Прокариотические и эукариотические клетки вирусы
К прокариотам относятся архебактерии, бактерии и синезеленые водоросли. Прокариоты — одноклеточные организмы, у которых отсутствуют структурно оформленное ядро, мембранные органоиды и митоз.
Строение бактериальной клетки
Размеры — от 1 до 15 мкм. Основные формы: 1) кокки (шаровидные), 2) бациллы (палочковидные), 3) вибрионы (изогнутые в виде запятой), 4) спириллы и спирохеты (спирально закрученные).
Формы бактерий:
1 — кокки; 2 — бациллы; 3 — вибрионы; 4—7 — спириллы и спирохеты.
Строение бактериальной клетки:
1 — цитоплазматическая мембрана; 2 — клеточная стенка; 3 — слизистая капсула; 4 — цитоплазма; 5 — хромосомная ДНК; 6 — рибосомы; 7 — мезосома; 8 — фотосинтетические мембраны; 9 — включения; 10 — жгутики; 11 — пили.
Бактериальная клетка ограничена оболочкой. Внутренний слой оболочки представлен цитоплазматической мембраной (1), над которой находится клеточная стенка (2); над клеточной стенкой у многих бактерий — слизистая капсула (3). Строение и функции цитоплазматической мембраны эукариотической и прокариотической клеток не отличаются. Мембрана может образовывать складки, называемые мезосомами (7). Они могут иметь разную форму (мешковидные, трубчатые, пластинчатые и др.).
На поверхности мезосом располагаются ферменты. Клеточная стенка толстая, плотная, жесткая, состоит из муреина (главный компонент) и других органических веществ. Муреин представляет собой правильную сеть из параллельных полисахаридных цепей, сшитых друг с другом короткими белковыми цепочками. В зависимости от особенностей строения клеточной стенки бактерии подразделяются на грамположительные (окрашиваются по Граму) и грамотрицательные (не окрашиваются). У грамотрицательных бактерий стенка тоньше, устроена сложнее и над муреиновым слоем снаружи имеется слой липидов. Внутреннее пространство заполнено цитоплазмой (4).
В бактериальной клетке отсутствуют все мембранные органоиды, характерные для эукариотической клетки (митохондрии, пластиды, ЭПС, аппарат Гольджи, лизосомы).
В цитоплазме бактерий находятся рибосомы 70S-типа (6) и включения (9). Как правило, рибосомы собраны в полисомы. Каждая рибосома состоит из малой (30S) и большой субъединиц (50S). Функция рибосом: сборка полипептидной цепочки. Включения могут быть представлены глыбками крахмала, гликогена, волютина, липидными каплями.
У многих бактерий имеются жгутики (10) и пили (фимбрии) (11). Жгутики не ограничены мембраной, имеют волнистую форму и состоят из сферических субъединиц белка флагеллина. Эти субъединицы расположены по спирали и образуют полый цилиндр диаметром 10–20 нм. Жгутик прокариот по своей структуре напоминает одну из микротрубочек эукариотического жгутика. Количество и расположение жгутиков может быть различным. Пили — прямые нитевидные структуры на поверхности бактерий. Они тоньше и короче жгутиков. Представляют собой короткие полые цилиндры из белка пилина. Пили служат для прикрепления бактерий к субстрату и друг к другу. Во время конъюгации образуются особые F-пили, по которым осуществляется передача генетического материала от одной бактериальной клетки к другой.
Редко у бактерий наблюдается половой процесс, при котором происходит рекомбинация генетического материала. Следует подчеркнуть, что у бактерий никогда не образуются гаметы, не происходит слияние содержимого клеток, а имеет место передача ДНК от клетки-донора к клетке-реципиенту. Различают три способа передачи ДНК: конъюгация, трансформация, трансдукция.
Конъюгация — однонаправленный перенос F-плазмиды от клетки-донора в клетку-реципиента, контактирующих друг с другом. При этом бактерии соединяются друг с другом особыми F-пилями (F-фимбриями), по каналам которых фрагменты ДНК и переносятся. Конъюгацию можно разбить на следующие этапы: 1) раскручивание F-плазмиды, 2) проникновение одной из цепей F-плазмиды в клетку-реципиента через F-пилю, 3) синтез комплементарной цепи на матрице одноцепочечной ДНК (происходит как в клетке-доноре (F + ), так и в клетке-реципиенте (F - )).
Трансдукция — перенос фрагмента ДНК от клетки-донора к клетке-реципиенту с помощью бактериофагов.
Вирусы
Вирусы состоят из нуклеиновой кислоты (ДНК или РНК) и белков, образующих оболочку вокруг этой нуклеиновой кислоты, т.е. представляют собой нуклеопротеидный комплекс. В состав некоторых вирусов входят липиды и углеводы. Вирусы содержат всегда один тип нуклеиновой кислоты — либо ДНК, либо РНК. Причем каждая из нуклеиновых кислот может быть как одноцепочечной, так и двухцепочечной, как линейной, так и кольцевой.
Размеры вирусов — 10–300 нм. Форма вирусов: шаровидная, палочковидная, нитевидная, цилиндрическая и др.
Капсид — оболочка вируса, образована белковыми субъединицами, уложенными определенным образом. Капсид защищает нуклеиновую кислоту вируса от различных воздействий, обеспечивает осаждение вируса на поверхности клетки-хозяина. Суперкапсид характерен для сложноорганизованных вирусов (ВИЧ, вирусы гриппа, герпеса). Возникает во время выхода вируса из клетки-хозяина и представляет собой модифицированный участок ядерной или наружной цитоплазматической мембраны клетки-хозяина.
Если вирус находится внутри клетки-хозяина, то он существует в форме нуклеиновой кислоты. Если вирус находится вне клетки-хозяина, то он представляет собой нуклеопротеидный комплекс, и эта свободная форма существования называется вирионом. Вирусы обладают высокой специфичностью, т.е. они могут использовать для своей жизнедеятельности строго определенный круг хозяев.
Только паразитируя в клетке-хозяине, вирус может репродуцироваться, воспроизводить себе подобных.
В цикле репродукции вируса можно выделить следующие стадии.
Вирус иммунодефицита человека поражает главным образом CD4-лимфоциты (хелперы), на поверхности которых есть рецепторы, способные связываться с поверхностным белком ВИЧ. Кроме того, ВИЧ проникает в клетки ЦНС, нейроглии, кишечника. Иммунная система организма человека утрачивает свои защитные свойства и оказывается не в состоянии противостоять возбудителям различных инфекций. Средняя продолжительность жизни инфицированного человека составляет 7–10 лет.
Источником заражения служит только человек — носитель вируса иммунодефицита. СПИД передается половым путем, через кровь и ткани, содержащие вирус иммунодефицита, от матери к плоду.
Смотреть оглавление (лекции №1-25)
Среди всего многообразия ныне существующих на Земле организмов выделяют группу, не имеющую клеточного строения – вирусы. Все остальные организмы по типу клеточной организации делят на прокариотов и эукариотов.
1. Эукариоты – сложноустроенные клетки, имеющие оформленное ядро, из которых состоит большинство организмов от одноклеточных водорослей до человека.
2. Прокариоты – доядерные клетки, т.е не имеющие оформленного ядра. Единственная молекула ДНК, замкнутая в кольцо, свободно располагается в области цитоплазмы, называется нуклеоидом. У прокариотов нет хлоропластов, митохондрий, эндоплазматической сети, аппарата Гольджи; их функции выполняют впячивания цитоплазматической мембраны – мезосомы. В связи с отсутствием центриолей, митоза и мейоза также нет, деление осуществляется перетяжкой, снаружи формируется клеточная стенка из муреина.
Прокариоты делятся на две группы: бактерии и сине-зеленые водоросли (цианеи).
В цитоплазме бактерий находятся рибосомы и включения (крахмал, гликоген, жиры), а у бактерий, способных к фотосинтезу, есть мембранные структуры с пигментами, подобные хлоропластам. Многие виды бактерий образуют слизистую капсулу, которая предохраняет их от высыхания.
Бактерии встречаются повсеместно, населяя все среды обитания. Наибольшее их число находится в почве, обнаружены в воздухе, воде, продуктах питания, внутри организма.
Среди бактерий встречаются неподвижные и подвижные формы. Передвигаются в основном с помощью одного или нескольких жгутиков. Различаются по форме:
- шарообразные (кокки, диплококки, стрептококки);
-в виде запятой (вибрионы);
-извитые (спирохеты, спириллы).
По способу питания бактерии подразделяются на автотрофные и гетеротрофные.
Автотрофные организмы (в данном случае бактерии) – способны к самостоятельному синтезу органических веществ. Фотосинтезирующие бактерии используют для этого энергию солнца. Их зеленый пигмент называется бактериохлорофиллом. Фотосинтез у них протекает в анаэробных условиях без выделения О2. Хемосинтезирующие бактерии используют энергию химических реакции: нитрифицирующие бактерии переводят аммиак в нитриты, а затем в нитраты; железобактерии – Fe 2+ в Fe 3+ и др. Хемосинтез был открыт в 1889-1890 гг. русским микробиологом С.Н. Виноградским.
Гетеротрофные организмы (в данном случае бактерии) используют для питания готовые органические вещества. Сапрофиты – бактерии гниения, используют органические вещества отмерших организмов или выделения других организмов (почвенные – разлагают перегной; клубеньковые – связывают свободный азот; молочнокислые – превращают сахар в молочную кислоту; маслянокислые – сбраживают углеводы, спирты до масляной кислоты). Паразитические бактерии – поселяются в живых организмах и питаются за их счет.
По типу энергетического обмена бактерии могут быть аэробными и анаэробными.
Аэробные бактерии – живут в кислородсодержащей среде и получают энергию в процессе окисления органических соединений до углекислого газа и воды.
Анаэробные бактерии – обитают в бескислородных условиях и существуют за счет энергии, выделяемой при брожении.
Обычно бактерии делятся бесполым путем, но характерен и половой процесс – конъюгация, при котором между двумя клетками происходит обмен участками ДНК.
При наступлении неблагоприятных условий бактерии образую споры. В таком виде они устойчивы к различным воздействиям и сохраняют жизнеспособность в течение длительного времени.
Положительное значение бактерий заключается в следующем:
- гнилостные бактерии разрушают трупы животных и растительные остатки;
- нитрифицирующие и клубеньковые бактерии повышают плодородие почвы;
- бактерии используются в пищевой промышленности для получения кисломолочных продуктов, сыра, сливочного масла, квашения овощей, виноделии;
- используются для получения различных спиртов, антибиотиков, витаминов, гормонов;
- бактерии, находящиеся в рубце жвачных животных, перерабатывают целлюлозу; лактобактерии, бифидобактерии, находящиеся в кишечнике человека являются нормальной микрофлорой, способствуют синтезу витаминов.
Отрицательное значение бактерий заключается в следующем:
- некоторые виды бактерий повреждают рыболовные сети, книги, сено, портят продукты питания;
- болезнетворные бактерии поселяются на покровах тела или в организме человека и вызывают следующие болезни: тиф, холера, дифтерия, столбняк, туберкулез, ангина, сибирская язва, бруцеллез, чума.
Борьба с бактериями включает следующий рад мероприятий: проветривание жилых помещений, дезинфекция, очистка воды и контроль продуктов питания, пастеризация (20-30 мин при температуре 60-70 0 С), термическая обработка пищи, инструментов, прививки.
Цианеи (цианобактерии)илисинезеленые водоросли – наиболее древние водные или почвенные автотрофные организмы. Имеют многослойные стенки из полисахаридов, пектиновых веществ и целлюлозы, сверху покрыты слизью.
3. Вирусы – неклеточная форма жизни. Способны жить и размножаться только в клетках других организмов, т.е. внутриклеточными паразитами. Вирусы открыл русский ученый Д.И. Ивановский в 1892 году.
Каждая вирусная частица состоит из небольшого количества ДНК или РНК (у остальных организмов всегда имеются обе эти нуклеиновые кислоты), т.е. генетического материала, заключенного в белковую оболочку (капсид), играющую защитную роль. В связи с тем, что в состав вирусов входит только одна разновидность нуклеиновых кислот, они не могут самостоятельно синтезировать белки. Различают РНК-содержащие вирусы и ДНК-содержащие вирусы. Вирусы не растут, у них отсутствует обмен веществ. Все активные процессы вирусов протекают в клетках-хозяевах.
Особую группу представляют вирусы бактерий – бактериофаги (фаги). Эти организмы, поселяясь внутри бактерий, заставляют их синтезировать белок с собственной ДНК, что приводит к гибели бактериальной клетки. В связи с этим фаги используют для лечения таких заболеваний, как дизентерия, брюшной тиф, холера и пр.
БИОЛОГИЯ КЛЕТКИ
Клетка любого организма представляет собой целостную живую систему. Она состоит из трех неразрывно связанных между собой частей: оболочки, цитоплазмы и органоидов. Оболочка клетки осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах).
Оболочка клеток
Оболочка клеток имеет сложное строение. Она состоит из наружного слоя и расположенной под ним плазматической мембраны. Клетки животных и растений различаются по строению их наружного слоя. У растений, а также у бактерий, сине-зеленых водорослей и грибов на поверхности клеток расположена плотная оболочка, или клеточная стенка. У большинства растений она состоит из клетчатки.
Клеточная стенка играет исключительно важную роль: она представляет собой внешний каркас, защитную оболочку, обеспечивает тургор растительных клеток; через клеточную стенку проходит вода, соли, молекулы многих органических веществ.
Наружный слой поверхности клеток животных в отличие от клеточных стенок растений очень тонкий, эластичный. Он не виден в световой микроскоп и состоит из разнообразных полисахаридов и белков. Поверхностный слой животных клеток получил название гликокаликс.
Гликокаликс выполняет, прежде всего, функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами. Имея незначительную толщину (меньше 1 мкм), наружный слой клетки животных не выполняет опорной роли, какая свойственна клеточным стенкам растений. Образование гликокаликса, так же как и клеточных стенок растений, происходит благодаря жизнедеятельности самих клеток.
Плазматическая мембрана.Под гликокаликсом и клеточной стенкой растений расположена плазматическая мембрана, граничащая непосредственно с цитоплазмой. Изучение ее строения и функций возможно только с помощью электронного микроскопа.
В состав плазматической мембраны входят белки и липиды в разных соотношениях. Они упорядоченно расположены и соединены друг с другом химическими взаимодействиями. По современным представлениям молекулы липидов в плазматической мембране расположены в два ряда и образуют сплошной слой. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь в него на разную глубину. Молекулы белка и липидов подвижны, что обеспечивает динамичность плазматической мембраны.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Описание презентации по отдельным слайдам:
Прокариотические и эукариотические клетки. Вирусы как неклеточная форма жизни и их значение. Лекция №5
План: Прокариоты Неклеточные формы жизни
Схема строения прокариотической клетки мезосома
Строение клеточной стенки бактериальных клеток
Формы бактериальных клеток
Размножение прокариотической клетки
Расположение споры в бактериальной клетке
Клостридии (Clostridium pasteurianum)
Лактобактерии (лат. Lactobacillus )
Кишечная палочка (лат. Escherichia coli)
Вирусы – неклеточные формы жизни 1892г. Д.И.Ивановский
Вирусы – неклеточные формы жизни. имеют неклеточное строение не способны к росту и бинарному делению не имеют собственных систем метаболизма содержат нуклеиновые кислоты только одного типа ДНК или РНК используют рибосомы клетки – хозяина для образования собственных белков не размножаются на искусственных питательных средах и могут существовать только в организме восприимчивого к ним хозяина.
Взаимодействие вирусов с клеткой хозяина (этапы): адсорбция, проникновение вируса в клетку, репродукция вируса, самосборка, выведение вируса из клетки
Вирус СПИДа. Строение. Размножение.
Бактериофаг – вирус, который способен поражать бактериальные клетки
Бактериофаг – вирус, который способен поражать бактериальные клетки
Выберите книгу со скидкой:
ЕГЭ-2019. Биология. 25 лучших вариантов / Котелевская
350 руб. 294.00 руб.
ЕГЭ. Биология. Новый полный справочник для подготовки к ЕГЭ
350 руб. 155.00 руб.
ЕГЭ. Биология. Словарь-справочник школьника для подготовки к ЕГЭ
350 руб. 155.00 руб.
Биология. Большой сборник тренировочных вариантов проверочных работ для подготовки к ВПР. 6 класс
350 руб. 197.00 руб.
350 руб. 188.00 руб.
ОГЭ-2020. Биология. Тренировочные варианты
350 руб. 188.00 руб.
Один день из жизни мозга. Нейробиология сознания от рассвета до заката
350 руб. 674.00 руб.
Биология желания. Зависимость — не болезнь
350 руб. 240.00 руб.
Биология. 7класс. Рабочая тетрадь №2.
350 руб. 162.00 руб.
Биология. 8класс. Рабочая тетрадь №2.
350 руб. 162.00 руб.
Биология. 8класс. Рабочая тетрадь №1.
350 руб. 162.00 руб.
Биология. Многообразие живых организмов. Животные. 8 класс. Рабочая тетрадь
350 руб. 158.00 руб.
БОЛЕЕ 58 000 КНИГ И ШИРОКИЙ ВЫБОР КАНЦТОВАРОВ! ИНФОЛАВКА
- Березняк Марина ЕвгеньевнаНаписать 0 12.10.2019
Номер материала: ДБ-734668
Добавляйте авторские материалы и получите призы от Инфоурок
Еженедельный призовой фонд 100 000 Р
Спикер: Анна Быкова (#лениваямама)
-
09.10.2019 127
-
06.10.2019 179
-
03.10.2019 82
-
02.10.2019 61
-
25.09.2019 249
-
21.09.2019 486
-
20.09.2019 180
-
20.09.2019 132
Не нашли то что искали?
Вам будут интересны эти курсы:
Прокариоты
Все живые организмы, имеющие клеточное строение, делятся на две большие группы: прокариоты и эукариоты (Рис. 1).
Рис. 1. Разделение живых организмов (Источник)
Древнейшие на Земле организмы, не имеющие клеточного ядра, появившиеся около четырех миллиардов лет тому назад, называются прокариотами, то есть доядерными. В настоящее время они тоже распространены, обитают в воде, почве, воздухе, на покровах животных и растений, а также внутри них. Прокариоты освоили экстремальные места обитания (Рис. 2): горячие источники (они выживают и живут при температуре 70 0 и выше), моря и соленые озера (галобактерии живут при солености около 30 %).
Рис. 2. Места обитания прокариот (Источник)
Форма бактерий чрезвычайно разнообразна: шаровидная, палочковидная и изогнутая (Рис. 3).
Рис. 3. Формы бактерий (Источник)
Размеры клеток большинства прокариот – от 0,2 до 10 микрометров, встречаются и карлики (нанобактерии и микоплазмы), размер которых – от 0,05 до 0,1 микрометра. Кроме этого, существуют и гиганты (макромонусы) с размерами до 10 микрометров. Средний размер клетки бактерии – около 1 микрометра. Размеры прокариот меньше размеров эукариот.
Строение прокариотической клетки
По сравнению с эукариотической, клетка прокариот выглядит гораздо проще (Рис. 4).
Рис. 4. Клетка прокариот и эукариот (Источник)
У прокариот нет ядра, единственная кольцевая молекула ДНК, находящаяся в клетках прокариот и условно называемая бактериальной хромосомой, находится в центре клетки, однако эта молекула ДНК не имеет оболочки и располагается непосредственно в цитоплазме.
Рассмотрим строение прокариотической клетки (Рис. 5).
Рис. 5. Строение прокариотической клетки (Источник)
Снаружи клетки прокариот, так же как и эукариотические клетки, покрыты плазматической мембраной. Строение мембран у двух этих групп организмов одинаковое. Клеточная мембрана прокариот образует многочисленные впячивания внутрь клетки – мезосомы. На них располагаются ферменты, обеспечивающие реакции обмена веществ в прокариотической клетке. Поверх плазматической мембраны клетки прокариот покрыты оболочкой, состоящей из углеводов, напоминающей клеточную стенку растительных клеток. Однако эта стенка образована не клетчаткой, как у растений, а другими полисахаридами – пектином и муреином. В цитоплазме прокариотических клеток нет мембранных органоидов: митохондрий, пластидов, ЭПС, комплекса Гольджи, лизосом. Их функции выполняют складки и впячивания наружной мембраны – мезосомы. В цитоплазме прокариот беспорядочно располагаются мелкие рибосомы. Цитоскелета в прокариотических клетках тоже нет, но иногда встречаются жгутики, которые способствуют передвижению бактерий. На поверхности бактериальной клетки находятся пили – белковые нити, с помощью которых бактерии присоединяются к субстрату или поверхности. Половые пили служат для обмена генетического материала между различными бактериями.
Фотосинтезирующие бактерии – цианобактерии, имеют в клетках фотосинтезирующие мембраны или тилакоиды, в которых содержатся пигменты, участвующие в процессе фотосинтеза (Рис. 6), такие как хлорофилл.
Рис. 6. Цианобактерия (Источник)
На тилакоидах содержатся пигменты, являющиеся вспомогательными при процессе фотосинтеза – фикобилины: аллофикоцианин, фикоэритрин и фикоцианин. Фикобилины образуют прочные соединения с белками (фикобилинпротеиды). Связь между фикобилинами и белками разрушается только кислотой.
В клетках прокариот откладываются и запасные питательные вещества, отложение или запас происходит в результате избытка питательных веществ, а потребление при недостатке питательных веществ. К запасным питательным веществам относятся полисахариды (крахмал, гликоген, гранулеза), липиды (гранулы или капли жира), полифосфаты (источник фосфора и энергии).
Большинство эукариот являются аэробами, то есть используют в энергетическом обмене кислород воздуха. Напротив, многие прокариоты являются анаэробами, и кислород для них вреден. Некоторые бактерии, называемые азотфиксирующими, способны усваивать азот воздуха, чего эукариоты делать не могут. Те виды прокариот, которые получают энергию благодаря фотосинтезу, содержат особую разновидность хлорофилла, который может располагаться на мезосомах.
В неблагоприятных условиях (холод, жара, засуха) многие бактерии образуют споры. При спорообразовании вокруг бактериальной хромосомы образуется особая плотная оболочка, а остальное содержимое клетки отмирает. Спора может десятилетиями находиться в неактивном состоянии, а в благоприятных условиях из нее снова прорастает активная бактерия (Рис. 7).
Рис. 7. Схема образования спор у бактерий (Источник)
Размножение прокариот
Чаще всего прокариоты размножаются бесполым путем: ДНК удваивается, и далее клетка делится в поперечной плоскости пополам (Рис. 8). В благоприятных условиях бактерии способны делиться каждые 20 минут; при этом потомство от одной клетки через трое суток теоретически имело бы массу 7500 тонн! К счастью, таких условий в принципе быть не может.
Рис. 8. Размножение прокариот (Источник)
Половое размножение у прокариот наблюдается гораздо реже, чем бесполое, однако оно очень важно, так как при обмене генетической информацией бактерии передают друг другу устойчивость к неблагоприятным воздействиям (например, к лекарствам). При половом процессе бактерии могут обмениваться как участками бактериальной хромосомы, так и особыми маленькими кольцевыми двуцепочечными молекулами ДНК – плазмидами. Обмен может происходить через цитоплазматический мостик между двумя бактериями или с помощью вирусов, усваивающих участки ДНК одной бактерии и переносящих их в другие бактериальные клетки, которые они заражают.
Заключение
Мы рассмотрели прокариотическую клетку, которая организована достаточно просто по сравнению с эукариотической клеткой, основным отличием которой является отсутствие оформленного ядра, кольцевая молекула ДНК располагается в цитоплазме свободно и не окружена ядерной оболочкой. В прокариотической клетке нет мембранных органелл, которые свойственны эукариотическим клеткам.
Список литературы
- Беляев Д.К. Общая биология. Базовый уровень. – 11 издание, стереотипное. – М.: Просвещение, 2012.
- Пасечник В.В., Каменский А.А., Криксунов Е.А. Общая биология, 10-11 класс. – М.: Дрофа, 2005.
- Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Домашнее задание
- Каково основное различие между прокариотическими и эукариотическими клетками?
- Что такое бактериальная хромосома?
- Как происходит половое размножение прокариот?
Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.
Читайте также: