При какой температуре погибают вирусы и бактерии в воде
Царство бактерий не только количественно неисчислимо – их роль в круговороте веществ на планете невозможно переоценить. Разнообразие взаимоотношений с другими видами организмов варьируются от патогенных микроорганизмов до симбионтов; их наличие или отсутствие не останутся незамеченными. Образцом такого конгломерата существ является микроскопическая вселенная, которая есть даже в каждом аквариуме. К примеру, к чему может привести гибель бактерий и инфузорий желудка коровы? Без сомнения, такое животное погибнет в кратчайшие сроки – микрофлора желудка жвачных животных за счет бактериальной ферментации позволяет усваивать растительную целлюлозу и азотсодержащие вещества (производные мочевины и аммиака). Без нее животное не сможет переваривать пищу.
Другой пример – в аквариуме одновременно существуют множества самых разных микроорганизмов. Среди них одни – полезные в аквариуме, а другие приносят вред.
Бактерии являются частью окружающей среды аквариума и других экосистем. Как и все организмы, они подвержены воздействию экологических факторов, которые не всегда благоприятны, а некоторые могут оказывать подавляющее влияние на жизнедеятельность прокариотов, вплоть до наступления гибели. Что можно увидеть в аквариуме: нитробактерии перерабатывают нитриты в нетоксичные нитраты, разлагают продукты гниения, тем самым очищая воду в аквариуме.
Смерть микроорганизмов
Что же понимается под гибелью бактерий? Это необратимая утрата способности расти и размножаться. Подобное воздействие принято назвать бактерицидным, а сам процесс хорошо видно под микроскопом.
В ряде случаев микробы избегают гибели в результате внешнего воздействия – способность расти и размножаться восстанавливается. Такая способность бактерий называется реактивацией, а неблагоприятное воздействие называют бактериостатическим.
Причиной гибели спороносных бактерий и вирусов могут стать следующие факторы:
- биотические – воздействие живых существ;
- абиотические – воздействие осуществляется неживой материей;
- антропогенные – любые причины, являющиеся следствием какой-либо формы человеческой деятельности.
Факторы гибели микроорганизмов подразделяют в зависимости от природы воздействия на следующие группы:
- физические – температура, облучение, колебания электромагнитного поля;
- химические – значение pH среды, окислительно-восстановительные процессы окружающее среды;
- физико-химические – осмотическое давление и влажность окружающей среды;
- биологические – межвидовые взаимоотношения и следствие воздействия антибиотиков и фитонцидов
Факторы, влияющие на жизнедеятельность
Основным фактором подавления жизнедеятельности спороносных бактерий и вирусов является температура, причем независимо от сферы воздействия, как в аквариуме, так и на сухой поверхности.
Для различных микробов зоной температурного комфорта являются различные значения. Весьма условно все микроорганизмы подразделяют на 3 группы, где критерием является оптимальная температура развития и роста бактерий и вирусов, что определяется под микроскопом:
- психрофилы – холодолюбивые, их температура жизнедеятельности от -2 до + 30°С, к ним относятся морские бактерии и микрофлора холодильников;
- мезофилы – растут и размножаются при температуре от +5 до +50°С, и это – большинство микроорганизмов;
- термофилы – любители тепла, лучшая температура окружающей среды для них – от +30 до +80°С, оптимальные условия жизни – горячие источники.
Когда температура превышает максимальные значения для данной группы микроорганизмов, последствия могут быть двоякими:
- при непродолжительном воздействии высоких температур микробы получают тепловой шок и способны к реактивации;
- значительный рост температуры и продолжительное воздействие приводят к гибели бактерий, что происходит вследствие разрушения клеточного белка (денатурации).
Температура, при которой бактерии гибнут, различна:
- большинство бактерий погибнет при 70°С (15-минутная выдержка);
- для спороносных эта температура составляет 120°С.
Но не только высокая температура губительна для микроорганизмов – бактерий и вирусов.
В случае, когда температура значительно понижается, гибель спороносным микробам не грозит – они переходят в анабиоз, а при наступлении благоприятных условий начнут активно размножаться. Этот процесс наглядно просматривается под микроскопом.
Однако низкие температурные значения все же приводят к гибели микроорганизмов. Это в большей мере связано с вымораживанием клеточной воды, образованием структур льда, которые повреждают стенки клетки. Чем больше содержание воды в клетке микроба, тем более она подвержена влиянию температуры. Принято считать, что температура –12°С является гарантом гибели всех микроорганизмов. Вирусы, живущие в клетке, также погибают.
Солнечное облучение необходимо большей части микроорганизмов, бактериям и вирусам. Важными критериями являются интенсивность и продолжительность. Краткосрочное и слабоинтенсивное облучение способствует росту и стимулирует метаболизм бактерий как в аквариуме, так и на сухой поверхности. Более значительные дозы приводят к торможению процессов жизнедеятельности и мутациям микроорганизмов, что видно под микроскопом.
Ультрафиолетовое и ионизирующее излучение провоцируют в клетках бактерий следующие необратимые процессы:
- подавление деятельности клеточных ферментов;
- деструкцию мембранных структур, нуклеиновых кислот;
- образование пероксидных групп и свободных радикалов в теле клетки, активные реакции которых не совместимы с нормальной жизнью бактерии.
Наименее подвержены воздействию радиационного излучения представители спороносных бактерий, создающие себе защиту от неблагоприятных условий среды, что предотвращает их гибель.
В электромагнитном поле токов СВЧ бактерии погибают от теплового эффекта, что позволяет использовать данный метод для обработки пищевых продуктов.
Ультразвуковое воздействие также приводит к гибели микроорганизмов, что связано со спецификой воздействия ультразвука на жидкие среды:
- кавитационный эффект, приводящий к образованию гидравлической ударной волны, губительной для микроорганизмов;
- электрохимические реакции в водяных средах, которые провоцирует воздействие ультразвука, нехарактерны для живой клетки; процессы деструкции информативно демонстрируются микроскопом.
Большинство микроорганизмов весьма критичны к кислотности среды, и рост кислотности (понижение значения рН) приводит к гибели. Примером может являться естественное подавление процессов роста и развития бактерий на коже человека.
Исследования под микроскопом показали, что жизнедеятельность микроорганизмов на коже значительно подавляется. Причиной их гибели является защитная кислотная мантия, покрывающая эпидермис. Кроме того, микроорганизмы-симбионты, живущие на коже человека, вырабатывают вещество, схожее по свойствам с антибиотиками и губительно воздействующее на чужеродные бактерии.
Биорезонанс – новый метод в медицине
Одно из новых направлений в медицине – биорезонансная терапия. В основе метода лежит представление о любом живом объекте как источнике электромагнитных колебаний. Любые патологии организма сопровождаются нарушенным биорезонансом, который выявляется при обследовании пациента.
У метода высокая эффективность и широкий спектр применения. Воздействие биорезонансом позволяет восстановить нормальные волновые показатели каждого отдельного органа и организма в целом, приводя к гибели патогенных бактерий, причем погрешность метода – минимальная.
Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры.
Одним из распространенных способов уменьшения количества вредных веществ в воде является ее кипячение.
Что дает кипячение и насколько безопасной становиться водопроводная вода?
Попытаемся ответить на этот вопрос используя классификацию пищевых отравлений и рассмотрим следующие группы вредных веществ приводящих к:
- пищевым токсико-инфекциям;
- пищевым бактериальным токсикозам;
- пищевым отравлениям прочей этиологии;
- пищевым отравлениям химическими элементами и веществами.
Для сальмонелл характерна слабая теплоустойчивость. При температуре 75°С они гибнут через 15 минут, а при 100°С — мгновенно.
2. Кипячение и пищевые бактериальные токсикозы.
К ним приводят бактерии вызывающие ботулизм, стафилококки и др.
Споры ботулизма при температуре 100°С сохраняются 260 минут, при 120°С — 10 минут.
Энтеротоксин стафилококка является термостойким, его окончательная инактивация (разрушение) происходит через 2,5..3 часа кипячения.
Другими словами, простого доведения воды до кипения недостаточно для того, чтобы обеззаразить ее. Для этого необходимо кипятить воду не менее 10-15 минут. Только при этом значительная часть микроорганизмов гибнет.
3. Кипячение и пищевые отравления прочей этиологии.
Причиной этих отравлений могут стать сине-зеленые водоросли. Не представляющие сами по себе опасность для здоровья они аккумулируют более 60 вредных химических веществ. Кипячение воды не уменьшит содержание этих веществ.
4. Кипячение и пищевые отравления химическими элементами и веществами.
Химическое загрязнение водопроводной воды является одним из наиболее существенных. Причиной служат более 500 различных соединений, число которых постоянно растет. Основные группы — нитраты, пестициды, тяжелые металлы, радионуклиды и др. При кипячении воды их концентрация и вредное воздействие на организм практически не уменьшается.
Таким образом, кипячение водопроводной воды снижает опасность заражения. Однако, на большое число вредных веществ кипячение не оказывает никакого влияния. Кроме того, при кипячении хлорированной воды органические вещества вступают в реакцию с хлором, образуя канцерогены.
Другие гадости
Исследование проведенное Институтом ХВ НАН Украины показало, что питьевая вода содержит множество фармацевтических препаратов включая антибиотики, половые гормоны, успокоительные и антисудорожные препараты, обезболивающие, а также многие другие, отпускаемые только по рецепту врача.
В ходе пятимесячного расследования было обнаружено, что лекарства содержатся в запасах питьевой воды на всей территории Украины.
Исследователи попытались выяснить каким же образом фармацевтические препараты попадают в питьевую воду. Оказалось, что механизм выглядит следующим образом: люди принимают лекарства, часть из них усваиваются организмом, а то, что не усвоилось, а это приблизительно 70 % потребляемых лекарств, выводится естественным путем. И соответственно попадает в канализацию. Сточные воды, пройдя необходимую очистку, вновь попадают в реки или озера, откуда пополняются ресурсы питьевой воды.
Производимая муниципальная очистка неспособна удалить из воды фармацевтические препараты. Кроме того эксперты установили, что добавление в воду хлора стандартная процедура при очистке воды, напротив, усиливает токсичность некоторых содержащихся в ней лекарственных средств.
Представители фармацевтических фирм в свою очередь заявляют, что лекарства, содержащиеся в питьевой воде не наносят ущерба здоровью человека и окружающей среде, ввиду низкой концентрации, однако многие ученые полагают, что по прошествии десятков лет негативный эффект от загрязненной таким образом воды проявится в полной мере.
От этого кипячение тоже не помогает…
А как же стерилизация кипячением в медицине, спросите вы?
Альтернатива?
Однако, самым эффективным способом получения реально чистой воды в быту является применение фильтрации на базе систем обратного осмоса. Конечно, тоже не без недостатков, но это тема следующей статьи…
Я из статья взял и сюда свои мнению хотел сказать. Все вирусы как живая организм нуждается питании и живет на среды влаге то ест в составе воды. Так как ( я не измерял) по словам ученых мы состоим 90 процент из воды,это существо тоже сами. При каких условиях размножается или погибает. На чем они перекочует, то получается у них транспорт это вода! То ест как раньше утверждал что Вода ест Транспорт! Если мы это осознаем то найти решения борьбы с болезнями гораздо легко будет. А то встречается учений начинает утверждать вода имеет память, мертвая -живая и тд. Давайте представим что ест память воды. Вед что собой не переносили течения миллиардов лет. Мы их потребляем, они уходя от нас держат на памяти наше проблему и болезнь. Вдруг вспомнят -А? Или кто то напомнит? Видим идея абсурд! Если скажем Короне Вирус выдержит холод то ветер может унести с влагами куда веят, что ваше маски или изоляции удержит? По этому прежде чем создавать какой то теорию, что это Кара Господа или проста бизнес. Срочно нужен изучать при каких условия выживает или гибнут это существо!
Путями распространения вирусов являются:
— воздушно-капельный (кашель, чихание),
— через жидкости организма (кровь, сперму и слюну),
— с кожи на кожу (при прикосновениях и рукопожатиях),
— с кожи на продукты (при прикосновениях к пище грязными руками вирусы могут попасть в кишечник)
Самые известные и распространенные вирусные инфекции:
— грипп и другие ОРВИ,
— герпетические инфекции,
— корь,
— оспа,
— геморрагические лихорадки
— вирусные гепатиты,
— ВИЧ-инфекция, и др.
Сколько же могут жить вирусы вне организма:
Все зависит от типа вируса и от той поверхности, на которую они попали.
ПРОСТУДНЫЕ ВИРУСЫ
Выяснено, что такие вирусы способны жить на поверхностях внутри помещений больше 7 ДНЕЙ. Например, на стали или пластике вирусы будут жить дольше, чем на тканях или материях. Но чем больше проходит времени, тем менеьшей концентрацией и способностью вызвать заболевание они обладают.
На поверхности рук чаще всего простудные вирусы живут в разы меньше. Некоторые из них активны несколько минут, но есть и такие риновирусы, которые могут быть заразными на протяжении часа. Так что бдительность и гигиена — прежде всего!
А вот на обеденном столе, например, респираторный синцитиальный вирус может обитать до 6 ЧАСОВ,
на ткани и бумаге — 30-45 минут,
на коже — до 20 минут.
ВИРУС ГРИППА
Вирус гриппа – представитель РНК-содержащих вирусов из семейства ортомиксовирусов, вызывает поражение различных отделов дыхательных путей в острой форме.
Время живучести вируса гриппа вне организма зависит от температуры и влажности окружающего воздуха.
Так, при температуре воздуха ниже 0°C вирус гриппа может жить годами, и чем ниже температура, тем больше сохраняется его способность к заражению.
В квартире при 22 градусах инфекция может сохраняться до нескольких часов.
В холодильнике (где обычно +3°C — +4 °C)- до 7 дней. Поэтому не стоит доедать за больным еду даже через несколько дней.
Устойчивость вируса тем выше, чем меньше влажность воздуха.
Устойчивость вируса тем ниже, чем выше температура воздуха.
Инфекция полностью устраняется при температурном режиме от 60 °C.
Передается вирус воздушно-капельным и контактным путем. Инфекция распространяется на расстояние до 3-4 метров.
Воздух в помещении, в котором находится больной, необходимо увлажнять и само помещение полноценно проветривать каждые 2-3 часа в течение 20-30 минут. Это позволит уменьшить концентрацию вируса в воздухе на 80-90%.
А так же, если больной во время чихания или кашля прикрыл рот ладонью, или же вытер нос пальцами, то капли слизи и слюны, содержащие частицы вируса, способны сохранять активность до 15 часов на коже, а так же на предметах, которых он коснулся. Поэтому больному нужно надевать маску и менять ее раз в 2-3 часа.
Вот почему после того, как вы касались поручней в общественном транспорте, ручек дверей, корзин и тележек в супермаркетах, денег — не спешите чесать глаз, нос, есть немытыми руками. Позаботьтесь о том, чтобы, даже если нет возможности их помыть, у вас всегда с собой были антибактериальные салфетки или антисептики для рук.
ВИРУСЫ ГЕРПЕСА
Вирус простого герпеса весьма устойчив к воздействию холода, но очень неустойчив к нагреванию.
При температурном режиме +50°C вирус простого герпеса гибнет в течение 30 минут.
При 37,5°C — в течение 20 часов.
Что касается замораживания, то вирус простого герпеса может не только неопределенно длительное время сохраняться при температуре -70°C, но и нормально переносить последовательное замораживание и размораживание.
Считается, что вне организма человека с учетом нормальной температуры и влажности воздуха, вирус сохраняет жизнеспособность в течение 24 часов.
На металлических поверхностях вирус активен в течение 2-х часов.
На влажной поверхности может существовать в течение всего времени их высыхания, то есть до 6-ти часов.
На пластике — в течение 4 часов
На ткани — 3 часов
На коже — 2 часов
Если вы докоснулись до герпетических высыпаний, обязательно мойте руки сразу же после этого.
ГЕПАТИТ
Жизнедеятельность вируса на открытом пространстве при комнатной температуре сохраняется от 16-ти часов до 4-х суток.
При температурном режиме ниже 0 °C — более 1 года.
Инактивация вируса происходит при кипячении на протяжении 2 минут.
Также он погибает при ультрафиолетовом воздействии.
ВИЧ
В результате проведенных исследований было установлено, что на открытом воздухе вирус в количестве 90-99% погибает в течение нескольких часов. Эти исследования использовали концентрацию ВИЧ гораздо более высокую, чем она может быть на самом деле, поэтому, теоретически, процесс передачи вируса в окружающей среде сведен почти к нулю.
Хрупкий вирус, оказавшись вне тела, может быстро погибнуть вследствие воздействия горячей воды, мыла, дезинфицирующих средств и спирта.
Наибольшую опасность предсталяют шприцы, поскольку в шприце ВИЧ-инфекция может выжить, в ряде случаях, на протяжении нескольких дней, поскольку кровь содержится в игле, где не представляется возможным её быстрое полное высыхание. Таким образом, использованные иглы должно быть, исключительно, одноразовым.
Корь:
РНК-вирус достаточно быстро гибнет вне человеческого организма в результате воздействия как химических, так и физических факторов: облучение, кипячение, обработка различными дезинфицирующими средствами.
Однако, при комнатной температуре вирус сохраняет активность порядка двух суток, а при низкой температуре может быть активным на протяжении нескольких недель. Оптимальный температурный режим для жизнедеятельности вируса составляет 15 – 20 градусов ниже нуля.
Если в доме есть больной корью, обязательно проветривайте помещение как можно чаще, чтобы уменьшить концентрацию вируса. И дезинфицируйте поверхности.
ТОВ "Промислова автоматизація" постачає промислове обладнання та електронні компоненти для автоматизації технологічних процесів, будівель і споруд, машинобудівних комплексів.
Температура воды и её влияние на развитие бактерий в трубопроводах
В последние годы очень часто появляются статьи о бактерии Legionella, а также об угрозе для жизни и здоровья людей, использующих бытовую горячую воду. В неправильно функционирующих системах тепловодоснабжения могут быть узлы, в которых эта бактерия может хорошо размножаться.
Заражение бактерией Legionella
Самая масштабная в Европе эпидемия легионеллеза вспыхнула в апреле 1985 года в Главной районной больнице в городе Страффорд в Великобритании, где из 101 человека заболевших легионеллезом, умерли 28.
В обоих случаях, как выявили позже, причиной был кондиционер. Источником заражения стал водный аэрозоль, содержавший бактерии Legionella, который поступал в помещение из системы кондиционирования.
Характеристика бактерии
Имеет огромную способность приспосабливаться к условиям окружающей среды.
Способность вызывать болезнь на много меньше при t=24 °C чем при t=37 °C. Способность к размножению сохраняется при t от 15 °C дo t=46 °C, при t= 46 °C размножение приостанавливается, при 48 °C и более – гибнет [1]. Её основное развитие происходит при t= 37…43 °C. В естественных условиях острая конкуренция со стороны других микроорганизмов при более низкой температуре не позволяет ей доминировать.
Живёт только в течение нескольких часов. Это значит, что даже если происходит размножение бактерии, за это время другие погибнут. Благодаря этому соблюдается равновесие.
Четко описанные условия её выращивания в лабораторных питомниках свидетельствуют о том, что не являются свободно живущей бактерией. Черпает необходимые для роста субстанции из живых или отмерших клеток сопутствующих ей микроорганизмов.
Это, вероятно, объясняет факт выживания и размножения бактерии в естественной среде в экстремальных условиях (низкие температуры, высокие температуры, высушивание, средства дезинфекции).
Встречается во всех естественных водах, во влажных местах, озерах, реках, морях, грунтовых водах. В системах очистки водопроводной воды бактерии удаляются не полностью.
Таким образом, бактерии в небольшом, неопасном для человека количестве попадают в системы водоснабжения здания.
Считается, что Legionella pneumophila, т. е. наиболее нежелательный вид в трубопроводных системах, находится в летаргии при температуре менее 20 °C. Размножается наиболее интенсивно в диапазоне температур 37…43 °C и поддается пастеризации при температуре свыше 46 °C. Поддержание в течение определенного времени высокой – на уровне 60…70 °C температуры воды в бакеаккумуляторе и системе тепловодоснабжения гарантирует, что спустя относительно короткое время бактерии полностью погибнут.
Для развития бактерий, помимо соответствующей температуры, требуется питание. Таким питанием могут быть другие мертвые микроорганизмы, живущие в накипи, например, в анодной накипи эмалированных нагревателей или в продуктах коррозии. Бактерии развиваются также в коррозионных трещинах. Подходящей средой для их развития являются практически все эластомеры, что следует принимать во внимание при герметизации мест присоединения водоразборной арматуры.
Подходящие условия для развития встречаются в узлах водоподготовки и в системах тепловодоснабжения. Заражение системы тепловодоснабжения может быть временным – в случае, если бактерии появились в одном из элементов системы или арматуры, например, в уплотнителе при распылителе душа, или систематическим – если в системе тепловодоснабжения существуют места, в которых бактерии постоянно размножаются и откуда они вымываются.
В этом случае их концентрация в воде не изменяется даже при интенсивном промывании системы. В случае случайного заражения замена уплотнителей, промывка и очистка от камня, а также продуктов коррозии арматуры или сильный напор воды приводят к уменьшению концентрации бактерий.
Размножению способствует, прежде всего, слишком низкая температура горячей воды в водонагревателях и баках при длительном периоде ее нахождения, а также появляющиеся в результате недобросовестной чистки и содержания осадка или биопленки.
Биопленкой называют трехмерную колонию бактерий, содержащихся в матрицах внешнеклеточных полимеров, проявляющих способность к адгезии к стабильным поверхностям и друг к другу. Формирование матрицы биопленки защищает микроорганизмы (из которых состоит биопленка) от деградационной деятельности факторов окружающей среды.
Методы дезинфекции системы тепловодоснабжения
Практически во всех системах тепловодоснабжения присутствуют бактерии Legionella. Для уменьшения их концентрации проводится дезинфекция.
Химическая дезинфекция
Существует несколько методов химической дезинфекции: дезинфекция хлором, ионами меди и серебра, йодом и озоном.
Хлорирование - наиболее распространенный метод химической дезинфекции. Эффективность такой дезинфекции зависит от pH, температуры, количества органических соединений и присутствия биопленки.
Наиболее быстрым является процесс так называемого шокового гиперхлорирования, который заключается в использовании соединений хлора в таком количестве, чтобы достигнуть в течение двух часов концентрации свободного хлора 10 мг/дм3. При этом температура воды не может быть более 30 °C. Затем систему следует промывать, пока уровень свободного хлора не станет 0,1…0,3 мг/дм3, а pH воды – 7,6…8,3.
Этот метод является эффективным, но имеет и негативные стороны: необходимо постоянное наблюдение за системой в связи с тем, что во время хлорирования могут появиться соединения с канцерогенными свойствами, что может угрожать здоровью потребителей водопроводной воды. А также использование большой дозы хлора повышает коррозионную активность воды [8].
Дезинфекция ионами меди и серебра состоит в использовании синергетического биоразрушающего действия этих ионов. Предлагаемая доза составляет 0,2…0,4 мг/дм3 ионов меди и 0,02…0,04 мг/дм3 ионов серебра [8]. Во время использования этого метода необходимо постоянно наблюдать за концентрацией ионов меди и серебра.
Йодирование состоит в добавлении йода в воду. Применяемая доза йода составляет 16 мг/дм3, а время контакта – 1 ч.
Озонирование состоит в использовании для дезинфекции воды сильного окислителя – озона O3.
Сильными дезинфицирующими свойствами обладает атомный кислород, образовывающийся при распаде озона. Он приводит к сокращению бактерий в течение 5 мин. на 99 %. Однако в виду сильных окислительных свойств его можно применять для дезинфекции системы тепловодоснабжения в ограниченном объеме.
Химическое средство дезинфекции должно достичь всех точек системы. Это осуществляют путем кратковременного открытия всей водоразборной арматуры системы. Время контакта должно составлять от одного до двух часов [3].
Описанные выше химические методы в связи с необходимостью мониторинга, имеют серьезные сложности, вытекающие из поддержания соответствующей дозировки дезинфицирующего средства, а также его неблагоприятного влияния на свойства воды и повышение ее агрессивности. Это побуждает к применению физических методов дезинфекции систем тепловодоснабжения.
Дезинфекция с помощью ультрафиолетовых лучей
Бактерии, находящиеся трубопроводной воде, могут быть уничтожены с помощью ультрафиолетового излучения. Для такой дезинфекции подходят лампы, излучающие волны длиной от 220 до 320 нм. Чаще всего применяют УФ стерилизаторы, устанавливаемые перед водоразборными точками.
Этот метод эффективен только для бесцветной и прозрачной воды. Таким образом, перед такими устройствами необходимо установить фильтры, задерживающие суспензии и осадки.
Термическая дезинфекция системы
При термической дезинфекции воду нагревают до температуры дезинфекции в течение необходимого времени. Считается, что во время цикличной термической дезинфекции температура воды должна быть не ниже 70 °C [13]. Время дезинфекции составляет от 5 до 30 мин. При температуре воды 70 °C время ее дезинфекции составляет 5 мин., при температуре 65 °C время увеличивается до 10 мин., при 60 °C – до 30 мин. [8].
При проведении дезинфекции все водоразборные точки должны быть закрыты, а циркуляционный насос должен все время работать. Такой режим работы системы необходимо поддерживать до тех пор, пока не будет достигнута соответствующая температура во всех стояках. Если невозможно получить необходимую температуру во всей системе одновременно, дезинфекцию производят по частям системы. Точно так же, как и в случае с другими методами дезинфекции, этот процесс необходимо периодически повторять, чтобы минимизировать повторное заселение системы бактериями вида Legionella. Следует также помнить об обеспечении безопасности пользователей воды – защите от ошпаривания.
Выводы
Количество бактерий Legionella, которое может привести к заболеванию, точно не определено, однако это достаточно большое количество. Высокая вероятность заболевания существует при загрязнении воды достигающем 106 cfu/дм3.
Особенно велика вероятность попадания аэрозоля с бактериями в легкие при принятии душа. Закрытая душевая кабинка содействует большей и более длительной концентрации капелек воды вокруг человека, который моется. Количество бактерий 103 cfu/дм3, которые проникли в дыхательную систему при ингаляции, уже является достаточно высокой дозой, способной вызвать инфекцию при наличии благоприятных условий. После проникновения бактерий в организм болезнь может проявиться спустя несколько дней, иногда даже спустя несколько недель.
Бактерии Legionella размножаются в воде в пределах температуры от 20 до 46 °C. Оптимальной температурой их развития является 37…43 °C. Следовательно, холодная вода в системе не должна быть выше температуры 20 °C, а горячая вода – быть ниже 46 °C. Исследования показали, что наиболее многочисленные колонии бактерий содержатся в водопроводах с температурой воды 40 °C. Количество этих бактерий в воде обычно удерживается на уровне 104 cfu/дм3, а в осадках их количество может достигать даже 105…109 cfu/см2.
Бактерии Legionella развиваются особенно быстро в системах тепловодоснабжения с неправильно функционирующей циркуляцией. Многие старые системы так спроектированы, что вода в трубах охлаждается слишком интенсивно.
Одним из наиболее эффективных способов сокращения риска инфицирования бактериями Legionella из системы тепловодоснабжения является использование технических решений, обеспечивающих правильное функционирование циркуляции горячей воды вместе с поддержанием рекомендуемого уровня температуры воды в циркуляционном контуре.
Температура воды в системе тепловодоснабжения не должна быть менее 50 °C. Это условие невозможно выполнить на участках, где стояки соединяются с водоразборной арматурой в связи с отсутствием циркуляции в них. Эти участки должны быть выполнены из медных труб – материала, в котором Legionella практически не развивается. В виду распространенности наличия палочек Legionella в системах тепловодоснабжения эти системы должны периодически проверяться.
В связи с тем, что метод термической дезинфекции системы тепловодоснабжения относительно простой, эффективный и недорогой, он является наиболее приемлемым для широкого применения.
При проектировании системы тепловодоснабжения следует учитывать определенные рекомендации:
Читайте также: