Проект на тему вирусы в жизни человека
Естественные науки (от 14 до 17 лет)
Лебедев Юрий, 16 лет
ученик 9-го класса
II. Основная часть
1. История открытия вирусов
2. Строение вирусов
3. Механизм инфицирования
4. Интервью с врачом иммунологом детской
5. Анкетирование учащихся МБОУ СОШ № 6
6. Роль вирусов в природе и жизни человека
IV. Список источников информации
Цель моего исследования: выяснить значение вирусов в жизни человека.
1. Рассмотреть особенности строения вирусов и механизм их взаимодействия с клеткой
2. Проанализировать статистические данные о вирусных заболеваниях и вакцинации у учащихся МБОУ СОШ № 6
3. Составить памятку о профилактике вирусных заболеваний
Предмет исследования: вирусы и их значения для человека
Гипотеза: предполагаю, что вирусы в жизни человека имеют в основном отрицательное значение и только в случае вакцинации – положительное.
Что такое вирус?
Вирус - одно из самых загадочных существ в природе. Он находится на самой границе живой и неживой материи. С живыми существами его роднит лишь заключенный в вирусе фрагмент ДНК - сложной молекулы, в которой в закодированном виде содержится генетическая информация, или своего рода чертеж живого организма. Лишь попадая внутрь живой клетки, вирус начинает вести себя как живое существо.
Его задача - использовать исполнительные механизмы клетки не для деления самой клетки, не для следования инструкциям ДНК, хранящимся в клеточном ядре, а для создания копий вируса согласно его собственной ДНК.
Увидеть вирус можно только с помощью электронного микроскопа.
Принципиальной и наиболее существенной биологической особенностью любого вируса является следующая: вирусы не способны размножаться без помощи клеток других организмов. Вирус проникает внутрь совершенно определенной клетки, и именно эта зараженная клетка превращается как бы в завод по производству вирусов. Вполне понятно, что работать на два фронта (и на вирус, и на организм) клетка не может, а, следовательно, не может выполнять свое основное предназначение - отсюда и возникают совершенно конкретные симптомы болезни.
Главной чертой любого вируса является его избирательность или, проще говоря, разборчивость. Вирусы не могут жить в любой клетке - им подавай свою, именно ту, которую данный вирус может заставить работать на себя. Так, например, вирус инфекционного гепатита может существовать и размножаться только в клетках печени и больше нигде. Вирус эпидемического паротита (свинки) предпочитает клетки слюнных желез, вирус гриппа - клетки слизистой оболочки трахеи и бронхов, вирус энцефалита - клетки головного мозга и т. д. - в отношении каждого вируса можно перечислить определенные клетки и ткани человеческого организма, которые он (вирус) поражает или может поразить.
Избирательность вирусов прослеживается не только на поражении определенных клеток, но и на способности вызывать конкретные болезни у конкретных биологических видов. Вирус кори может найти нужные ему клетки только в организме человека, и не представляет никакой угрозы для любимца семьи кота Васьки. Вирус собачьей чумки не опасен для человека. Но это не общее правило. Ведь определенные клетки разных млекопитающих очень похожи друг на друга и некоторые вирусы вызывают одну и ту же болезнь у самых разнообразных животных - типичный пример - вирус бешенства.
1. История открытия вирусов
В 80-е годы XIX века на юге России табачные плантации подверглись грозному нашествию. Отмирали верхушки растений, на листьях появлялись светлые пятна, год от года число пораженных полей увеличивалось, а причина заболеваний неизвестна. Профессора Петербургского университета, всемирно известные и послали небольшую экспедицию в Бесарабию и на Украину в надежде разобраться в причинах болезни. В экспедицию входили и . После нескольких лет работы в 1892 году открыл вирус табачной мозаики. Учёный открыл новое царство живых организмов, самых мелких из всех живых и потому невидимых в световом микроскопе.
Вирусы – мелкие неклеточные формы жизни, которые являются внутриклеточными паразитами. Распространены повсеместно. Вызывают заболевания растений, животных и человека. Размножаясь только в живых клетках, они используют клеточный ферментативный аппарат и переключают клетку на синтез зрелых вирусных частиц – вирионов (так обозначают отдельную вирусную частицу).
Как устроены вирусы? Оказывается, очень просто.
В состав вириона обычно входит только одна молекула нуклеиновой кислоты, часто замкнутая в кольцо. Нуклеиновая кислота обязательно связана с первичной белковой оболочкой – капсидом, который состоит из белков – капсомеров. В результате объединения нуклеиновой кислоты с капсомерами образуется нуклеопротеид (нуклеокапсид). Простые вирусы состоят только из нуклеокапсида (вирусы полиомиелита, вирус табачной мозаики). Сложные вирусы имеют еще и вторичную оболочку – суперкапсид (пеплос), которая содержит кроме белков еще и липиды с углеводами. Примером сложно организованных вирусов служат возбудители гриппа и герпеса.
Условно процесс вирусного инфицирования в масштабах одной клетки можно разбить на несколько взаимоперекрывающихся этапов:
1. Присоединение к клеточной мембране — так называемая адсорбция. Обычно для того, чтобы вирион адсорбировался на поверхности клетки, она должна иметь в составе своей плазматической мембраны белок (часто гликопротеин) — рецептор, специфичный для данного вируса.
2. Проникновение в клетку. На следующем этапе вирусу необходимо доставить внутрь клетки свою генетическую информацию. Некоторые вирусы переносят также собственные белки, необходимые для её реализации (особенно это характерно для вирусов, содержащих негативные РНК). Различные вирусы для проникновения в клетку используют разные стратегии: например, пикорнавирусы впрыскивают свою РНК через плазматическую мембрану, а вирионы ортомиксовирусов захватываются клеткой в ходе эндоцитоза, попадают в кислую среду лизосом, где происходит их окончательное созревание, после чего РНК в комплексе с вирусными белками преодолевает лизосомальную мембрану и попадает в цитоплазму.
4. Персистенция. Некоторые вирусы могут переходить в латентное состояние, слабо вмешиваясь в процессы, происходящие в клетке, и активироваться лишь при определённых условиях. Так построена, например, стратегия размножения некоторых бактериофагов — до тех пор, пока заражённая клетка находится в благоприятной среде, фаг не убивает её, наследуется дочерними клетками и нередко интегрируется в клеточный геном. Однако при попадании заражённой лизогенным фагом бактерии в неблагоприятную среду, возбудитель захватывает контроль над клеточными процессами так, что клетка начинает производить материалы, из которых строятся новые фаги. Клетка превращается в фабрику, способную производить многие тысячи фагов. Зрелые частицы, выходя из клетки, разрывают клеточную мембрану, тем самым убивая клетку.
5. Созревание вирионов и выход из клетки. В конце концов, новосинтезированные геномные РНК или ДНК одеваются соответствующими белками и выходят из клетки. Следует сказать, что активно размножающийся вирус не всегда убивает клетку-хозяина. В некоторых случаях дочерние вирусы отпочковываются от плазматической мембраны, не вызывая её разрыва. Таким образом, клетка может продолжать жить и продуцировать вирус.
Из интервью с врачом я узнал, что существует большое количество болезней вызываемых вирусами. Это ОРВИ, грипп, паротит, корь, краснуха, ветряная оспа, полиомиелит, спид, гепатит, герпес и многие другие.
Вирусы передаются следующими путями:
· Пищевой путь, при котором вирус попадает в организм человека с загрязненными продуктами питания и водой (вирусный гепатит А, Е и др.)
· Парентеральный (или через кровь), при котором вирус попадает непосредственно в кровь или внутреннюю среду человека. Главным образом это происходит при манипуляции зараженными хирургическими инструментами или шприцами, при незащищенном половом контакте, а также трансплацентарно от матери к ребенку. Таким путем передаются хрупкие вирусы, быстро разрушающиеся в окружающей среде (вирус гепатита В, ВИЧ, вирус бешенства и др.).
· Дыхательный путь, для которого свойственен воздушно-капельный механизм передачи, при котором вирус попадает в организм человека вместе с вдыхаемым воздухом, который содержит частицы мокроты и слизи выброшенных больным человеком или животным. Это наиболее опасный путь передачи, так как с воздухом вирус может переноситься на значительные расстояния и вызывать целые эпидемии. Так передаются вирусы гриппа, парагриппа, свинки, ветряной оспы и др.
4. Анкетирование учащихся МБОУ СОШ № 6, 8 и 11 классы
Что же знают о вирусах учащиеся нашей школы. В результате анкетирования учеников 8 и 11 классов получены следующие данные, которые представлю в диаграммах. По мнению ребят 8 класса вирусы приносят в основном вред организму (63% опрошенных), а вот ученики 11 класса уверены в том, что вирусы приносят как вред, так и пользу (78% опрошенных).
В качестве примеров учащиеся данных классов называют, вирусы, приносящие вред в случаях заболеваний ОРВИ, грипп, оспа, СПИД и просто когда человек болеет. (42% - ученики 8 класса и 50% - ученики 11 класса). Но ведь переломы, болезни сердца и многие другие не вызваны вирусами. Не смогли привести примеры случаев, когда вирусы приносят вред 33% восьмиклассников и 11% одиннадцатиклассников.
На этой диаграмме представлены результаты ответа на вопрос привести примеры случаев, когда вирусы приносят пользу. 22% восьмиклассников и 5% одиннадцатиклассников считают, что это происходит в случае вакцинации. 5% учеников 8 класса и 28% учеников 11 класса уверены в том, что вирусы содержатся в лекарствах, например, в антибиотиках. (что неверно). Большинство ребят затруднились ответить на этот вопрос.
5.
Роль вирусов в природе и жизни человека
1. Вирусы научат нас, как с ними бороться.
2. По мнению ученых, вирусы способны уничтожать опухоли.
3.
Вирусы создадут лекарственные гены. Цель вируса – размножение, некоторые вирусы вставляют свой генетический код прямо в хромосомы заражённой клетки.
Идея – пусть они заменят неправильно работающие кусочки генного кода клетки, являющиеся причиной генетических заболеваний, на исправленные фрагменты. Преимущества: точное попадание в цель (уничтожение больных клеток, не причиняя вреда здоровым тканям), пожизненное исцеление от неизлечимых недугов. Недостатки: лечебный ген внедряется внутрь во время деления клетки. Однако некоторые клетки в нашем организме наделяться или делятся крайне редко. Работы ведутся с 1990г.
Выводы: значение вирусов огромно как в живой природе, так и в жизни человека, поскольку вирусы являются паразитами и поражают все известные организмы. Многие из них (грипп, полиомиелит, ВИЧ и др.) вызывают у людей тяжелые заболевания, нередко с летальным исходом.
Однако вирусы могут быть полезными. Прежде всего вирусы, как и любые другие паразиты, стимулируют деятельность защитных сил организмов, направляя, в известной степени, эволюционный процесс. Многие вирусы, поражающие бактерии, чрезвычайно важны для медицины и ветеринарии, поскольку позволяют естественным путем и без химических реагентов побеждать многие бактериальные инфекции.
Гипотеза, выдвинутая мною, подтвердилась частично.
Вирусы имеют в жизни человека не только отрицательное значение, но и положительное. В последнее время, благодаря генной инженерии разрабатываются новые технологии использования вирусов для лечения тяжелейших заболеваний.
Продукты моей работы:
Что дала мне проделанная работа?
· Учился работать с информацией
· Учился составлять вопросы анкеты и обрабатывать результаты анкетирования
· Учился брать интервью
· Обобщал и обдумывал накопленную информацию, вырабатывал суждения и умозаключения
IV. Список источников информации и иллюстраций:
1. Билич, . Полный курс: В 3 т. Т.1. Анатомия , . - М.: Оникс 21 век, 20с.: ил.
2. Большая энциклопедия эрудита. М.: Махаон, 2004, 487 с.: ил.
3. Большая иллюстрированная энциклопедия живой природы. М.: Махаон, 2006, 319 с.: ил.
Сайты в Интернете:
6. Фотографии из личного архива
- 16313
- 12,7
- 2
- 5
Обратите внимание!
Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.
Эволюция и происхождение вирусов
В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.
Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.
Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?
Строение вирусов и иммунный ответ организма
Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).
Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].
Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).
Причины поражений в борьбе с ВИЧ
Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.
Рисунок 5. Схема развития феномена ADE при вирусных инфекциях. а — Взаимодействие между антителом и рецептором FcR на поверхности макрофага. б — Фрагмент С3 комплемента (компонент комплемента, после присоединения которого весь этот комплекс приобретает способность прилипать к различным частицам и клеткам) и рецептор комплемента (complement receptor, CR) способствуют присоединению вируса к клетке. в — Белки комплемента С1q и С1qR способствуют присоединению вируса к клетке (в составе молекулы C1q имеется рецептор для связывания с Fc-фрагментом молекулы антитела). г — Антитела взаимодействуют с рецептор-связывающим сайтом вирусного белка и индуцируют его конформационные изменения, облегчающие слияние вируса с мембраной. д — Вирусы, получившие возможность реплицироваться в данной клетке посредством ADE, супрессируют противовирусные ответы со стороны антивирусных генов клетки. Рисунок с сайта supotnitskiy.ru.
Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.
Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.
Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].
* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.
Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.
Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.
Открытие вирусов
В 1892 году Д.И. Ивановский (см. Рис. 1), изучая мозаичную болезнь табака (см. Рис. 2), установил, что причиной заболевания является некое инфекционное начало, содержащееся в листьях больных растений, которое проходит через фильтр, задерживающий обыкновенные бактерии. Если профильтрованный сок внести в листья здоровых растений, то они также заболевают мозаичной болезнью.
Рис. 1. Д.И. Ивановский
Рис. 2. Мозаичная болезнь табака
В 1898 году независимо от Ивановского аналогичные результаты получил голландский микробиолог М. Бейеринк. Однако он предположил, что мозаичную болезнь табака вызывают не мельчайшие бактерии, а некое жидкое заразное начало, которое он назвал фильтрующим вирусом.
Размеры вирусов определяются нанометрами (20-200 нм), поэтому их изучение началось после открытия электронного микроскопа. В настоящее время описаны вирусы практически всех групп живых организмов.
Строение вирусов
Вирусы – неклеточные формы жизни. Они состоят (см. Рис. 3) из фрагмента генетического материала (РНК или ДНК), составляющего сердцевину вируса, и защитной оболочки, которая называется капсид. У некоторых вирусов (герпес, грипп) есть дополнительная липопротеидная оболочка – суперкапсид, которая возникает из плазматической мембраны клетки-хозяина.
Рис. 3. Строение вируса
Вирусы не способны к самостоятельной жизнедеятельности. Они могут проявлять свойства живого, только попав в клетку-хозяина. Они используют потенциал и энергию этой клетки для создания своих новых вирусных частиц, следовательно, вирусы являются внутриклеточными паразитами.
Размножение вирусов
Обычно вирус связывается с поверхностью клетки-хозяина и проникает внутрь. Каждый вирус ищет своего хозяина, то есть клетки строго определенного вида. Например, вирус – возбудитель гепатита (желтуха) проникает и размножается только в клетках печени, а вирус эпидемического паротита (свинка) – только в клетках околоушных слюнных желез человека.
Проникнув внутрь клетки-хозяина, вирусная ДНК или РНК начинает взаимодействовать с ее генетическим аппаратом таким образом, что клетка начинает синтезировать белки, свойственные вирусу (см. Рис. 4).
Рис. 4. Схема репродукции вируса
При заражении ретровирусом (например, вирус иммунодефицита человека (ВИЧ)), у которого в качестве генетического материала используется молекула РНК, наблюдается другая картина. При попадании ретровируса в клетку-хозяина происходит обратная транскрипция. То есть на основе вирусной РНК синтезируется вирусная ДНК, которая встраивается в ДНК человека. Такой тип взаимодействия вируса с клеткой называется интегративным, а встроенная в состав хромосомы клетки ДНК вируса называется провирусом. Далее провирус реплицируется (удваивается) в составе хромосомы и переходит в геном дочерних клеток. Однако под влиянием некоторых физических и химических факторов провирус может выщепляться из хромосомы клетки и переходить к продуктивному типу взаимодействия, то есть синтезировать новые вирусные частицы.
При заражении ВИЧ человек чувствует себя здоровым, пока вирусный генетический материал встроен в хромосому человека. Однако при выщеплении этого вирусного генетического материала из клетки она начинает образовывать новые вирусные частицы, вследствие чего развивается смертельное заболевание – синдром приобретенного иммунодефицита (СПИД).
Вирусы являются возбудителями большого количества заболеваний человека: корь, грипп, оспа, краснуха, энцефалит, свинка, гепатиты, СПИД. Известен также целый ряд заболеваний растений, вызываемых вирусами, например мозаичная болезнь табака, томатов, огурцов или скручивание листьев картофеля. Всего описано около 500 видов вирусов, поражающих клетки позвоночных животных, и около 300 вирусов растений. Некоторые вирусы участвуют в злокачественном перерождении клеток и тем самым провоцируют онкологические заболевания.
ДНК- и РНК-содержащие вирусы
В зависимости от содержащегося генетического материала вирусы подразделяются на ДНК-содержащие и РНК-содержащие.
Одноцепочные РНК-содержащие вирусы подразделяются на:
1. Плюс-нитевые (положительные). Плюс-нить РНК этих вирусов выполняет наследственную (геномную) функцию и функцию информационной РНК (иРНК).
2. Минус-нитевые (отрицательные). Минус-нить РНК этих вирусов выполняет только наследственную функцию.
К РНК-содержащим вирусам относятся более
вирусов, вызывающих респираторные заболевания, а также вирус гриппа, кори, краснухи, свинки, ВИЧ. Также существует специфическая группа вирусов – арбовирусы, которые переносятся членистоногими.
Двухцепочные ДНК-содержащие вирусы вызывают такие заболевания, как папиллома человека или герпес, гепатит В (гепатит А и гепатит С вызывается РНК-содержащими вирусами).
ДНК-содержащие вирусы поражают также растения. Они вызывают, например, золотую мозаику бобов или полосатость у кукурузы.
Вирус гепатита С
По своему строению вирус гепатита С – это РНК-содержащий вирус, имеющий сферическую форму, сложно устроенный (см. Рис. 5).
В качестве генетического материала такой вирус содержит линейную однонитчатую молекулу РНК.
Рис. 5. Гепатит С
Вопреки бытующим предрассудкам, подцепить вирус гепатита C невозможно через социальные контакты (поцелуи, объятия), через продукты или воду, через грудное молоко. Вы ничем не рискнете, если разделите с носителем вируса трапезу или напитки. Заразиться гепатитом C можно при контакте с кровью инфицированного человека либо половым путем.
В настоящее время для лечения гепатита С используют два препарата: Интерферон альфа и Рибавирин.
Бактериофаги
Рис. 6. Бактериофаг (Источник)
Особую группу вирусов составляют бактериофаги (или просто фаги), которые заражают бактериальные клетки (см. Рис. 6). Фаг укрепляется на поверхности бактерии при помощи специальных ножек и вводит в ее цитоплазму полый стержень, через который проталкивает внутрь клетки свою ДНК или РНК. Таким образом, генетический материал фага попадает внутрь бактериальной клетки, а капсид остается снаружи. В цитоплазме начинается репликация генетического материала фага, синтез его белков, построение капсида и сборка новых фагов. Уже через 10 мин после заражения в бактерии формируются новые фаги, а через полчаса бактериальная клетка разрушается, и из нее выходят около 200 заново сформированных вирусов – фагов, способных заражать другие бактериальные клетки (см. Рис. 7). Некоторые фаги используются человеком для борьбы с болезнетворными бактериями, вызывающими холеру, дизентерию, брюшной тиф.
Рис. 7. Схема размножения бактериофага (Источник)
Список литературы
- Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
- Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.
- Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.
- Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Домашнее задание
Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.
Читайте также: