Регуляция активности генов у вирусов
Экспрессия генов — это реализация заложенной в них информации, то есть синтез РНК и белков. Другими словами, под экспрессией генов понимают их активность.
В клетках живых организмов экспрессия генов регулируется: одни гены могут быть реализованы, другие — нет. Причем регуляция может осуществляться на разных этапах: может выполняться или нет транскрипция, из пре-мРНК в результате альтернативного сплайсинга могут образовываться разные мРНК, может блокироваться трансляция и др.
У эукариот, обладающих отграниченным от цитоплазмы ядерным содержимым и более сложным геномом, регуляция экспрессии генов намного разнообразнее и сложнее, чем у прокариот.
Регуляция экспрессии генов у прокариот
У прокариот пока молекула РНК синтезируется на участке ДНК, она тут же может транслироваться (начиная с уже синтезированного конца). Поэтому у них регуляция экспрессии (активности) генов осуществляется почти исключительно на уровне ДНК, так как в РНК часто невозможно внести какие-нибудь изменения до ее трансляции.
В 1961 г. Жакобом и Моно была предложена модель оперона как системы регуляции генов у бактерий. Оперон состоит из промотора, оператора, структурных генов оперона (их может быть разное количество) и терминатора. В области промотора прикрепляется фермент РНК-полимераза. В области оператора присоединяется белок-репрессор, который кодируется отдельно отстоящим от оперона геном-регулятором (может быть сцеплен со своим опероном, а может находиться на расстоянии).
Если белок-репрессор соединяется с оператором, то транскрипция всех структурных генов оперона становится невозможной, так как РНК-полимераза не может перемещаться по цепи ДНК.
В свою очередь активность белка-репрессора может блокироваться определенным для него низкомолекулярным соединением — индуктором (тем или иным питательным веществом бактерий). В результате взаимодействия с индуктором белок-репрессор видоизменяется и уже не может присоединиться к оператору своего оперона. В этом случае гены оперона экспрессируются (т. е. на них идет синтез).
Бывает обратная ситуация, когда индуктор активирует белок-репрессор.
Таким образом, в зависимости от того, какие индукторы находятся в цитоплазме, у прокариот экспрессируются те или иные генные группы.
Вышеописанный механизм экспрессии генов относится к негативной регуляции, так как гены транскрибируются, если они не выключены репрессором. И наоборот: не транскрибируются, если выключены.
Кроме негативной регуляции у бактерий существует также позитивная. В этом случае вместо белка-репрессора действие оказывает белок-активатор. На эти белки также действуют индукторы, активируя или инактивируя их.
Также у прокариот были выявлены опероны, которые актируются двумя регуляторными белками, соединенными друг с другом.
Регуляция экспрессии генов у эукариот
У многоклеточных организмов в клетках разных тканей экспрессируются разные гены, т. е. для эукариот характерна дифференциальная экспрессия.
У эукариот, также как и у прокариот, существуют регуляторные белки с похожим механизмом действия. При этом для эукариот не характерна регуляция по типу оперона. Цистроны (транскрибируемые участки) эукариот обычно содержат по одному гену. (Это не касается геномов хлоропластов и митохондрий.)
Кроме регуляторных белков, взаимодействующих с ДНК, у эукариот существуют и другие способы регуляции экспрессии генов.
Конденсация и деконденсация хроматина. Это наиболее универсальный метод регуляции транскрипции. Когда нужно экспрессировать определенные гены, хроматин в этом месте деконденсируется.
Альтернативные промоторы. У гена может быть несколько промоторов, каждый из которых начинает транскрипцию с разных его экзонов в зависимости от типа клетки. В конечном итоге будут синтезированы разные белки.
Метилирование и деметилирование ДНК. Метилирование ДНК происходит в регуляторных областях гена. Метилируется цитозин в последовательности ЦГ, после чего ген инактивируется. При деметилировании активность гена восстанавливается. Процесс регулируется ферментом метилтрансферазой.
Гормональная регуляция. При гормональной регуляции гены активируются в ответ на внешний химический сигнал (поступление в клетку определенного гормона). Этот гормон запускает те гены, которые имеют специфические последовательности нуклеотидов в регуляторных областях.
Геномный импринтинг. Это малоизученный способ регуляции экспрессии генов у эукариот. Он возможен только у диплоидных организмов и выражается в том, что активность генов зависит, от какого из родителей они были получены. Выключение генов осуществляется путем метилирования ДНК.
Альтернативный сплайсинг. Это регуляция на уровне процессинга. При альтернативном сплайсинге порядок сшивки экзонов может быть различным. Отсюда следует, что на основе одной и той же нуклеотидной последовательности ДНК могут быть синтезированы разные белки. Хотя их отличие друг от друга будет в основном заключаться лишь в разных сочетаниях одних и тех же аминокислот.
Тканеспецифическое редактирование РНК также протекает на уровне процессинга. Выражается в замене отдельных нуклеотидов в РНК в определенных тканях организма.
Кроме того, у эукариот иРНК часто не подвергается процессингу вообще (а распадается) или подвергается с задержкой. Это токже можно рассматривать как способ регуляции экспрессии генов.
Посттрансляционная модификация белка. Чтобы молекула полипептида превратилась в активную молекулу белка, в ней должны произойти различные модификации определенных аминокислот, должны быть сформированы вторичная, третичная и возможно четверичная структуры. На этом этапе также можно повлиять на реализацию генетической информации, например, не дав молекуле сформироваться.
Риборегуляторы. Были обнаружены РНК, выполняющие регуляторные функции путем ослабления работы отдельных генов.
Для высокоорганизованных животных отмечается существование надклеточного уровня регуляции экспрессии генов.
Все клетки любого, организма, какие бы функции они ни выполняли, имеют полный набор свойственных данному организму генов. Вместе с тем хорошо известно, что у любого организма клетки разных тканей и органов отличаются по набору имеющихся в них белков. Даже в одной клетке на разных стадиях ее развития синтезируются и функционируют разные белки. Следовательно, располагая полной генетической информацией, каждая клетка на определенном этапе развития использует лишь ту ее часть, которая необходима в настоящий момент, транскрибируются только те гены, продукты которых нужны клетке в данный момент для отправления ее функций. Следовательно, клетка должна располагать механизмами, определяющими, какие гены и в какой последовательности должны транскрибироваться. Наиболее полно регуляция генной активности изучена на примерах адаптивного синтеза ферментов у микроорганизмов. Рассмотрим некоторые из них.
В зависимости от условий количество определенного фермента в бактериальной клетке может существенно изменяться. Некоторые ферменты, необходимые бактерии для усвоения определенных питательных веществ, активно синтезируются в клетке только тогда, когда эти вещества присутствуют в культурной среде, и синтез их прекращается, если каким-либо образом они удаляются из среды. Такой тип регуляции
синтеза фермента называется индукцией, а вещество, вызывающее этот синтез, — индуктором. Один из наиболее наглядных примеров данного типа регуляции — лактозный оперон кишечной палочки — группа генов, контролирующая синтез ферментов, осуществляющих катаболизм молочного сахара — лактозы. Буквально через несколько минут после добавления в питательную среду для кишечной палочки лактозы бактерии начинают вырабатывать три фермента: галактозидпермеазу, бета-галактозидазу и галактозидтрансацетилазу. Как только ресурсы лактозы в среде исчерпываются, синтез ферментов сразу же прекращается.
Приведенный пример станет более понятным при рассмотрении схемы работы лактозного оперона (рис. 81), изучение которого позволило французским ученым Ф. Жакобу и Ж. Моно разработать собственно концепцию оперона и выяснить основные принципы регуляции транскрипции у прокариотов. Начинается оперон с участка A , предназначенного для присоединения некоего белка-активатора, в свою очередь необходимого для присоединения к следующему за участком А промотору (П) РНК-полимеразы. За промотором, последовательность нуклеотидов которого узнаётся РНК-полимеразой, следует оператор (О), играющий важную роль в транскрипции генов оперона, так как с ним связывается регуляторный белок-репрессор. За оператором следуют структурные гены для трех упомянутых ранее ферментов. Заканчивается оперон терминатором, прекращающим продвижение РНК-полимеразы и транскрипцию оперона. Регуляторный белок-репрессор.
В незначительном количестве синтезируется в клетке постоянно, так что в цитоплазме одновременно присутствует не более 10 его молекул. Этот белок обладает сродством к последовательности нуклеотидов в области оператора, и таким же сродством к лактозе. В отсутствие лактозы белок-репрёссор связывается с операторным участком и препятствует продвижению по ДНК РНК-полимеразы: не синтезируется мРНК, не синтезируются и ферменты. После добавления в среду лактозы белок-репрессор связывается с нею быстрее, чем с операторным участком: последний остается свободным и не препятствует продвижению РНК-полимеразы. Идет транскрипция и трансляция. Синтезирующиеся ферменты осуществляют транспорт в клетку и расщепление лактозы. После того как вся лактоза будет израсходована, нечем станет связывать белок-реп рессор и он снова свяжется с оператором, прекратив транскрипцию оперона. Таким образом, индукция оперона вызывается тем, что регуляторный белок не прикрепляется к оператору. Такой тип индукции называется негативным.
Другой известный тип индукции — позитивная индукция. Она свойственна другому оперену кишечной палочки, кодирующему ферменты катаболизма другого сахара — арабинозы. Этот оперон структурно очень похож на предыдущий. Разница в регуляции состоит в том, что добавленная в среду арабиноза взаимодействует с белком-репрессором и, освобождая операторный участок, одновременно превращает белок-репрессор в белок-активатор, способствующий присоединению РНК-полимеразы к промотору. В этих условиях транскрипция имеет место. Как только запасы арабинозы в среде исчерпываются, синтезирующийся белок-реп рессор опять связывается с оператором, выключая транскрипцию.
Кроме индукции, известны также два типа (негативный и позитивный) регуляции по принципу репрессии. Если при негативной индукции эффектор (индуктор) препятствует присоединению белка-репрессора к оператору, то при негативной репрессии, наоборот, эффектор придает регуляторному белку способность присоединяться к оператору. Если в первом случае соединение эффектора с белком-регулятором разрешало транскрипцию, то во втором оно запрещает ее. Примером негативной репрессии может служить хорошо изученный триптофановый оперон кишечной палочки. В его состав входят пять структурных генов, обеспечивающих синтез аминокислоты триптофана, оператор и два промотора. Белок-регулятор синтезируется вне триптофанового оперона. Пока клетка успевает расходовать весь синтезирующийся триптофан, оперон работает, синтез триптофана продолжается. Если же в клетке появляется избыток триптофана, он соединяется с регуляторным белком и изменяет его таким образом, что этот белок приобретает сродство с оператором. Измененный белок-регулятор взаимодействует с оператором и препятствует транскрипции структурных генов, вследствие чего синтез триптофана прекращается. При позитивной репрессии эффектор лишает регуляторный белок способности связываться с оператором, обусловливая, таким образом, транскрипцию структурных генов.
Конечно, принцип каскадной регуляции у фагов относится к наиболее простым. У более сложно организованных организмов для осуществления большого количества функций, происходящих одновременно или с определенной последовательностью, необходима согласованная работа многих генов и оперонов. Особенно это касается эукариотов, отличающихся не только более сложной организацией генома, но и многими другими особенностями механизмов регуляции генной активности.
По принципам регуляции гены эукариотов можно условно разделить на три группы: 1) функционирующие во всех клетках организма; 2) функционирующие только в тканях одного типа; 3) обеспечивающие выполнение специализированными клетками конкретных функций. Кроме того, у эукариотов известно одновременное групповое выключение генной активности, осуществляемое гистонами — основными белками, входящими в состав хромосом. Еще одним существенным отличием транскрипции у эукариотов является то, что многие мРНК длительное время сохраняются в клетке в виде особых частиц— информосом, в то время как мРНК прокариотов практически еще в процессе транскрипции поступают в рибосомы, транслируются, после чего быстро разрушаются.
Вместе с тем имеется много данных, указывающие, что транскрипция у эукариотов осуществляется с участков, подобных оперонам прокариотов и состоящих из регуляторных и структурных генов. Отличительной особенностью оперонов эукариотов является то, что почти всегда они содержат только структурный ген, а гены, контролирующие различные этапы определенной цепи метаболических превращений, разбросаны по хромосоме и даже по разным хромосомам. Другой отличительной чертой оперонов эукариотов является то, что они состоят из значащих (экзонов) и незначащих (интронов) участков, чередующихся друг с другом. При транскрипции считываются как экзоны, так и интроны, а образующийся при этом предшественник информационного РНК (про-мРНК) затем претерпевает созревание (процессинг), в результате которого происходит вызревание интроиов и образование собственно мРНК (сплайсинг),
У эукариотов известны и другие типы регуляции активности генов, такие как эффект положения или дозовая компенсация. В первом случае речь идет об изменении генной активности в зависимости от конкретного окружения: перемещение гена из одного места хромосомы в другое может приводить к изменению активности как этого гена, так и близлежащих. Во втором случае нехватка одной дозы какого-либо гена (в первую очередь это относится к генам, локализованным в половых хромосомах гетерогаметного пола, когда одна из гомологичных половых хромосом либо генетически инертна, либо полностью отсутствует) фенотипически не проявляется за счет компенсаторного увеличения активности оставшегося гена. В целом же регуляция активности генов у эукариотов изучена недостаточно.
Богданова, Т.Л. Справочник по биологии/ Т.Л. Богданова [и д.р.]. – К.: Наукова думка, 1985.- 585 с.
Биология, 10 класс
3. Перечень вопросов, рассматриваемых в теме;
Урок посвящен знакомству с механизмами транскрипции и трансляции в клетках эукариот и прокариот. Вы узнаете о современных направлениях молекулярной биологии – генной и клеточной инженерии. А так же познакомитесь с вирусами – неклеточной форме жизни.
4. Глоссарий по теме (перечень терминов и понятий, введенных на данном уроке);
оператор - участок ДНК между промотором и структурными генами в опероне располагается;
репрессор - связан особый белок связанный с оператором при этом РНК-полимераза не может начать синтез иРНК.
Оперон – это группа генов (т.е. участок ДНК), работа которых контролируется одним геном-регулятором. Единица считывания информации у прокариот.
Ген-регулятор – это ген, находящийся обычно на некотором расстоянии от оперона (т.е. он не входит в организацию оперона), постоянно активен и на основе его информации синтезируется особый белок-репрессор
Бактериофаг - вирус, инфицирующий бактерии.
Вирион - вирусная частица.
Капсид - белковая оболочка вирусной частицы.
Клонирование - совокупность процедур, использующихся для получения клонов.
Ретровирусы - группа РНК-содержащих вирусов, содержащих обратную транскриптазу; синтезированная на РНК-матрице двухцепочечная ДНК может встраиваться в хромосому инфицированной этим вирусом клетки.
Генная инженерия – (Gene engineering) – совокупность приемов, методов и технологий, в том числе технологий получения рекомбинантных рибонуклеиновых и дезоксирибонуклеиновых кислот, по выделению единичных или нескольких генов из организма, осуществлению манипуляций с генами и введению их в другие организмы.
Клеточная инженерия – это один из основных разделов современной биотехнологии, основанный на выделении и культивировании тканей и клеток высших многоклеточных организмов
Биотехноло́гия — интеграция естественных и инженерных наук, позволяющая наиболее полно реализовать возможности живых организмов или их производные для создания и модификации продуктов или процессов различного назначения
5. Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц);
1. Общая биология 10-11, дидактические материалы/ авт.-сост С.С. Красновидова, С. А. Павлов, А. Б. Павлов, - М. Просвещение, 2000г., стр.6-42
2. Общая биология 10-11 классы: подготовка к ЕГЭ. Контрольные и самостоятельные работы/ Г. И. Лернер. – М.: Эксмо, 2007.стр 35-45
3. Биология: общая биология. 10-11 классы: учебник/ А. А. Каменский, Е. А. Криксунов, В. В. Пасечник.- М.: Дрофа, 2018. Стр.55-68
6. Открытые электронные ресурсы по теме урока (при наличии);
7. теоретический материал для самостоятельного изучения;
Ген – это фрагмент молекулы ДНК, содержащий регуляторные элементы и структурную область, и соответствующий одной единице транскрипции, которая определяет возможность синтеза полипептидной цепи или молекулы РНК.
Ген прокариот называется опероном, в его состав входят два основных участка:
- регуляторный (неинформативный),
- структурный (информативный).
У прокариот на долю регуляторных элементов приходится около 10 %, структурных – 90 %.
Структурная область генов прокариот (единица транскрипции) может быть представлена одним кодирующим участком, который называется цистроном, либо несколькими кодирующими участками (полицистронная единица транскрипции). В структурной зоне закодирована информация о последовательности аминокислот в виде генетического кода. Со структурной области считывается мРНК. При наличии у прокариот полицистронной единицы транскрипции на одном структурном участке одновременно может синтезироваться несколько разновидностей мРНК.
К регуляторным элементам генов прокариот относятся участки, управляющие работой гена:
Промотор определяет начало транскрипции (участок инициации). С промотором соединяется фермент РНК-полимераза, осуществляющий синтез мРНК. Другой элемент, управляющий процессом транскрипции, – оператор, который располагается поблизости от промотора или внутри него. Этот участок может быть свободным, тогда РНК-полимераза соединяется с промотором и начинается транскрипция. Если оператор связан с белком-репрессором, РНК-полимераза не может нормально соединиться с промотором, и транскрипция невозможна. Следующий регуляторный элемент – терминатор – находится за структурной областью и содержит сигнальный участок остановки транскрипции.
Механизм функционирования системы регуляции синтеза белка был открыт в 1962 году Жакобом и Моно при исследовании культивирования кишечной палочки в лактозной среде и назван lac-опероном.
Упрощенно этот механизм может быть описан следующим образом. На основе информации гена-регулятора синтезируется белок-репрессор; если он активный, он связывается с геном-оператором, перекрывая путь для РНК-полимеразы – процесс трансляции и последующего синтеза белка выключается (запрещается). Если появляется индуктор (например, лактоза в lac-опероне), он присоединяется с белку-репрессору, приводя его в неактивное состояние. Оператор становится активным и включает процесс считывания информации со структурных генов – разрешает трансляцию. Происходит считывание информации с ДНК, начинается синтез необходимого белка – фермента (например, β-галактозидазы в lac-опероне).
Это только один из возможных механизмов, который называется запрещающей индукцией. Существуют и другие механизмы регуляции синтеза белка: разрешающая индукция, разрешающая и запрещающая репрессия, в которых принимают участие апоиндукторы и корепрессоры.
Строение генов у эукариот намного сложнее. Генетическая система эукариот называется транскриптоном. Транскриптон также состоит из двух частей:
- регуляторной (неинформативной),
- структурной (информативной),
относительная пропорция которых противоположна генам прокариот: на долю регуляторного участка приходится 90 %, структурного – 10 %.
Регуляторный участок представляет собой ряд последовательно расположенных промоторов и операторов и несколько терминаторов. Структурный участок состоит из одной единицы транскрипции и имеет “прерывистое” строение: кодирующие участки (экзоны) чередуются с некодирующими (интронами). Одномоментно на структурном участке у эукариот может синтезироваться только одна молекула мРНК, однако благодаря наличию альтернативного сплайсинга в разнос время (в зависимости от потребности клетки) на одной и той же структурной части могут синтезироваться разные виды мРНК (от одной до нескольких десятков).
Вирус (от лат. virus — яд) — простейшая форма жизни, микроскопическая частица, представляющая собой молекулы нуклеиновых кислот (ДНК или РНК, некоторые, например, мимивирусы, имеют оба типа молекул), заключённые в белковую оболочку и способные инфицировать живые организмы. От других инфекционных агентов вирусы отличает капсид. Вирусы, за редким исключением, содержат только один тип нуклеиновой кислоты: либо ДНК, либо РНК.
Вирусы являются паразитами, так как вирусы не способны размножаться вне клетки. Вне клетки вирусные частицы ведут себя как химические вещества. В настоящее время известны вирусы, размножающиеся в клетках растений, животных, грибов и бактерий (последних обычно называют бактериофагами). Обнаружены также вирусы, поражающие другие вирусы (вирусы-сателлиты).
В наше время существуют три гипотезы происхождения вирусов. виды вирусов в биологии Гипотеза клеточного происхождения сообщает о том, что внеклеточные агенты появились из фрагментов РНК и ДКН, которые смогли высвободиться от организма большего размера. Регрессивная гипотеза показывает, что вирусы были мелкими клетками, ведущими паразитический образ жизни в более крупных видах, но со временем утратили гены, которые нужны для паразитического существования. Гипотеза коэволюции предполагает, что вирусы возникли в то же время, в которое появились живые клетки, то есть уже миллиарды лет назад. И появились в результате построения сложных комплексов нуклеиновых кислот и белков. Кратко о вирусах (по биологии этих организмов база знаний наша, к сожалению, далека от совершенства) вы можете прочитать в данной статье. Каждая из перечисленных выше теорий имеет свои минусы и недоказанные гипотезы. Вирусы как форма жизни. Существует два определения формы жизни вирусов. Согласно первому, внеклеточные агенты - это комплекс органических молекул. Второе определение сообщает о том, что вирусы являются особой формой жизни. Вирусы (биология подразумевает появление многих новых видов вирусов) характеризуются как организмы на границе живого. Они похожи на живые клетки тем, что имеют свой неповторимый набор генов и эволюционируют исходя из метода естественного отбора. Также они могут размножаться, создавая при этом собственные копии. Так как вирусы не имеют клеточного строения, ученые не рассматривают их как живую материю. молекулярная биология вирусов Для того чтобы синтезировать собственные молекулы, внеклеточным агентам нужна клетка-хозяин. Отсутствие собственного обмена веществ не позволяет им размножаться без посторонней помощи.
Цикл вируса состоит из нескольких этапов, которые являются взаимоперекрывающимися. На первом этапе вирус прикрепляется, то есть образовывает специфическую связь между своими белками и рецепторами клетки-хозяина. Далее нужно проникнуть в саму клетку и передать ей свой генетический материал. Некоторые виды переносят еще и белки. После этого происходит потеря капсида, и геномная нуклеиновая кислота высвобождается. После того как паразит попадает внутрь клетки, начинается сборка вирусных частиц и модификация белка. И в итоге вирус выходит из клетки. Даже если он продолжает активно развиваться, то может и не убивать клетку, а продолжать в ней жить. Заболевания человека Вирусы биология интерпретирует как низшее проявление жизни на планете Земля. Одним из самых простых вирусных заболеваний человека является простуда. Однако данные паразиты могут вызывать и очень серьезные заболевания, такие как СПИД или птичий грипп. вирусы и бактерии биология Каждый вирус имеет определенный механизм действия на своего хозяина. Этот процесс включает лизис клеток, который приводит к их смерти. У многоклеточных организмов при отмирании большого количества клеток начинает плохо функционировать весь организм. Во многих случаях вирусы могут и не наносить вреда человеческому здоровью. В медицине это называется латентностью. Примером такого вируса является герпес. Некоторые латентные виды способны приносить пользу. Порой их присутствие вызывает иммунный ответ против бактериальных патогенов.
8. примеры и разбор решения заданий тренировочного модуля (не менее 2 заданий).
Используя конспект урока, найдите и выделите цветом по вертикали и горизонтали в филворде основные понятия втранскрипции и трансляции у прокариот. (надписи на рисунке убрать)
Правильный вариант: репрессор, оперон, субстрат, оператор, промотор.
Вставьте пропущенные слова.
Регуляция генной активности у высших организмов сложнее, чем у _____. У эукариот эти процессы регулируют ________. Они образуются в специальных клетках ______ внутренней секреции. Они регулируют синтез _______ в специальных клетках – мишенях.
Тип вариантов ответов: (Текстовые,Графические, Комбинированные):
Регуляция генной активности у высших организмов сложнее, чем у бактерий. У эукариот эти процессы регулируют гормоны. Они образуются в специальных клетках желёз внутренней секреции. Они регулируют синтез РНК в специальных клетках – мишенях.
Подсказка: Еще раз посмотрите как происходит регуляция транскрипции у эукариот..
Регуляция активности генов у прокариот В процессе синтеза катаболических ферментов (расщепляющих суб-страты) у прокариот происходит индуцируемый синтез ферментов. Это дает клетке возможность приспосабливаться к условиям окружающей среды и экономить энергию, прекращая синтез соответствующего фермента, если потребность в нем исчезает. Для индукции синтеза катаболических ферментов обязательны следующие условия:
1. Фермент синтезируется только тогда, когда расщепление соответствующего субстрата необходимо для клетки.
2. Концентрация субстрата в среде должна превысить определенный уровень, прежде чем соответствующий фермент сможет образоваться.
Наиболее хорошо изучен механизм регуляции экспрессии генов у кишечной палочки на примере lac-оперона, контролирующего синтез трех катаболических ферментов, расщепляющих лактозу. Если в клетке много глюкозы и мало лактозы, промотор остается неактивным, а на операторе находится белок репрессор - блокируется транскрипция lac-оперона.
Когда количество глюкозы в среде, а следовательно и в клетке, уменьшается, а лактозы увеличивается, происходят следующие события: количество циклического аденозинмонофосфата увеличивается, он связывается с САР -белком - этот комплекс активирует промотор, с которым соединяется РНК-полимераза ; в это же время избыток лактозы соединяется с белком-репрессором и освобождает от него оператор - путь для РНК-полимеразы открыт, начинается транскрипция структурных генов lac -оперона. Лактоза выступает в качестве индуктора синтеза тех ферментов, которые её расщепляют. Лактозный оперон будет находиться в состоянии экспрессии до тех пор, пока в клетке уровень индуктора - лактозы не будет доведен до определенного уровня, характерного для данной клетки (принцип обратной связи). Тогда белок репрессор освободится от лактозы, займет свое место на операторе и транскрипция оперона прекратится.
Такая регуляция синтеза катаболических ферментов получила название негативной индукции, т.к. сам белок репрессор осуществляет негативный контроль за работой оперона (его присутствие на операторе выключает транскрипцию), а снимается блок транскрипции благодаря индуктору, который инактивирует белок репрессор. В настоящее время изучена работа многих оперонов, в том числе и оперонов анаболического ряда. Примером такого оперона у кишечной палочки может быть триптофановый оперон, контролирующий синтез пяти ферментов, необходимых для образования аминокислоты триптофана. Для триптофанового оперона синтезируется неактивный репрессор, который активируется лишь под действием корепрессора (триптофана). Здесь наблюдается особая форма ингибирования конечным продуктом: оперон становится активным в случае недостатка триптофана в среде, а высокое содержание в среде данной аминокислоты подавляет выработку фермента, необходимого для синтеза триптофана, т.к. избыток триптофана активирует белок репрессор, который соединяется с оператором и транскрипция прекращается- оперон репрессируется. Такая система регуляции называется негативной репрессией. Она позволяет не синтезировать вещество в избытке .Особенности регуляции экспрессии генов у эукариот Регуляция экспрессии генов у эукариот протекает намного сложнее. Различные типы клеток многоклеточного эукариотического организма синтезируют ряд одинаковых белков и в то же время они отличаются друг от друга набором белков, специфичных для клеток данного типа. Уровень продукции зависит от типа клеток, а также от стадии развития организма. Регуляция экспрессии генов осуществляется на уровне клетки и на уровне организма.Гены эукариотических клеток делятся на два основных вида: первый определяет универсальность клеточных функций, второй – детерминирует (определяет) специализированные клеточные функции. Функции генов первой группы проявляются во всех клетках. Для осуществления дифференцированных функций специализированные клетки должны экспрессировать определенный набор генов.Хромосомы, гены и опероны эукариотических клеток имеют ряд структурно-функциональных особенностей, что объясняет сложность экспрессии генов.
1. Опероны эукариотических клеток имеют несколько генов - регуляторов, которые могут располагаться в разных хромосомах.
2. Структурные гены, контролирующие синтез ферментов одного биохимического процесса, могут быть сосредоточены в нескольких оперонах, расположенных не только в одной молекуле ДНК, но и в нескольких.
3. Сложная последовательность молекулы ДНК. Имеются информативные и неинформативные участки, уникальные и многократно повторяющиеся информативные последовательности нуклеотидов.
4. Эукариотические гены состоят из экзонов и интронов, причем созревание и-РНК сопровождается вырезанием интронов из соответствующих первичных РНК-транскриптов (про-и-РНК), т.е. сплайсингом.
5. Процесс транскрипции генов зависит от состояния хроматина. Локальная компактизация ДНК полностью блокирует синтез РНК.
6. Транскрипция в эукариотических клетках не всегда сопряжена с трансляцией. Синтезированная и-РНК может длительное время сохраняться в виде информосом. Транскрипция и трансляция происходят в разных компартментах.
7. Некоторые гены эукариот имеют непостоянную локализацию (лабильные гены или транспозоны).
8. Методы молекулярной биологии выявили тормозящее действие белков-гистонов на синтез и-РНК.
9. В процессе развития и дифференцировки органов активность генов зависит от гормонов, циркулирующих в организме и вызывающих специфические реакции в определенных клетках. У млекопитающих важное значение имеет действие половых гормонов.
10. У эукариот на каждом этапе онтогенеза экспрессировано 5-10% генов, остальные должны быть заблокированы.
Читайте также: