растений.
Данная книга предназначена студентам медицинских образовательных учреждений. Это краткое пособие поможет при подготовке и сдаче экзамена по микробиологии. Материал изложен в очень удобной и запоминающейся форме и поможет студентам за сжатый срок детально освоить основные концепции и понятия курса, а также конкретизировать и систематизировать знания.
- ЛЕКЦИЯ № 1. Введение в микробиологию
- ЛЕКЦИЯ № 2. Морфология и ультраструктура бактерий
- ЛЕКЦИЯ № 3. Физиология бактерий
- ЛЕКЦИЯ № 4. Генетика микроорганизмов. Бактериофаги
- ЛЕКЦИЯ № 5. Общая вирусология
- ЛЕКЦИЯ № 6. Учение об инфекции
- ЛЕКЦИЯ № 7. Нормальная микрофлора организма человека
Приведённый ознакомительный фрагмент книги Микробиология: конспект лекций (К. В. Ткаченко) предоставлен нашим книжным партнёром — компанией ЛитРес.
ЛЕКЦИЯ № 5. Общая вирусология
1. Морфология и структура вирусов
Вирусы – микроорганизмы, составляющие царство Vira.
1) содержат лишь один тип нуклеиновой кислоты (РНК или ДНК);
2) не имеют собственных белоксинтезирующих и энергетических систем;
3) не имеют клеточной организации;
4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);
5) облигатный паразитизм вирусов реализуется на генетическом уровне;
6) вирусы проходят через бактериальные фильтры.
Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).
По форме вирионы могут быть:
3) в виде правильных многоугольников;
4) нитевидными и др.
Размеры их колеблются от 15–18 до 300–400 нм.
В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.
Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур.
Строение ДНК– и РНК-вирусов принципиально не отличается от НК других микроорганизмов. У некоторых вирусов в ДНК встречается урацил.
4) двухцепочечной, но с одной более короткой цепью;
5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями.
2) линейной двухнитевой;
3) линейной фрагментированной;
5) содержащей две одинаковые однонитевые РНК.
Вирусные белки подразделяют на:
1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации;
2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический (образуют правильные многоугольники, число граней строго постоянно) или смешанный;
3) белки суперкапсидной оболочки – это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции.
Среди белков суперкапсидной оболочки выделяют:
а) якорные белки (одним концом они располагаются на поверхности, а другим уходят в глубину; обеспечивают контакт вириона с клеткой);
б) ферменты (могут разрушать мембраны);
в) гемагглютинины (вызывают гемагглютинацию);
г) элементы клетки хозяина.
2. Взаимодействие вирусов с клеткой хозяина
Взаимодействие идет в единой биологической системе на генетическом уровне.
Существует четыре типа взаимодействия:
1) продуктивная вирусная инфекция (взаимодействие, в результате которого происходит репродукция вируса, а клетки погибают);
2) абортивная вирусная инфекция (взаимодействие, при котором репродукции вируса не происходит, а клетка восстанавливает нарушенную функцию);
3) латентная вирусная инфекция (идет репродукция вируса, а клетка сохраняет свою функциональную активность);
4) вирус-индуцированная трансформация (взаимодействие, при котором клетка, инфицированная вирусом, приобретает новые, ранее не присущие ей свойства).
Нуклеиновые кислоты вирусов реализуют генетическую программу по созданию вирусного потомства и определяют наследственные свойства вирусов. С помощью специальных ферментов (полимераз) снимаются копии с родительской нуклеиновой кислоты (происходит репликация), а также синтезируются информационные РНК, которые соединяются с рибосомами и осуществляют синтез дочерних вирусных белков (трансляцию).
После того как в зараженной клетке накопится достаточное количество компонентов вируса, начинается сборка вирионов потомства. Процесс этот происходит обычно вблизи клеточных мембран, которые иногда принимают в нем непосредственное участие. В составе вновь образованных вирионов часто обнаруживаются вещества, характерные для клетки, в которой размножается вирус. В таких случаях заключительный этап формирования вирионов представляет собой обволакивание их слоем клеточной мембраны.
Последним этапом взаимодействия вирусов с клетками является выход или освобождение из клетки дочерних вирусных частиц. Простые вирусы, лишенные суперкапсида, вызывают деструкцию клетки и попадают в межклеточное пространство. Другие вирусы, имеющие липопротеидную оболочку, выходят из клетки путем почкования. При этом клетка длительное время сохраняет жизнеспособность. В отдельных случаях вирусы накапливаются в цитоплазме или ядре зараженных клеток, образуя кристаллоподобные скопления – тельца включений.
3. Культивирование вирусов
Основные методы культивирования вирусов:
1) биологический – заражение лабораторных животных. При заражении вирусом животное заболевает. Если болезнь не развивается, то патологические изменения можно обнаружить при вскрытии. У животных наблюдаются иммунологические сдвиги. Однако далеко не все вирусы можно культивировать в организме животных;
2) культивирование вирусов в развивающихся куриных эмбрионах. Куриные эмбрионы выращивают в инкубаторе 7—10 дней, а затем используют для культивирования. В этой модели все типы зачатков тканей подвержены заражению. Но не все вирусы могут размножаться и развиваться в куриных эмбрионах.
В результате заражения могут происходить и появляться:
1) гибель эмбриона;
2) дефекты развития: на поверхности оболочек появляются образования – бляшки, представляющие собой скопления погибших клеток, содержащих вирионы;
3) накопление вирусов в аллантоисной жидкости (обнаруживают путем титрования);
4) размножение в культуре ткани (это основной метод культивирования вирусов).
Различают следующие типы культур тканей:
1) перевиваемые – культуры опухолевых клеток; обладают большой митотической активностью;
2) первично трипсинизированные – подвергшиеся первичной обработке трипсином; эта обработка нарушает межклеточные связи, в результате чего выделяются отдельные клетки. Источником являются любые органы и ткани, чаще всего – эмбриональные (обладают высокой митотической активностью).
Для поддержания клеток культуры ткани используют специальные среды. Это жидкие питательные среды сложного состава, содержащие аминокислоты, углеводы, факторы роста, источники белка, антибиотики и индикаторы для оценки развития клеток культуры ткани.
О репродукции вирусов в культуре ткани судят по их цитопатическому действию, которое носит разный характер в зависимости от вида вируса.
Основные проявления цитопатического действия вирусов:
1) размножение вируса может сопровождаться гибелью клеток или морфологическими изменениями в них;
2) некоторые вирусы вызывают слияние клеток и образование многоядерного синцития;
3) клетки могут расти, но делиться, в результате чего образуются гигантские клетки;
4) в клетках появляются включения (ядерные, цитоплазматические, смешанные). Включения могут окрашиваться в розовый цвет (эозинофильные включения) или в голубой (базофильные включения);
5) если в культуре ткани размножаются вирусы, имеющие гемагглютинины, то в процессе размножения клетка приобретает способность адсорбировать эритроциты (гемадсорбция).
4. Особенности противовирусного иммунитета
Противовирусный иммунитет начинается со стадии презентации вирусного антигена Т-хелперами.
Сильными антигенпрезентирующими свойствами при вирусных инфекциях обладают дендритные клетки, а при простом герпесе и ретровирусных инфекциях – клетки Лангерганса.
Иммунитет направлен на нейтрализацию и удаление из организма вируса, его антигенов и зараженных вирусом клеток. Антитела, образующиеся при вирусных инфекциях, действуют непосредственно на вирус или на клетки, инфицированные им. В этой связи выделяют две основные формы участия антител в развитии противовирусного иммунитета:
1) нейтрализацию вируса антителами; это препятствует рецепции вируса клеткой и проникновению его внутрь. Опсонизация вируса с помощью антител способствует его фагоцитозу;
2) иммунный лизис инфицированных вирусом клеток с участием антител. При действии антител на антигены, экспрессированные на поверхности инфицированной клетки, к этому комплексу присоединяется комплемент с последующей его активацией, что и обуславливает индукцию комплементзависимой цитотоксичности и гибель инфицированной вирусом клетки.
Недостаточная концентрация антител может усиливать репродукцию вируса. Иногда антитела могут защищать вирус от действия протеолитических ферментов клетки, что при сохранении жизнеспособности вируса приводит к усилению его репликации.
Вируснейтрализующие антитела действуют непосредственно на вирус лишь в том случае, когда он, разрушив одну клетку, распространяется на другую.
Когда вирусы переходят из клетки в клетку по цитоплазматическим мостикам, не контактируя с циркулирующими антителами, то основную роль в становлении иммунитета играют клеточные механизмы, связанные прежде всего с действием специфических цитотоксических Т-лимфоцитов, Т-эффекторов и макрофагов. Цитотоксические Т-лимфоциты непосредственно контактируют с клеткой-мишенью, повышая ее проницаемость и вызывая осмотическое набухание, разрыв мембраны и выход содержимого в окружающую среду.
Механизм цитотоксического эффекта связан с активацией мембранных ферментных систем в зоне прилипания клеток, образованием цитоплазматических мостиков между клетками и действием лимфотоксина. Специфические Т-киллеры появляются уже через 1–3 дня после заражения организма вирусом, их активность достигает максимума через неделю, а затем медленно понижается.
Одним из факторов противовирусного иммунитета является интерферон. Он образуется в местах размножения вируса и вызывает специфическое торможение транскрипции вирусного генома и подавление трансляции вирусной мРНК, что препятствует накоплению вируса в клетке-мишени.
Стойкость противовирусного иммунитета вариабельна. При ряде инфекций (ветряной оспе, паротите, кори, краснухе) иммунитет достаточно стойкий, а повторные заболевания встречаются крайне редко. Менее стойкий иммунитет развивается при инфекциях дыхательных путей (гриппе) и кишечного тракта.
Морфология вирусов
Вирусы являются самыми мелкими из всех микроорганизмов. Для них принято измерение в миллимикронах и в ангстремах. Для определения таких размеров частиц применяется несколько методов. Так, взвесь вирусов пропускают через особые фильтры из коллодия, имеющие очень мелкие поры определенной величины. Фильтрование производят через несколько фильтров с разной величиной пор. Разница между диаметрами пор последнего фильтра, пропустившего вирусные частицы, и фильтра, уже не пропустившего вирусные частицы, указывает средние размеры вирусных частиц. При сверхскоростном центрифугировании (50 и более тысяч оборотов в минуту) величина вирусных частиц определяется по специальной формуле в зависимости от числа оборотов и времени осаждения частиц. При этом происходит и очистка вируса от посторонних веществ. Для этого подбирают такие скорости, при которых выпадают посторонние частицы, сначала крупные, а потом самые мелкие. При наиболее высокой скорости получают лишь частицы вируса.
Человек увидел вирусы только после 1940 г., когда был построен и усовершенствован электронный микроскоп. При увеличении в десятки и сотни тысяч раз удалось изучить форму, величину, а также строение частиц некоторых вирусов.
Было найдено, что как величина, так и форма отдельных особей (элементарных частиц) разных видов вирусов довольно разнообразны. Имеются крупные вирусы (например, вирус орнитоза, оспы, трахомы и др.), вирусы средних размеров (гриппа, чумы, бешенства) и мелкие (вирус полиомиелита, кори, ящура, энцефалитов, вирусы многих растений). В таблице приводятся размеры некоторых вирусов, определенные разными способами, в миллимикронах (по В. М. Жданову и Шен).
Самые крупные вирусы приближаются по своим размерам к самым мелким бактериям, а самые мелкие вирусы близки к крупным белковым молекулам.
Таблица 7
По внешнему виду одни вирусы имеют шарообразную форму (вирус гриппа), другие - кубовидную форму (вирус оспы), третьи - вид палочки. Вирус табачной мозаики (ВТМ) имеет вид тонкой шестигранной палочки длиной 300 ммк и в диаметре 15 ммк.
Рис. 42. Сравнительная величина бактерий, риккетсий, вирусов и белковых молекул (из Риверса, 1952, с изменениями)
При многих вирусных инфекциях (оспа, бешенство, трахома и др.) наблюдаются в цитоплазме или ядре клетки организма хозяина особые, специфические для каждой инфекции внутриклеточные тельца - включения. Они довольно крупные, и их можно видеть в световой микроскоп.
В большинстве случаев включения представляют собой скопление элементарных телец, вирусных частиц, как бы их колонию. Наличие их в клетках помогает при диагностике некоторых заболеваний.
Одним из своеобразных свойств многих вирусов растений является их способность образовывать кристаллы. Д. И. Ивановский первый наблюдал в листьях табака, пораженных ВТМ, включения, называемые теперь кристаллами Ивановского. Они состоят из элементарных частиц вируса табачной мозаики. Кристаллы вируса можно растворять, как растворяют сахар, соль. Из раствора этот вирус можно выделить в аморфном, некристаллическом, состоянии. Осадок можно вновь растворить, затем снова превратить в кристаллы. Если растворить кристаллический вирус в тысячу раз, то капля такого раствора вызовет у растения мозаичную болезнь. Из вирусов человека и животных пока получены кристаллы вируса полиомиелита. Каждый кристалл состоит из миллионов вирусных частиц.
Рис. 43. Кристаллы ВТМ
Химический состав вирусов был изучен прежде всего у возбудителя табачной мозаики. Этот вирус представляет собой чистый нуклеопротеид, т. е. состоит из белка и нуклеиновой кислоты. Вирусный нуклеопротеид табачной мозаики имеет огромный молекулярный вес (40-50 млн.).
Вирусная частица имеет сложное строение. Нуклеиновая кислота находится внутри вирусной частицы, она окружена белковой оболочкой. В вирусной частице обычно содержится одна молекула нуклеиновой кислоты.
Вирусы растений содержат рибонуклеиновую кислоту, фаги содержат дезоксирибонуклеиновую кислоту. В вирусах человека и животных находится или РНК, или ДНК. РНК содержится в вирусах гриппа (1,6%), полиомиелита (24%), некроза табака (18%), мозаики табака (6%), ящура (40%), саркомы Рауса (10%) и др. ДНК содержится в вирусах осповакцин (6%), папилломы (6,8%), герпеса (3,8%), полиомы (12%) и др.
Теперь интенсивно изучается вопрос, как соединяются белок и нуклеиновая кислота, как они подогнаны друг к другу. Для разрешения этого вопроса пользуются методом рентгенокристаллографии. Если в вирусной частице имеются субъединицы, то этот метод может установить их число, а также их взаимное расположение. Оказалось, что для большинства вирусов характерно закономерное, высокоупорядоченное расположение элементов вирусной частицы.
У вируса полиомиелита нуклеиновая кислота свернута в клубок, белковая оболочка состоит из 60 одинаковых субъединиц, которые объединены в 12 групп, по 5 субъединиц в каждой. Частица вируса имеет сферическую форму.
Нуклеиновая кислота вируса табачной мозаики имеет вид спирали или пружины. Белковая оболочка ВТМ состоит также из отдельных одинаковых по форме и размерам белковых субъединиц. Всего имеется 2200 субъединиц, расположенных в виде 130 витков вокруг стержня нуклеиновой кислоты. Молекулярный вес такой субъединицы 18 000. Каждая субъединица представляет собой пептидную цепочку, содержащую 158 определенных аминокислот, причем уже определено последовательное расположение этих аминокислот. В настоящее время интенсивно изучается последовательность расположения 6500 нуклеотидов, образующих нуклеиновую кислоту. Когда эта задача будет решена, то станет известен план, которым определяется тип вируса, образующегося в зараженной клетке. Строение, подобное частицам ВТМ и полиомиелита, имеют другие мелкие вирусы растений.
Рис. 44. Схема строения частицы ВТМ, основанная на данных рентгеноструктурного анализа, проведенного Франклином. Для ясности части цепи рибонуклеиновой кислоты показаны без опорного белкового каркаса. На каждую белковую единицу приходится 3 нуклеотида, или 49 на оборот спирали. Каждый нуклеотид схематически представлен плоским диском, поскольку в этом направлении ориентированы пуриновые и пиримидиновые основания (Франклин, 1955)
У более крупных вирусов, кроме нуклеиновой кислоты, белковой оболочки, есть еще внешние оболочки, содержащие белки, липоиды, углеводы. Некоторые вирусы содержат ферменты. Так, гриппозный вирус имеет фермент нейраминидазу, парагриппозный вирус - сендай-лизин, вирус миелобластоза птиц содержит аденовинтрифосфатазу. Эти ферменты растворяют оболочку клеток для проникновения вируса в тело своего будущего хозяина.
Другой особенностью вирусов является их внутриклеточный паразитизм. Начиная с Ивановского никому из ученых не удавалось выращивать вирусы на таких искусственных питательных средах, на которых так пышно размножаются самые требовательные паразиты из бактерий. Вирусы развиваются и размножаются только внутри живых клеток поражаемых ими организмов, которые называются хозяевами. Разные вирусы приспособились к паразитированию у определенных хозяев. Так, вирус полиомиелита размножается только в организме человека и мыши; вирус кори поражает только людей. Кроме того, размножение вируса происходит не во всех тканях организма хозяина и неодинаково в разных тканях: гриппозный вирус хорошо развивается в легочной ткани; вирус бешенства - нервной ткани; вирус трахомы обитает только на слизистой оболочке глаза. Таким образом, вирусы обладают специфичностью. Но многие вирусы растений могут паразитировать на разных видах растений. Так, ВТМ (вирус табачной мозаики) поражает почти все виды пасленовых растений. Многие вирусы растений хорошо размножаются в тканях насекомых, которые переносят вирус с одного растения на другое.
Рис. 45. Вирус табачной мозаики (увеличено в 230 000 раз)
В свободном состоянии, во внешней среде вне живой клетки, вирусы не проявляют активности, они только сохраняют свою жизнеспособность, иногда продолжительное время. Но как только вирусы встречаются с чувствительными к ним клетками, они становятся активными, внедряются в них и проявляют все признаки жизнедеятельности.
Единственным методом изучения жизнедеятельности вирусов раньше было заражение восприимчивых к ним опытных животных: мышей, кроликов, обезьян и др. Более удобно и экономно выращивать вирусы в развивающемся зародыше куриного яйца. Материал, содержащий вирус, вводят шприцем в зародыш на 8-12-й день его развития. Через несколько дней пребывания зародыша в термостате изучают патологические изменения, вызываемые вирусом в зародыше. Затем пересевают в свежий зародыш другого яйца. В последнее время получил наибольшее применение метод однослойных культур из изолированных клеток животных тканей. Размельченную свежую ткань обрабатывают ферментом трипсином, который разрушает межклеточные связи. Освободившиеся клетки отмывают от трипсина, разводят питательным составом (№ 199, содержащим необходимые аминокислоты и соли) и помещают в пробирки или в специальные плоские чашки. В термостате клетки размножаются, образуя однослойный пласт по стеклу. Затем эту культуру однородных клеток заражают вирусом и происходящие в ней процессы изучают под микроскопом или другими способами. Так трудоемкий и дорогой способ, например культура вируса полиомиелита на печени обезьян, был заменен быстрым способом выращивания его в тканевой культуре.
Рис. 46. Метод заражения куриного эмбриона. Заражение в аллантоисную полость куриного эмбриона: 1 - воздушное пространство; 2 - отверстия в скорлупе; 3 - скорлупная оболочка; 4 - хорион-аллантоисная оболочка; 5 - желточный мешок; 6 - белок; 7 - амнион; 8 - плод; 9 - аллантоисная полость
В 1955 г. и позднее были получены необычные факты, вызвавшие недоумение у ученых биологов. Химическим путем вирус табачной мозаики был разделен на свои составные части: белок и нуклеиновую кислоту. Каждая из них в отдельности не вызывала заболевания мозаикой у листьев табака. Но когда их опять соединили вместе в пробирке (10 частей белка и 1 часть нуклеиновой кислоты) и заразили этой смесью листья табака, то получили типичную мозаику на листьях, как от исходного цельного ВТМ. При электронной микроскопии были найдены типичные палочки вируса, состоящие из белковой оболочки, в которой был заключен тяж нуклеиновой кислоты. Таким образом, нуклеиновая кислота связалась с белковой частью и заняла в ней свое нормальное положение. Открытие этого явления - ресиитеза (восстановления) вируса - является крупнейшим достижением современной микробиологии, открывающим новые пути в биологии и медицине.
Далее оказалось, что достаточно натереть лист табака лишь одной нуклеиновой кислотой, выделенной из ВТМ мягким способом, как на листе возникают (конечно, не в большом количестве) типичные некрозы, в которых находились в огромном количестве типичные цельные вирусные частицы.
Такие же результаты были получены с вирусами человека: полиомиелита, гриппа и др.
Выл получен даже гибридный вирус мозаики табака из белка одного типа вируса и РНК другого типа вируса, отличавшегося по некоторым признакам от вируса первого типа. При размножении этот гибридный вирус давал потомство только того вируса, чью РНК содержал гибрид.
Все эти факты говорят о том, что нуклеиновым кислотам принадлежит ведущая роль в размножении вирусов и инфекциозности их. Нуклеиновые кислоты обеспечивают передачу наследственных свойств. В кислотах заключена наследственная информация по синтезу полноценных вирусных частиц внутри клетки.
Белковая оболочка вируса несет защитную функцию, охраняя от внешних воздействий хрупкую нить нуклеиновой кислоты, кроме того, помогает вирусу проникать в клетку, определяет специфичность вирусов. Но некоторые ученые не считают возможным так ограничивать значение белков. Нужны дальнейшие исследования о роли вирусных белков.
Процесс размножения вирусов принципиально отличается от процесса размножения бактерий, простейших и других клеточных организмов.
Различают четыре фазы этого процесса: прикрепление вирусных частиц к клетке хозяина, проникновение вируса внутрь клетки, внутриклеточное размножение вируса и выход новых частиц вируса из клетки.
Первая фаза - прикрепление, или адсорбция, вируса к клетке - изучена в отношении вирусов гриппа и полиомиелита. Стенка клетки имеет мозаичное строение, в одних местах ее выступают молекулы мукопротеидов, в других молекулы липопротеидов. Вирус гриппа адсорбируется на мукопротеидах, а вирус полиомиелита адсорбируется на липопротеидах. Адсорбцию можно наблюдать в электронный микроскоп. В месте адсорбции вируса на стенке клетки образуется углубление, куда втягивается частица вируса. Края углубления смыкаются, и частица вируса оказывается внутри клетки (виропексис). Одновременно с виропексисом происходит разрушение белковой оболочки вируса. Проникновению вируса гриппа в клетку способствует фермент его оболочки. Таким образом, в клетку проникает нуклеиновая кислота, освобожденная от белковых оболочек с помощью ферментов самой клетки.
В третьей фазе проникшая в клетку вирусная нуклеиновая кислота включается в обмен веществ клетки и направляет аппарат синтеза клетки на производство белка и нуклеиновой кислоты не клетки, а новых вирусных частиц. Деятельность ферментов, участвующих в синтезе вируса, активизируется, а остальных ферментов тормозится. Кроме того, создаются новые ферменты, которых клетка не имела, но которые необходимы для синтеза вирусных частиц. Можно полагать, что в это время организуется новая единая система вирус - клетка, переключенная на синтез вирусного материала. В начале этой фазы не удается различить в клетке какие-либо элементы вируса.
Обычно нуклеиновые кислоты и белки вируса синтезируются не одновременно и в разных местах клетки. Сначала начинается синтез нуклеиновой кислоты, а затем несколько позднее идет синтез белка. После накопления этих составных частей вируса происходит их объединение, сборка в полноценные вирусные частицы. Иногда образуются неполные вирусные частицы, лишенные нуклеиновой кислоты и потому неспособные к самопроизводству (бублики).
Быстро наступает последняя фаза - выход вирусных частиц из клетки. В каком-либо месте клетки сразу выходит около 100 частиц вируса, У более сложных вирусов имеются еще внешние оболочки вирусного нуклеопротеида, которыми они обволакиваются во время прохождения через клетку и выхода из нее, при этом в состав внешних оболочек входят белки клетки хозяина.
У вирусов человека и животных выход нового потомства происходит в несколько циклов. Так, у вируса гриппа каждый цикл продолжается часов 5-6 с выходом 100 и более вирусных частиц одной клетки, а всего наблюдается 5-6 циклов в течение 30 часов. После этого способность клетки производить вирус истощается, и она погибает. Весь процесс размножения парагриппозного вируса Сен дай от адсорбции до выхода из клетки продолжается 5-6 часов.
Иногда частицы вируса не выходят из клетки, а скапливаются в ней в виде внутриклеточных включений, очень характерных для разных видов вирусов. Вирусы растений образуют включения, имеющие кристаллическую форму.
Большое внимание начинает привлекать к себе семейство микробов, получившее название "микоплазма", так как за последнее время в этой группе обнаружены возбудители различных заболеваний человека и животных. В виде скрытой инфекции они часто обитают во многих тканевых культурах - Хела и др. Микоплазмы занимают промежуточное положение между бактериями и вирусами. С вирусами их сближает фильтруемость через бактериальные фильтры, фильтрующиеся формы способны к саморепродукции, внутриклеточному размножению. К признакам, сближающим вирусы с бактериями, относится способность расти на питательных средах, образовывать на них колонии, а также отношение к антибиотикам, сульфамидам и их антигенная структура.
Читайте также: