Наука и жизнь вирусы
Увеличивается во всем мире и число сторонников вирусной теории рака. Исследования сотен лабораторий свидетельствуют, что именно вирусы — наиболее вероятная причина рака, саркомы, лейкемии.
И. Губарев, наш специальный корреспондент, обратился к директору Института вирусологии имени И. Д. Ивановского АМН СССР, академику АМН СССР, профессору Виктору Михайловичу Жданову с просьбой рассказать об истории и сегодняшнем дне Вирусологии, о стратегии борьбы С вирусными болезнями.
Вирусология — наука молодая. 80 лет прошло со времени открытия И. Д. Ивановским первого вируса — возбудителя мозаичной болезни табака. Много позже — в 50-х годах — было получено первое несовершенное изображение этого инфекционного агента. Самые значительные исследования в области вирусологии были выполнены лишь за последние 15—20 лет.
С исследованиями вирусологов сегодня связано уничтожение инфекционных заболеваний на планете, борьба против рака. Вирусологии же, изучающей наиболее простые формы существования, предстоит дать ответ на многие вопросы, связанные с происхождением жизни на Земле.
Итак, что же мы знаем и «его еще не знаем о вирусах?
Пример: до недавнего времени мы почти ничего не знали о специфических обезьяньих вирусах. В 1960-х годах было начато массовое производство вакцины против полиомиелита, изготавливаемой на обезьяньих почках. Необходимо было обеспечить стерильность этой вакцины, то есть полностью исключить проникновение в нее каких-либо микроорганизмов. И вот в ходе исследований, направленных на обеспечение такого рода стерильности, был открыт целый ряд до тех пор неизвестных вирусов, специфичных для обезьян.
К настоящему времени мы располагаем сведениями примерно о тысяче видах вирусов. Безусловно, лучше других нам известны вирусы, поражающие человека. Их выявлено около 500 видов. Весьма обширна группа вирусов, найденных у лабораторных животных — мышей, кроликов, морских свинок.
Сравнительно много мы знаем о вирусах сельскохозяйственных животных и растений, меньше — о вирусах, опасных для птиц и других животных, древесных и кустарниковых пород лесе. И уж вовсе малоизвестны и числом и повадками вирусы папоротников, мхов, лишайников.
Вирусы проявляют себя не всегда одинаково. В одних случаях они нападают лишь на определенные виды живых существ. Скажем, уже выявлены специфические вирусы гриппа свиней, кошек, чаек, поражающие только этих животных и безопасные для других. Подчас специализация становится своеобразно утонченной: мельчайшие вирусы бактерий — фаги Р-17 выбирают в качестве объекта лишь мужские особи только одной разновидности кишечной палочки. А вот в числе объектов онкогенных вирусов — пресмыкающиеся, птицы, млекопитающие. Рекорд побивают, пожалуй, так называемые пулевидные вирусы, названные так благодаря их характерному очертанию на микрофотографии. Внешне вирусы этой разновидности очень схожи. А болезни они вызывают самые разнообразные, поражая при этом весьма далекие друг от друга виды живых существ. Они могут стать причиной бешенства — тяжелейшего поражения нервной системы млекопитающих (в том числе, разумеется, и человека) и таких болезней, как везикулярный стоматит крупного рогатого скота (передаваемый, кстати, через насекомых), желтой карликовости картофеля и полосатой штриховатости пшеницы. Эти же вирусы провоцируют тяжелое заболевание у мухи дрозофилы, приводящее насекомое к гибели в результате повышения чувствительности к углекислому газу.
Человек, животные, насекомые, растения. Болезни общие для многих видов и узко-специфичные. Откуда такой широкий спектр агрессивных возможностей? Под влиянием каких условий сложились эти свойства? Сколько еще существует в природе вирусов специализированных и универсальных?
На все эти вопросы лишь предстоит ответить.
С вирусами связано немало загадочного, неясного, а если быть точным до конца — еще не выясненного.
Признавая существование возбудителей инфекционных болезней, по размерам намного меньших, чем бактерии, ученые долго не могли прийти к единому мнению: какие они? Так, известный голландский микробиолог М. Бейеринк, к примеру, предполагал, что вирусы — необъяснимая загадка. Он дал им название Cоntagium vivum fluidum — живое жидкое заразное начало.
Другие исследователи пытались связать данные о вирусах с привычными для них представлениями о живом организме (клеточное строение, размножение путем деления с последующим ростом до размеров взрослой особи и т. д.). Не будем перечислять здесь другие предположения, высказанные на заре развития вирусологии. Все они — как наивные, так и наделенные долей предвидения — строились на одних лишь догадках, вслепую.
Много неясного и в современных гипотезах о происхождении вирусов. Так, одни исследователи считают, что вирусы — это потомки древних доклеточных форм жизни, застывшие, остановившиеся в своем развитии на определенном этапе. Разнообразие генетического вещества, говорят сторонники гипотезы, отражает ход эволюции этих существ. Природа как бы опробовала на вирусах все возможные варианты наследственного вещества, прежде чем остановиться окончательно на двухспиральной ДНК.
Вирусы — потомки бактерий или других одноклеточных организмов, по неизвестным причинам двинувшиеся в своем развитии вспять, деградировавшие, говорят другие ученые. Возможно, некогда их устройство было сложней, но со временем они многое утратили, и их нынешнее состояние, в том числе и разнообразие носителей генетической информации, лишь отражает разные уровни деградации, которых достигли различные их виды.
Наконец, существует гипотеза, согласно которой вирусы представляют собой составные части клеток живых существ, по неизвестной причине ставшие автономными системами. Процесс возникновения вирусов, согласно этой гипотезе, относится не только к глубокой древности, когда они уже, безусловно, существовали, но и к нашему времени. Иными словами, эта гипотеза признает возможность повсеместного, происходящего непрерывно образования вирусов клеточными элементами. Возможно ли такое, способны ли составные части клеток стать автономными, да еще и саморепродуцирующимися (способными к воспроизведению) системами?
Логика и парадоксы микромира
Устройство вирусов поражает своей чисто математической завершенностью, логикой симметрии. Возьмем, к примеру, наиболее просто организованный вирион (зрелый вирус) табачной мозаики.
Сотни белковых кристаллообразных структур уложены в виде тугой спирали. Сердцевина нити, образующей спираль, представляет собой своеобразную капсулу, где находится молекула нуклеиновой кислоты. В результате общий вид вириона — предельно лаконичный цилиндр, полая трубка.
А вот другая форма: двадцатигранник, икосаэдр, грани которого образованы треугольниками. Основной материал, из которого сложен икосаэдр, — те же белковые структуры. Внутри — полость, где покоится молекула нуклеиновой кислоты. Это вирион полиомиелита.
— Позвольте, — возражали многие ученые еще в недавнем прошлом, — да можно ли вообще после этого называть вирусы живыми существами? Может быть, это кристаллообразные вещества, наделенные болезнетворными свойствами?
— Либо, — говорили другие, — это пограничные формы между живым и неживым мирами.
Кто же прав? Скорей всего наиболее многочисленная группа исследователей, которая считает, что вирусы — представители живой природы, го есть не вещества, а существа. Правда, существа крайне своеобразные, ведущие сугубо паразитический образ жизни.
Вирус проникает в клетку
Вирусы, имеющие иное строение, проникают в клетку не столь затейливым путем. Притянутые к оболочке клетки и воздействующие на нее ферментами, они провоцируют втягивание внутрь того участка мембраны, на котором осели. Образуется своего рода капсула-вакуоль с вирусной частицей внутри. Вакуоль эта затем отрывается, и в ней, путешествующей внутри клетки, продолжают идти одновременно два процесса — вирусная частица с помощью своих ферментов разрушает окутывающие ее стенки капсулы, а ферменты клетки разрушают внешние оболочки вируса, освобождая, как это было и в случае с фагом Т2, нуклеиновую кислоту.
Итак, нуклеиновая кислота покинула белковую оболочку и исчезла, бесследно растворилась в клеточной среде. Что же дальше?
Мы еще не имеем возможности получить полный ответ на этот вопрос. До сих пор удалось установить характер лишь некоторых изменений, происходящих на этом этапе в различных частях клетки. И по этим отдельным штрихам мы воссоздаем, пытаемся представить себе полностью происходящее.
Формирование вирусов начинается, по-видимому, с подавления нормальных процессов обмена веществ в клетке. Установлено, в частности, что рибонуклеиновая кислота (РНК) вируса гриппа способна синтезировать на клеточных элементах — рибосомах, ведающих выработкой белка,— особое вещество, также белковой природы,— гистон, который, в свою очередь, связывается с ДНК клетки и прекращает синтез клеточной РНК. Некоторые другие вирусы, например, вирусы полиомиелита, не нуждаются в окольном пути, так как сами способны вмешаться в деятельность рибосом и прекратить синтез клеточных белков. Выявлены и другие механизмы подавления вирусами клеточного обмена, их вмешательства в жизнедеятельность клетки, но в конечном счете все сводится к одному: клеточные ресурсы перестают расходоваться на нужды самих клеток и поступают в распоряжение вирусной нуклеиновой кислоты.
Беззащитна ли клетка!
Цикл превращений, связанных с размножением вирусов, как правило, краток. В одних случаях проникновение вирусной нуклеиновой кислоты в клетку отделяет от появления вирионов 13—15 минут, в других — 40 минут. Вирусы одной из наиболее распространенных инфекций, гриппа, проходят этот путь примерно за 6—8 часов. И каждый раз около погибшей клетки оказываются десятки, а порой и сотни вирионов. Причем каждый из них, в свою очередь, готов к продолжению процесса размножения. Количество вирусной инфекции нарастает буквально лавинообразно.
Но так как главное действующее лицо — вирус остается за кадром (в обычный микроскоп он не виден), на экране только последствия его агрессии. Картина перед наблюдателем разворачивается впечатляющая. Вначале крайние клетки, первыми подвергшиеся нападению, начинают терять свойственные им округлые очертания. Постепенно истончаются их мембраны, клеточные элементы, клетка как бы взрывается. В этот момент, как мы знаем (но не видим этого), опустошенную оболочку покидают полчища вирионов, направляющихся к очередным своим жертвам. И через самое непродолжительное время точно так же изменяются, а затем лопаются соседние клетки, за ними другие, еще и еще.
. Колония клеточной культуры как бы охвачена пламенем. Вот она рассечена обезжизненными структурами на островки. Вот сжимаются и эти островки, уменьшаются в размерах, и. все кончено. Колония разрушена дотла.
Обладай вирусы такими же возможностями в естественных условиях, и человеку и любому другому живому существу пришлось бы плохо. Однако этого не происходит, ибо на страже — отработанные за миллионы лет защитные приспособления организма, ограничивающие могущество вирусов.
Безграничному расширению вирусной агрессии препятствуют прежде всего сами вирусы. Еще в 30-х годах ученые заметили, что размножение в клетке одного вируса нередко препятствует размножению в этой же клетке другого вируса.
Кстати, если говорить серьезно, одна из многочисленных гипотез, пытавшихся объяснить это явление, так и гласила: всему причиной конкуренция вирусов, борющихся за клеточные компоненты. Без малого три десятилетия понадобилось, чтобы раскрыть существо этого явления, получившего название интерференции. И, как оказалось, в данном случае инициатива принадлежала не вирусам, а самой клетке. На проникновение вируса (чему воспрепятствовать клетка, увы, не может) она отвечает немедленной выработкой особого белкового вещества — интерферона. Правда, интерферон не спасает уже пораженную клетку, но препятствует продвижению вирусной инфекции к другим клеткам организма. Иными словами, за первыми же вирионами, прорвавшимися в организм, возникает барьер интерфероновой защиты.
Антитела, появляющиеся позже, существуют несравненно дольше. Именно они и становятся основой стойкого иммунитета, благодаря которому многие инфекционные болезни не повторяются дважды в жизни одного индивидуума.
Медицина — в наступлении
Среди инфекционных заболеваний 80 процентов вирусных. Эта цифра — свидетельство победы человека над бактериальными инфекциями. Чума, холера, тиф, некогда безоговорочно первенствовавшие в медицинских статистических сводках, с приходом антибиотиков и сульфопрепаратов навсегда сдали свои позиции. Их место заняли болезни, вызываемые вирусами.
Как известно, и с этими недугами ведется успешная борьба. Побежден полиомиелит. Тягостным воспоминанием ушла в прошлое оспа. Широким фронтом идет наступление на корь: лишь за последнее пятилетие число перенесших заболевание корью снизилось в 5 раз; на повестке дня — полное искоренение этой инфекции на территории нашей страны.
Значительные усилия направляются на борьбу с гепатитом, гриппом, паротитом, вирусными респираторными заболеваниями, однако здесь решающие достижения еще впереди.
Наряду с этим ученые работают над созданием других эффективных лекарственных веществ, способных подавить вирусную инфекцию.
Работа эта начата. Во все концы нашей страны и за рубеж отправляются специальные экспедиции вирусологов. Уже получены чрезвычайно ценные данные о перемещениях вирусной гриппозной инфекции из Всемирного противогриппового центра, в деятельность которого вносит существенный вклад региональный противогриппозный центр СССР.
Два месяца продолжается пандемия нового коронавируса. Каждый уже считает себя экспертом в этой теме. А вам известно, что вирус нельзя убить? Он не живёт, поэтому его можно только сломать, разрушить. Вирус не существо, а скорее вещество. Но при этом вирусы умеют общаться, кооперироваться и маскироваться. Эти и другие удивительные научные факты собрали наши друзья из проекта Reminder.
Дальнейшие исследования показали, что вирусы способны принимать и более сложные решения. Они могут жертвовать собой во время атаки на иммунную защиту клетки, чтобы обеспечить успех второй или третьей волны наступления. Они способны скоординированно передвигаться от клетки к клетке в транспортных пузырьках (везикулах), обмениваться генным материалом, помогать друг другу маскироваться от иммунитета, кооперироваться с другими штаммами, чтобы пользоваться их эволюционными преимуществами.
Велика вероятность, что даже эти удивительные примеры — лишь вершина айсберга, считает Ланьинь Цзэн, биофизик из Техасского университета. Изучить скрытую социальную жизнь вирусов должна новая наука — социовирусология. Речь не идет о том, что вирусы обладают сознанием, оговаривается один из ее создателей микробиолог Сэм Диас-Муньос. Но социальные связи, язык коммуникации, коллективные решения, координация действий, взаимопомощь и планирование — это признаки разумной жизни.
Сознание — более высокий уровень переработки информации. Тонони называет это интеграцией. Интегрированная информация — нечто, качественно превосходящее простую сумму собранных данных: не набор отдельных характеристик предмета типа желтого цвета, округлой формы и теплоты, а составленный из них образ горящей лампы.
У аниматов одно преимущество перед вирусами: они умеют самостоятельно передвигаться. Вирусам приходится перемещаться от носителя к носителю на пассажирских местах в слюне и других физиологических выделениях. Но шансов повысить уровень φ у них больше. Хотя бы потому, что вирусные поколения сменяются быстрее. Оказавшись в живой клетке, вирус заставляет ее штамповать до 10 тысяч своих генетических копий в час. Правда, есть еще одно условие: чтобы интегрировать информацию до уровня сознания, нужна сложная система.
Насколько сложной системой можно назвать вирус? Посмотрим на примере нового коронавируса SARS-CoV-2 — виновника нынешней пандемии. По форме он похож на рогатую морскую мину. Снаружи – сферическая оболочка из липидов. Это жиры и жироподобные вещества, которые должны защищать его от механических, физических и химических повреждений; именно они разрушаются от мыла или санитайзера. На оболочке — давшая ему название корона, то есть шиповидные отростки из S-белков, с помощью которых вирус проникает в клетку. Под оболочкой — молекула РНК: короткая цепочка с 29 903 нуклеотидами. (Для сравнения: в нашей ДНК их больше трех миллиардов.) Довольно простая конструкция. Но вирусу и не нужно быть сложным. Главное — стать ключевым компонентом сложной системы.
Но зачем вообще вирусам это надо: жертвовать собой, помогать друг другу, совершенствовать процесс коммуникации? Какова их цель, если они не живые существа?
Как ни странно, ответ имеет прямое отношение к нам. По большому счету вирус — это ген. Первостепенная задача любого гена — максимально копировать себя, чтобы распространиться в пространстве и времени. Но в этом смысле вирус мало чем отличается от наших генов, которые тоже озабочены прежде всего сохранением и тиражированием записанной в них информации. На самом деле сходство даже больше. Мы сами немного вирусы. Примерно на 8%. Столько вирусных генов в составе нашего генома. Откуда они там взялись?
Что реликтовые вирусы делают сейчас? Одни никак себя не проявляют. Или нам так кажется. Другие работают: защищают человеческий эмбрион от инфекций; стимулируют синтез антител в ответ на появление в организме чужеродных молекул. Но в общем миссия вирусов гораздо значительнее.
Мы оказываем друг на друга эволюционное влияние не просто как факторы среды. Наши клетки непосредственно участвуют в сборке и модификации вирусных РНК. А вирусы напрямую контактируют с генами своих носителей, внедряя свой генетический код в их клетки. Вирус — это один из способов общения наших генов с миром. Иногда этот диалог дает неожиданные результаты.
История нашей жизни с вирусами рисуется бесконечной войной или гонкой вооружений, пишет антрополог Шарлотта Биве. Этот эпос строится по одной схеме: зарождение инфекции, ее распространение через глобальную сеть контактов и в итоге ее сдерживание или искоренение. Все его сюжеты связаны со смертями, страданиями и страхами. Но есть и другая история.
Например, история о том, как у нас появился нейронный ген Arc. Он необходим для синаптической пластичности — способности нервных клеток формировать и закреплять новые нервные связи. Мышь, у которой отключен этот ген, не способна к обучению и формированию долговременной памяти: отыскав сыр в лабиринте, она уже на следующий день забудет к нему дорогу.
Чтобы изучить происхождение этого гена, ученые выделили белки, которые он производит. Оказалось, что их молекулы самопроизвольно собираются в структуры, напоминающие вирусные капсиды ВИЧ: белковые оболочки, защищающие РНК вируса. Затем выделяются из нейрона в транспортных мембранных пузырьках, сливаются с другим нейроном и выпускают свое содержимое. Воспоминания передаются как вирусная инфекция.
350–400 млн лет назад в организм млекопитающего попал ретровирус, контакт с которым привел к формированию Arc. А теперь этот вирусоподобный ген помогает нашим нейронам осуществлять высшие мыслительные функции. Может, вирусы и не обретают сознание благодаря контакту с нашими клетками. Но в обратную сторону это работает. По крайней мере, сработало один раз.
- 16502
- 12,9
- 2
- 5
Обратите внимание!
Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.
Эволюция и происхождение вирусов
В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.
Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.
Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?
Строение вирусов и иммунный ответ организма
Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).
Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].
Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).
Причины поражений в борьбе с ВИЧ
Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.
Рисунок 5. Схема развития феномена ADE при вирусных инфекциях. а — Взаимодействие между антителом и рецептором FcR на поверхности макрофага. б — Фрагмент С3 комплемента (компонент комплемента, после присоединения которого весь этот комплекс приобретает способность прилипать к различным частицам и клеткам) и рецептор комплемента (complement receptor, CR) способствуют присоединению вируса к клетке. в — Белки комплемента С1q и С1qR способствуют присоединению вируса к клетке (в составе молекулы C1q имеется рецептор для связывания с Fc-фрагментом молекулы антитела). г — Антитела взаимодействуют с рецептор-связывающим сайтом вирусного белка и индуцируют его конформационные изменения, облегчающие слияние вируса с мембраной. д — Вирусы, получившие возможность реплицироваться в данной клетке посредством ADE, супрессируют противовирусные ответы со стороны антивирусных генов клетки. Рисунок с сайта supotnitskiy.ru.
Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.
Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.
Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].
* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.
Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.
Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.
Коронавирус становится поводом пошутить над незнакомцем, ему посвящают мемы, о нем слагают песни. Вирус проникает не только в организмы живых существ, но и в поп-культуру. Однако пройдет время, и о нем все забудут, как когда-то перестали говорить о вирусе Эбола, атипичной пневмонии и оспе.
Север Туркмении, 1980-е годы. В Средней Азии возникла вспышка ранее неизвестного вируса. Обстановка сложная и напряженная. Вирус передается через зараженную воду. Из-за ее употребления количество заболевших резко растет. В большинстве случаев болезнь протекает относительно благополучно, но ужас в том, что умирают в основном женщины в третьем триместре беременности.
Михаил Фаворов,
эпидемиолог, доктор медицинских наук
Сегодня Михаил Фаворов живет в США, занимает пост президента компании DiaPrep System Inc и продолжает активно работать в области диагностики, контроля и профилактики инфекционных заболеваний.
Вирус — простейшая форма жизни. Принято считать, что если он находится внутри человека или животного, то становится живым существом — размножается и обменивается информацией. Но когда вирус находится вне организма, он считается неживым. О вирусах мы узнали сравнительно недавно, около 100 лет назад. М икробиолог Дмитрий Ивановский опубликовал исследование о существовании некой субстанции, которая проходит через фильтры, задерживающие бактерии, и назвал ее вирусом. В то время как чума человечеству известна многие тысячелетия, у нее другая природа — она вызывается бактериями, которые являются более сложным и крупным организмом. Ее распространение было связано с низким уровнем жизни и плохой гигиеной. Процент летальности достигал 25%, то есть при легочной форме погибал каждый четвертый.
Среди вирусных инфекций самой страшной была оспа, которая затронула все страны мира. Вызывалась она вирусом натуральной оспы. Вакцину удалось изобрести благодаря случайному знакомству с коровьей оспой. Вирус животных, которые выступали переносчиками, вводили в организм человека, но вакцинированные не заболевали человеческой формой болезни: организм защищали антитела введенного вируса. Уникальность натуральной оспы в том, что это антропонозный вирус — им болели только люди. Поэтому, когда произвели вакцину, оспу удалось искоренить. В 1950-х годах в Африке были вакцинированы последние контактировавшие с больными, а с 1978 года вирус был полностью ликвидирован. Оспа исчезает, когда у последнего заболевшего появляются антитела, — он выздоравливает и перестает быть переносчиком.
Рецепты с летучей мышью
Тепло наших тел
По уровню плотности населения Китай и Индия превосходят все остальные регионы планеты, а разнообразие видов животных в Африке настолько велико, что большинство из нас вряд ли догадываются о существовании некоторых из них, например окапи, виверр, руконожек. Как редкие животные, так и плотность населения становятся дополнительными стимулами высокой скорости распространения заражения. Вирусы не поражают отдельно китайцев или представителей других наций, вирусы аполитичны и не имеют вероисповедания. Они умеют приспосабливаться к любым изменениям среды не хуже человека. Все, что им нужно, — тепло наших тел и, возможно, определенные рецепторы.
Вспышка эпидемий — это не просто случайность, а стечение обстоятельств.
Все закрыто: рынки, магазины, метро. Остановки общественного транспорта абсолютно пусты. По тротуарам проплывает только мусор, гонимый ветром, исчезающий в желтоватой дымке. Странно, если учесть, что в городе проживают миллионы человек. Изредка на улице появляются люди в респираторных масках, некоторые сделаны из подручных средств. Однажды увидев такую картину, вряд ли возможно спутать с чем-то эпицентр распространения респираторного заболевания, и защищаться надо незамедлительно.
Чтобы обезопасить себя и свою семью во время респираторной эпидемии, главное — находиться на расстоянии не ближе 2 м от заболевшего, чихающего или кашляющего человека, мыть руки каждые два часа, проветривать помещения, минимально контактировать с людьми.
История человечества насчитывает десятки тысяч кровавых войн, но самые страшные по потерям, пожалуй, — войны с паразитами. По некоторым данным, от чумы умерло больше людей, чем в результате всех войн, вместе взятых, — около 186 млн человек. От одной Юстиниановой чумы, первой зарегистрированной в истории, погибли 100 млн человек. Разработка защиты от биологической угрозы требует больших затрат, поэтому вакцины создаются только для тех вирусов, которые представляют реальную опасность. Более того, к некоторым вакцинам вирусы привыкают, становятся устойчивыми и меняют свою структуру, поэтому человечеству приходится постоянно быть начеку и придумывать что-то новое.
Респираторная маска вполне может защитить, но проблема в том, что надежна она всего 20 минут.
На уроках биологии нам говорили, что жизнь — это способ существования нуклеиновых кислот. Один из вариантов существования нуклеиновых кислот — это вирусы, которые живут на других организмах. Они совершенно не заботятся о нашем благополучии, они пытаются приспособиться, как и все живые существа на планете. Единственное, за что стоит их благодарить, — эволюционное совершенство иммунной системы человека. Веками, когда появлялось какое-либо заражение, организм человека вырабатывал антитела и формировал клеточный иммунитет. Все знают, что если держать человека в стерильной среде, а потом выпустить на улицу, он вскоре умрет, потому что у него не будет механизма выработки защиты. Но это не цель существования вирусов, скорее побочный эффект.
Прогнозировать возникновение вспышек вирусов еще сложнее, чем рассуждать о высших смыслах. Это всегда уникальная ситуация, которая происходит в результате изменения состояния окружающей среды, при которой человек попадает в новые условия взаимодействия с другими видами животных. А сегодня антропогенное воздействие на окружающую среду достигло абсолютно несопоставимых масштабов по сравнению с предыдущими поколениями, к тому же человек как вид постоянно растет. У ученых есть возможность наблюдать за попытками вирусов совершить кроссвидовой переход благодаря лабораторным методам слежения. Врачи ликвидировали оспу и почти победили вирус полиомиелита — это внушает надежду, что с новым вирусом можно будет хотя бы договориться. Как бы ни сложились эти взаимоотношения, стоит помнить: пока человек будет существовать как вид, всегда найдутся те, кто захочет на нем паразитировать.
Как защититься от коронавируса? Узнайте здесь.
Читайте также: