Проблема вирусов в современном мире
ВИРУСЫ И ИХ ЗНАЧЕНИЕ В СОВРЕМЕННОМ МИРЕ
Интерес к теме о происхождение, развитии и влиянии вирусов на наш организм очень актуален в наше время, поскольку многие заболевания ,связанные с проявлением вирусов имеют место быть и это, безусловно, стимулирует наш интерес. Ученые многих стран, изучая вирусные заболевания, сталкиваются с проблемой их изучения, начиная с того, что все вирусы имеют микроскопические размеры тела- это определенным образом усложняет процесс их изучения, заканчивая тем, что многие вирусы, в частности (РНК-содержащие),имеют маленький период размножения и повышенную частоту мутаций, подобная способность, с помощью естественного отбора-то есть выживания наиболее приспособленного, позволяет вирусам в короткие сроки адаптироваться к изменениям окружающей среды.
Подобная эволюция вирусов-важный момент изучения таких заболеваний как грипп, ВИЧ-инфекция(вирус иммунодефицита человека)и гепатита. Мутация вирусов вызывает проблемы с разработкой необходимых вакцин и противовирусных препаратов,потому что устойчивость вирусов к тому или иному препарату возникает уже в первые недели лечения.
В задачи данного реферата входит подробное изучение неклеточных форм жизни,происхождение вирусов,особенности их строения,гипотезы происхождения. А так же вклад выдающегося русского ученого Дмитрия Иосифовича Ивановского в развитие отечественной науки.
История открытия
На протяжении долгого времени ученые стремились получить высокоочищенные пробы вируса,стараясь максимально увеличить неуязвимость внутренних сред организмов так же было установлено, что по химической природе они имеют нуклеопротеиновый строение(сложные соединения, состоящие из белков и нуклеиновых кислот), однако сами частицы все еще оставались неизученными, так как были слишком малы, чтобы их можно было увидеть с помощью светового микроскопа.
Происхождение вирусов
Существует множество гипотез происхождения вирусов,наиболее известные из них следующие:
Вирусы -производные клеточных организмов
Вирусы возникли в результате процесса дегенерации (вырождения) клеточных организмов.
Уже в конце XVII в. было известно, что эта заболевание передаётся при вегетативном размножении,то есть часть с больного растения попадая на здоровое заражает его. Но само происхождение образования зараженного фрагмента оставалась неисследованным. Дмитрий Иванович занялся поисками возбудителя этой болезни. До исследования Д. И. Ивановским считалось, что жидкость подверженная фильтрации уже не содержит бактерий и,следовательно, не является заражающей. Однако когда Д. И. Ивановский применил этот метод к соку растения, больного табачной мозаикой, он обнаружил удивительный факт: "Сверх всякого ожидания, - писал Д. И. Ивановский, - оказалось, что и после фильтрования через глиняные фильтры Шамберлена способность сока передавать болезнь не уничтожалась". Тем самым впервые в микробиологии Д. И. Ивановский доказал ,что заразный фрагмент болезни способен к фильтрации. "Случай свободного прохождения заразного начала через бактериальные фильтры, в то время, как оно было констатировано мною для мозаичной болезни, представлялся, - говорит Д. И. Ивановский, - совершенно исключительным в микробиологии. Через несколько лет после того совершенно такое же явление было констатировано и в патологии животного организма при исследовании ящура. ".
Исследователь считал, что возбудитель мозаичной болезни - живой организм( мельчайший микроб),- Д. И. Ивановский хотел досконально изучить возбудителя. Следуя своей теории он изучал тончайшие срезы через листья больного растения, окрашенные красками, которые применяются для окраски бактерий. В зараженных фрагментах он увидел какие-то бесцветные кристаллы и скопления окрашенных палочек и точек. На первых он не обратил внимания, а вторые принял за микроб, способствующий возникновению мозаичной болезни.
Особенности строения вирусов
Середина вируса состоит из генетического фрагмента (ДНК или РНК). Вирусы содержат всегда один тип нуклеиновой кислоты, причем как одноцепочечной, так и двухцепочечной, как линейной, так и кольцевой.
Капсид - это белковая оболочка, которая защищает молекулы наследственной информации от ферментов-нуклеаз и УФ-излучений, обеспечивая осаждение вируса на поверхности клетки-хозяина.
Суперкапсид - дополнительная липопротеидная оболочка, которая возникает из плазматической мембраны клетки-хозяина (имеется вирусов - ВИЧ, гриппа, герпеса).
1 - капсомеры (капсид - белковая оболочка)
2 - внутренняя среда вируса
3 - генетический материал (ДНК или РНК)
Полностью сформированная инфекционная частица вне клетки-хозяина называется вирионом (нуклеопротеидный комплекс). Если вирус находится внутри клетки-хозяина, то он существует в форме нуклеиновой кислоты.
Оболочка вируса построена из одинаковых повторяющихся субъединиц - капсомеров, которые образуют структуры с высокой степенью симметрии,для них характерна кристаллизация. Множество вирусов построено по одному из двух типов симметрии - спиральной или кубической. По спиральному типу симметрии построено большинство вирусов, паразитирующих на растениях, и некоторые вирусы бактерий (бактериофаги). Вирус табачной мозаики имеет спиральную симметрию, внутри находиться спиральная молекула РНК. Капсид состоит из 2130 одинаковых белковых субъединиц, составляющих вместе с РНК единую целостную структуру — нуклеокапсид.
Бактериофаги- подгруппа вирусов, поражающих бактерии (пожиратели бактерий). Открыты в 1915 г. английским микробиологом Фредериком Туортом. Имеют икосаэдрическую головку (содержащую генетический материал) и хвост, для которого характерна спиральная симметрия . Эти вирусы обитают в кишечнике человека и животных, они функционально полезны, поскольку поражают бактерии. В медицине их применяют для лечения брюшного тифа, холеры.
Рис. 2. Внешнее строение вируса
1 - головка с икосаэдрической симметрией
3 - полый цилиндрический отросток
4 - чехол со спиральной симметрией из сократительных белков
5 - базальная пластина
6 - хвостовые нити
Классификация вирусов строится по виду и форме их нуклеиновой кислоты, типу симметрии, наличию или отсутствию внешней мембраны.
Размножение (репродукция) включает три процесса:
удвоение вирусной нуклеиновой кислоты
синтез вирусных белков
Репликация молекулы ДНК (РНК) внутри пораженной клетки - многоэтапный процесс, который состоит из шести стадий:
Адсорбция - процесс прикрепления вирусных частиц к поверхности клетки.
Инъекция (у бактериофагов) - проникновение вирусной частицы в клетку и введение нуклеиновой кислоты из белкового капсида.
Репликация молекул вирусной нуклеиновой кислоты происходит за счет нуклеотидов, накопленных в клетках хозяина.
Синтез вирусных белков и ферментов происходит на рибосомах клетки.
Сборка вирусных частиц - за счет пораженных вирусных нуклеиновых кислот и вирусных белков.
Сборка вирусных частиц - за счет пораженных вирусных нуклеиновых кислот и вирусных белков.
Лизис - выход вирусных частиц из пораженной клетки. У бактерий сопровождается разрушением (лизисом) клетки.
Значение вирусов
У животных и человека вирусы вызывают среди прочих такие заболевания, как бешенство, гепатит, грипп, корь, краснуха, оспа, ОРЗ, полиомиелит, энцефалит, СПИД, раковые опухоли.
Возбудитель СПИДа - вирус иммунодефицита человека. Имеет сферическую форму диаметром 100-150 нм. Наружная оболочка вируса состоит из клеточной мембраны клетки-хозяина. В мембрану встроены рецепторные грибовидные образования. Под наружной оболочкой располагается сердцевина вируса с генетическим материалом в виде двух молекул РНК (каждая из девяти генов ВИЧ) и фермента (обратная транскриптаза). Этот фермент катализирует реакцию обратной транскрипции в клетках лимфоцитов. Вирус поражает главным образом Т- хелперы лимфоцитов, на поверхности которых есть рецепторы, способные связываться с поверхностным белком ВИЧ. В таком состоянии он может сохраняться долго, не проявляя себя. Иммунная система организма человека утрачивает свои защитные свойства, и организм перестает бороться с любой инфекцией, раковыми клетками и погибает. Средняя продолжительность жизни инфицированного человека составляет 7-10 лет. Источником заражения служит только человек - носитель вируса иммунодефицита. СПИД передается половым путем, через кровь и ткани, содержащие вирус иммунодефицита, от матери к плоду. У растений вирусы вызывают свои заболевания, например вирус табачной мозаики, желтухи свеклы.
Заключение
Итак,подводя итог,можно сказать что неклеточные формы жизни очень интересные объекты изучения,хотя и представляют некоторую сложность. Особенности строения,историю открытия и основные гипотезы происхождения,я постаралась раскрыть в данном реферате,в завершение хотелось бы акцентировать внимание на том,какой вклад в развитие науки вносят русские ученые,в частности Дмитрий Иосифович Ивановский.
Список литературы
А начиналось все намного раньше. 1949 год – ученый из США, Джон фон Науманн , разработал математическую теорию создания самовоспроизводящихся алгоритмов. Результаты своей работы он опубликовал в нескольких специализированных журналах, однако они не вызвали особого ажиотажа, так и оставшись абсолютно незамеченными окружающими, за исключением лишь узкого круга ученых-математиков. На практике же теория Науманна нашла применение лишь в качестве развлечения. Его придумали математики компании Bell. Они создавали специальные программы, цель которых состояла в отбирании виртуального пространства друг у друга. В них впервые была реализована функция саморазмножения – один из главных признаков любого компьютерного вируса.
Первый настоящий компьютерный вирус, по одной из самых распространенных версий, был создан 10 ноября 1983 года Фредом Коэном , аспирантом Университета Южной Калифорнии (University of Southern California).
Вирус был представлен им во время семинара по безопасности, проходившего в Пенсильвании. Уже через четверть столетия темпы распространения вредоносного ПО приобрели угрожающие масштабы, радикально снизить которые до сих пор не представляется возможным.
В 90-е годы, с бурным развитием технологий обмена информацией, созданные на основе идеологии Коэна вирусы распространились довольно широко, став не просто помехой, но и стратегической угрозой для внутренней безопасности целых стран. Но, несмотря ни на что, к самому Фреду у властей никогда не возникало претензий – вся его деятельность всегда была направлена только в образовательную сферу. Сегодня, известный хакер-теоретик, он занимает важный пост управляющего крупной компании, обеспечивающей информационную безопасность.
Первый широко распространенный компьютерный червь принадлежит сыну главного научного сотрудника Агентства по национальной безопасности (National Security Agency chief scientist) – аспиранту Корнельского университета (Cornell University), Роберту Тэппэн Моррис младшему (Robert Tappan Morris Jr.).
В 1988 году он написал свою программу, хотя подобные исследования велись еще с 1970-х годов. Черви чаще всего не производят никаких деструктивных действий и манипуляций с файлами пользователей, их целью обычно стоит как можно более широкое и быстрое распространение по сети для снижения эффективности ее работы. По некоторым оценкам ученых около 10% всех пользователей сети (по большей части это были университетские и исследовательские организации) были атакованы им. Червь заразил 6 тысяч компьютеров и практически остановил работу сети на целый день! Он пользовался уязвимостью некоторых программ, в том числе почтовой Sendmail, распространялся при помощи бага с переполнением буффера. Моррис вошел в историю как первый человек, осужденный по обвинению в киберпреступлении и получил 3 года условно. Сейчас же он профессор Массачусетского технологического института (MIT).
Первый резидентный антивирус DPROTECT – первая резидентная программа, написанная Ги Вонгом (Gee Wong) в начале 1985 года. Она перехватывала попытки записи на жесткий диск и дискеты, блокировала все несанкционированные операции (запись, форматирование и т.д.), выполняемые через BIOS. В случае выявления таких операций программа запрашивала рестарт системы.
Начиная с 1990 года очень остро встала проблема распространения вирусов и способов защиты от них. Практически каждый год интернет накрывали вирусные эпидемии, заражавшие все большее количество компьютеров, уничтожая или повреждая данные. В мире нет ни одной защищенной от вирусов ОС . Конечно, большинство вирусов пишутся под самую распространенную операционную систему мира – Windows. Но даже такие экзотические ОС, как AROS, не остались без внимания. Даже считающиеся одними из самых надежных в вопросах защиты от вирусов, Unix-подобные ОС, постоянно подвергаются вирусным атакам. В истории имеются и редкие случаи заражение вирусами официальных сетевых репозиторий Unix-пободных ОС.
Болезни мартышек
Главные причины появления неизвестных доселе болезней – рост населения планеты и всевозрастающая мобильность людей.
Ведь большинство наших человеческих инфекций на самом деле не человеческие. Это вирусы и бактерии других живых существ (животных, насекомых). Такие инфекции и называются соответствующе – зоонозы.
Людей становится всё больше, на планете не остаётся свободного места, мы включаем в свой хозяйственный оборот новые территории и всё, что в них есть: растения, животных и, конечно, микроорганизмы. И вот вирусы летучих мышей, мартышек, циветт и прочей экзотики неожиданно попадают в наш организм и становятся уже нашими проблемами. Так возникли эпидемии Зика, ВИЧ, Эболы и других геморрагических лихорадок, респираторные синдромы, десятки новых экзотических болезней, которыми природа за последние 70 лет отблагодарила бурно размножающееся человеческое племя. Эксперты считают, что это только начало и в скором времени нас ждёт открытие ещё тысяч пока неведомых болезнетворных микробов.
Вторая причина инфекционного ренессанса на планете – это огромные города третьего мира, куда стекается нищающее сельское население, которое живёт там в условиях антисанитарии, недостатка чистой воды и нормальной пищи, без прививок и лекарств. Такие города становятся гигантскими инкубаторами всяческой заразы. Ну а дальше обитатели этих мегаполисов разъезжаются, иммигрируют миллионами по всему свету, неся с собой не только надежду на лучшую долю на новом месте, но и набор крепкой тропической заразы.
Наконец, мы, обитатели умеренных широт, относительно благополучных по части инфекций, делаем одну из самых больших глупостей нашего времени – мы начали отказываться от прививок по самым несерьёзным поводам. И вот пожалуйста – появились корь в Европе, полиомиелит в Южной Америке, всплыли давно, казалось, побеждённые дифтерия, коклюш и прочее.
В общем, ситуация с инфекциями серьёзная. Счёт пошёл на десятки миллионов вновь заболевших, можно говорить о нескольких параллельных пандемиях на планете. Так что новые масштабные эпидемии уже начались.
Антибиотики бессильны?
Казалось бы, сейчас не Средние века и арсенал врачей полон самыми действенными средствами от любых болезней. Это раньше люди массово умирали от воспаления лёгких, а сейчас, в эру антибиотиков, можно в считаные дни избавиться практически от любой бактериальной инфекции. Однако почему-то эффективные прежде антибиотики вдруг перестали действовать, а медики начали говорить о появлении супербактерий, которых не берёт ни одно средство.
Не только бактерии, но и вирусы, микроскопические грибы и простейшие организмы типа амёб также привыкают к лекарствам и перестают на них реагировать. Так устроена природа – в последние несколько миллиардов лет микробное сообщество на Земле, по-научному микробиота, только тем и занимается, что пытается выжить. Так что, когда какая-нибудь бактерия волею судеб получает качества, которые помогают ей справляться сразу с несколькими антибиотиками, то получается супербаг (супербактерия), очень опасный для человека, потому что лечить его часто нечем.
И главные виновники в появлении супербагов – мы сами. Употребляем антибиотики по любому поводу и без повода да ещё применяем их неправильно, маленькими дозами или недостаточно долго, кормим скот десятками тысяч тонн сильнейших лекарств, чтоб не болел и быстрее рос. Чего уж тут удивляться, что антибиотики попадают в окружающую среду и там происходит селекция – выживают те микробы, которые уже ничего не боятся.
И вот эти супербаги разносятся по всему миру. Даром что мир стал маленьким – раньше заразу надо было везти, например, из Южной Азии в Европу на перекладных года два. Не доедет инфекция, где-нибудь цепочка прервётся. Или зараза погибнет, или носитель умрёт. Хотя изредка доезжала, и мы эти случаи хорошо помним – эпидемии, которые сокрушали империи, передвигали народы и меняли историю.
А сейчас нет проблем – билет на самолёт Джакарта – Амстердам – и через 15 часов встречайте в центре Европы новую устойчивую к самым сильным антибиотикам супербактерию. И кто бы ею ни заразился, для лечения надо искать новые лекарства, потому что к прежним она привыкла.
К счастью, арсенал современной науки таков, что за новыми эффективными препаратами, смертельными для супербагов, дело не встанет. Было бы желание и деньги. Деньги серьёзные. Несмотря на все успехи биотехнологии, геномики, протеомики, генетического редактирования, искусственного интеллекта и прочих прорывных фармакологических инноваций, разработка новых лекарств – это всё ещё дорогое удовольствие. Не каждая фармкомпания решится на свой страх и риск этим заняться. Значит, нужна помощь государства. И прессинг общественного мнения.
Интересно
Вирус против рака
Говорят, что учёные могут модифицировать вирусы и использовать их для лечения различных болезней, в том числе и рака. Правда ли это? Как работает эта технология?
И тут на помощь учёным придёт вирус, про который известно, что он знает способы проникнуть в мозг. Пусть это будет вирус энцефалита – само название говорит о его предпочтениях. Нужно лишь вынуть из этого вируса те гены, которые вызывают энцефалит, чтобы он случаем не убил весь организм, а вместо них вставить нужные гены. Вирус более неопасен, но дорогу помнит и доставит послание адресату. Там нужный ген встроится куда надо и будет работать!
Таких вирусов‑носителей учёные придумали много. Кто-то из них любит строго определённые органы, кто-то проникает во все встречные клетки. Целая коллекция замечательных конвертов, куда можно вкладывать наши генетические послания.
Это одна из основ очень серьёзного направления в медицине, которое называется генная терапия. Видимо, значительная часть раковых заболеваний будет лечиться примерно так – с помощью транспортных вирусов.
Генетические шахматы
Создание новых лекарств – очень важное дело. Но может ли наука сделать так, чтобы люди не болели совсем?
Немного мутанты
Источник силы, которая делает человека неуязвимым перед определёнными болезнями, кроется в его генах, ведь, чтобы противостоять эпидемиям, людям приходилось приспосабливаться на уровне ДНК. И именно на работу с геномом нацелены многие современные научные разработки. Например, эксперты говорят, что носители мутаций в гене CCR5 – он кодирует один белок на мембране иммунных клеток – в Средние века имели больше шансов выстоять против чумы.
Похоже, что как раз чумные эпидемии дали толчок для распространения среди людей такой мутации. А сегодня носители изменённого гена устойчивы против вируса иммунодефицита, да-да, против того самого СПИДа. Не заболеют и не умрут от него, потому что страшному вирусу не за что зацепиться. Привычное место его прикрепления, этот самый белок CCR5, изменено, и вирус пролетает мимо, оставляя иммунную клетку целой и здоровой.
Естественно, учёные бросились выяснять, нельзя ли этот ген пересадить другим людям, чтобы и они имели пожизненный иммунитет против смертельной инфекции. Можно. Скоро это будет в широкой медицинской практике, нет сомнений.
И мы победим… Но лишь нынешние варианты вируса. Где гарантии, что ВИЧ не мутирует тоже и не научится прикрепляться к белку-мутанту или к другим местам? Вдобавок ВИЧ-устойчивые носители мутантного CCR5, а их, кстати, больше всего в мире среди русских и украинцев, имеют повышенный риск заболеть рассеянным склерозом или лихорадкой Западного Нила. Её вирус в отличие от ВИЧ как раз обожает цепляться именно к мутантному белку.
Для десятков других болезней существуют такие же генетические расклады – что-то помогает, но в то же время повышает риски других болезней. Настоящие генетические шахматы, расчётом победных комбинаций в которых медицина будет заниматься всё следующее столетие.
Комар-киборг
А что если направить научную мысль не на исправление человека, а на изменения генов животных и насекомых, которые переносят болезни, чтобы они перестали служить транспортом для инфекций или вовсе исчезли с лица земли? Такие технологии тоже есть.
Если коротко, учёные отменяют законы естественного отбора, вставляя в геном, например комара, нужные людям гены, например ген бесплодия, чтобы популяция вредных комаров – разносчиков инфекций просто вымерла. Но если просто выпустить модифицированного комара в лес, то ничего не произойдёт. Ген растворится в миллиардах диких генов, и изменённый комар просто исчезнет в небытии. А если рядом с этим геном вставить в комариную хромосому другую конструкцию, которая разрезает дикий ген на куски и уничтожает его? Это учёные могут.
И вот встретились в одной яйцеклетке два гена – изменённый и дикий. Дикий ген разрезан и пропал, а всё потомство носит только нужный людям ген.
Или у модифицированного комара вообще не будет потомства – если надо, то нужный ген будет геном бесплодия, и тогда в лесу исчезнут комары как класс. Или клещи, если мы их отредактируем. Или мыши, чтобы не переносили инфекции.
А можно не так грустно – генетически отредактированные киборги не только не исчезнут, но будут меньше болеть, быстрее расти, дальше бегать, выше прыгать.
Однако широкое применение таких технологий – предмет серьёзных этических споров. Мы уверены, что можно просто так, без серьёзных последствий, вмешиваться в сложный природный баланс и решать – кому жить, а кому нет? Мы уверены, что эти технологии, отшлифованные на мышках и ёжиках, завтра не применятся кем-нибудь на людях? Тем более что это можно делать незаметно с помощью секретных вирусов – переносчиков генетического материала. Почихал, потемпературил – и всё, ты уже киборг с изменённым геномом.
К счастью, до этого пока дело не дошло. Но киборгов‑комаров уже в джунгли вовсю выпускают, на фабриках разводят киборгов‑свиней, на очереди сотни новых киборгов.
- 16329
- 12,8
- 2
- 5
Обратите внимание!
Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.
Эволюция и происхождение вирусов
В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.
Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.
Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?
Строение вирусов и иммунный ответ организма
Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).
Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].
Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).
Причины поражений в борьбе с ВИЧ
Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.
Рисунок 5. Схема развития феномена ADE при вирусных инфекциях. а — Взаимодействие между антителом и рецептором FcR на поверхности макрофага. б — Фрагмент С3 комплемента (компонент комплемента, после присоединения которого весь этот комплекс приобретает способность прилипать к различным частицам и клеткам) и рецептор комплемента (complement receptor, CR) способствуют присоединению вируса к клетке. в — Белки комплемента С1q и С1qR способствуют присоединению вируса к клетке (в составе молекулы C1q имеется рецептор для связывания с Fc-фрагментом молекулы антитела). г — Антитела взаимодействуют с рецептор-связывающим сайтом вирусного белка и индуцируют его конформационные изменения, облегчающие слияние вируса с мембраной. д — Вирусы, получившие возможность реплицироваться в данной клетке посредством ADE, супрессируют противовирусные ответы со стороны антивирусных генов клетки. Рисунок с сайта supotnitskiy.ru.
Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.
Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.
Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].
* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.
Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.
Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.
Читайте также: