Вакцина против вируса почему ее трудно изготовить
С момента открытия возбудителя заболевания до создания вакцины могут проходить десятки лет. Например, вакцину от оспы человечество искало сообща в течение веков, а на создание препарата от полиомиелита у ученых ушло около 40 лет. Любая новая болезнь неизвестной природы требует почти детективного расследования: нужно установить очаг инфекции, отыскать нулевого пациента (человека, который заразился первым и стал точкой отсчета эпидемии), найти возбудителя в природе, провести диагностику, изучить механизмы патогенеза заболевания и защиты организма, оценить естественный приобретенный иммунитет у больных.
Только после этого начинается работа над вакциной. Специалисты перебирают массу вариантов, прежде чем найдут действующее средство, затем проводят тестирование на безопасность, апробируют на животных (мышах, макаках и др.) и оценивают иммунный ответ организма, затем получают разрешение от регулирующего государственного органа и только тогда начинают испытания на добровольцах.
За первыми вакцинированными людьми необходимо наблюдать в течение длительного времени — по крайней мере год, ведь специалистам нужно убедиться, что вакцина работает и действительно защищает от болезни.
С коронавирусом SARS-CoV-2 (тяжелый острый респираторный синдром коронавируса-2), который вызывает заболевание под названием COVID-19, мир столкнулся впервые в декабре 2019 года, и, как только китайские ученые расшифровали его геном, закипела работа во всех лабораториях мира. Когда вакцина будет готова, она, как и любое новое лекарство, должна будет пройти процедуру государственной регистрации и только после этого наконец поступит к людям.
Россия на пути к вакцине
Новый метод защиты от COVID-19 объясняет заведующая кафедрой вирусологии биофака МГУ Ольга Карпова:
Специалисты из МГУ начали работать с вирусом табачной мозаики еще в 2010 году, а теперь в связи с пандемией коронавируса COVID-19 вернулись к своим наработкам и осознали, что нашли универсальное средство, которое может защитить человечество и от прошлых, и от будущих эпидемий коронавируса. Они обещают разработать дешевый прототип вакцины за три месяца при необходимом финансировании.
Гонка противовирусных вооружений
Поиск кандидатов для вакцинации от коронавируса ведется онлайн: жителям Сиэтла обещают $100 за каждый визит, то есть по итогам программы они получат в сумме $1100 каждый. В ходе эксперимента на 45 добровольцах от 18 до 55 лет ученые проверят препарат на безопасность и эффективность и определят правильную дозировку. Участникам сделают две инъекции с интервалом в 28 дней, дозировка в разных группах будет разной: 25, 100 и 150 мкг. Наблюдения за первыми испытателями вакцин будут вестись в течение года, но само тестирование займет около шести недель. По итогам этих испытаний ученые смогут выяснить, способна ли данная вакцина индуцировать достаточный иммунный ответ человеческого организма на коронавирус и, главное, сможет ли остановить пандемию или будет уже слишком поздно?
В середине марта директор института Энтони Фаучи заявил:
От генетического секвенирования вируса до первой инъекции опытной вакцины человеку прошло всего 66 дней, и это действительно рекорд. Обычно создание вакцин от новых болезней занимает больше времени, но в данном случае ученые уже были в курсе, как коронавирусы поражают человека, основываясь на предыдущих эпидемиях. Острый респираторный синдром (SARS), бушевавший в Китае в 2003 году, и ближневосточный респираторный синдром (MERS), который распространялся по миру в 2015 году, были вызваны родственными коронавирусами и дали ученым необходимые знания для создания противоядия в виде вакцины. Дело в том, что все коронавирусы имеют сферическую форму и шипы, выступающие над поверхностью. Именно за счет этих наростов, состоящих из так называемого спайкового белка, вирус легко прикрепляется и проникает внутрь клеток человека.
Китай и другие
В Китае разработано уже восемь вакцин, и некоторые из них успешно опробованы на животных: трансгенных мышах и макаках. Но для их испытаний на людях требуется разрешение Государственного управления по надзору за пищевыми продуктами и лекарственными средствами КНР. Одна из команд, работавших над вакциной, смогла получить разрешение на проведение клинических испытаний своей разработки и уже объявила о поиске добровольцев. Группа ученых во главе с академиком Чэнь Вэй находились в Ухани с 26 января и безостановочно вели исследования в самом центре эпидемии в лаборатории с наивысшим уровнем биологической защиты — BSL-4.
Австралия и Италия также подготовили вакцины от коронавируса. Но в первом случае это еще лабораторные тестирования с перспективой испытаний на людях летом 2020 года в одном из госпиталей Брисбена. А во втором случае речь идет об этапе испытаний на животных. Итальянская вакцина была получена из фрагмента генетического материала вируса и предусматривает применение технологии электропорации. Это значит, что после внутримышечной инъекции препарата производится небольшой электроразряд, что облегчает попадание вещества в молекулы и эффективнее активизирует иммунную систему человека. Это первые испытания в Европе, и ученые после лабораторных исследований предполагают сильную реакцию иммунной системы. К людям итальянская вакцина попадет не раньше осени 2020 года.
в середине марта немецкий специалист Лотар Вилер, глава Института Роберта Коха, сообщил:
Вакцина на будущее
21 января Минздрав заявил, что в России начали работу по созданию вакцины против китайского коронавируса. По словам замглавы ведомства Сергея Краевого, помощь в получении биологических материалов оказывают коллеги из КНР.
По мнению эксперта, разработка препарата займет до трех месяцев. На полный цикл создания вакцины, включая все исследования, может потребоваться не менее полугода. Средства потребуются значительные, но их необходимо выделить.
— Это должна быть одна из самых приоритетных тем. Мы не знаем, как этот вирус поведет себя в нашей популяции, что он будет делать в России, — сказал Герман Шипулин. — Восприимчивость населения к нему зависит от генетики наших граждан. Но если вирус проникнет в РФ, начнет распространяться и будет высокая летальность, то эта вакцина станет спасением.
Третья волна
Согласно последним данным китайского комитета по вопросам гигиены и здравоохранения, число заразившихся новым видом коронавируса в КНР возросло до 291, шестеро умерли. Еще два случая заболевания зарегистрировали в Таиланде, по одному в Японии и Южной Корее.
Между тем авторитетное китайское издание South China Morning Post сообщает, что к вечеру 21 января число заболевших увеличилось до 300. Из них 270 зафиксировали в провинции Хубэй и более 30 — в других частях страны, включая Пекин, Шанхай, Тяньцзинь и провинцию Гуандун, соседствующую с Гонконгом. Местные вирусологии высказали опасение о начале третьей волны распространения вируса. Это связано с тем, что заражение выявили у родственников одного из умерших больных и контактировавших с ним сотрудников больницы.
Роспотребнадзор посоветовал воздержаться от поездок в город Ухань до стабилизации ситуации. Находясь на территории КНР, рекомендуется не посещать продуктовые рынки, зоопарки и мероприятия с участием животных.
— В связи с осложнившейся эпидемиологической ситуацией, вызванной распространением в Китае нового коронавируса, организованы и проводятся все необходимые мероприятия, направленные на снижение рисков для здоровья наших граждан, связанных с возможностью завоза возбудителя данного заболевания на территорию страны, — сказала вице-премьер России Татьяна Голикова.
Она отметила, что тактика противоэпидемических мер при необходимости будет корректироваться в рамках работы правительственной комиссии по вопросам химической и биологической безопасности.
Мир в ожидании
В последний раз чрезвычайный комитет ВОЗ созывался в 2019 году из-за вспышки Эболы в Республике Конго и вируса полиомиелита во всем мире.
Наука в помощь
Глава Национального института аллергии и инфекционных заболеваний США Энтони С. Фаучи заявил, что институты его подразделения уже занимаются разработкой вакцины от нового коронавируса. По словам еще одного американского ученого Питера Хотеса, специалиста по вакцинам из Медицинского колледжа Бейлора в Хьюстоне, над получением препарата работают научные группы из Техаса, Нью-Йорка и Китая.
— Это быстрый, но не самый эффективный способ. При вакцинации необходимо пользоваться химическими агентами, которые позволяют развить и направить иммунитет против вируса, — отметил Павел Волчков. — Более эффективный, но долгий способ — применение живых аттенуированных вирусных вакцин. В комфортных искусственных условиях жизни вирус накапливает мутации, которые делают его абсолютно нежизнеспособным для обычных условий.
По его словам, самый прогрессивный вариант — использование обратной генетики, но для нового коронавируса ее пока не разработали, так как это плохо изученная форма. Создание вакцины таким способом займет около года.
— Остается четвертый, на мой взгляд, самый быстрый и эффективный вариант, что немаловажно при риске возникновения эпидемии, — химерный комбинированный подход, когда вектор аденовируса, пустой внутри, начиняют маленькими пептидами и из них выстраивают так называемую пептидную колбасу, своеобразный фарш из данного коронавируса, — пояснил Павел Волчков.
Этот способ позволит произвести вакцину за 3–6 месяцев при условии максимального сокращения доклинических и клинических испытаний.
По словам директора Института медицинской паразитологии, тропических и трансмиссивных заболеваний им. Е.И. Марциновского Сеченовского университета Александра Лукашева, специалистам понятно, как разрабатывать вакцину от коронавируса. Для этого существуют разные технические возможности, и не нужен даже образец — китайские ученые уже выложили в открытый доступ геномную последовательность 2019-nCoV.
В условиях пандемии многие государства приступили к созданию лекарств и вакцин от нового коронавируса. Сообщается, что в России разработка прошла первую фазу — так ли это? Значит ли, что скоро можно ждать появления препарата? Чтобы разработать новое лекарство от неизвестного заболевания по всем правилам научного поиска нужно от 5 до 15 лет. Разобрали весь процесс на примере COVID-19 вместе с Равилем Ниязовым, специалистом по регуляторным вопросам и разработке лекарств Центра научного консультирования.
COVID-19 — инфекционное заболевание, вызываемое коронавирусом SARS-CoV-2. В тяжелых формах оно поражает легкие, иногда — сердце и другие органы. Особенно тяжело заболевание протекает, если у больного есть другие нарушения со стороны дыхательной или сердечно-сосудистой систем. Молниеносно возникшая пандемия COVID-19 поставила вопрос разработки лекарств и вакцин от новой инфекции. Это долгий процесс с множеством стадий, на каждой из которых исключают вещества-кандидатов. Только одно или небольшая группа таких веществ в итоге сможет стать безопасным и эффективным лекарством.
Шаг 1: понять, как развивается новое заболевание
Любая болезнь нарушает естественные физиологические и биохимические процессы в организме. Причины заболеваний могут быть разными, в том числе — инфекционными. Инфекционный агент (в случае COVID-19 это коронавирус SARS-CoV-2) заимствует и эксплуатирует биохимический аппарат клеток, перехватывая управление им, в результате чего клетки перестают выполнять свою физиологическую функцию. Для вируса SARS-CoV-2 основной мишенью являются клетки дыхательного эпителия, отвечающие за газообмен, то есть за дыхание.
Лекарством для лечения COVID-19 будет считаться любое вещество или комбинация веществ, которое будет способно (1) инактивировать вирус еще до того, как он успеет поразить клетку, или (2) нарушать жизненный цикл вируса внутри зараженной клетки, или (3) защищать новые непораженные здоровые клетки от инфицирования.
Чтобы создать лекарство от SARS-CoV-2, нужно хорошо знать, каков жизненный цикл вируса в организме человека:
- с какими клетками человека и через какие рецепторы на поверхности клеток он связывается, какой собственный вирусный аппарат для этого он использует;
- как вирус проникает в клетку;
- как вирус эксплуатирует биохимический аппарат клетки, чтобы воспроизводить собственный генетический материал и белки, нужные для сборки новых вирусных частиц;
- как вирус покидает инфицированную клетку, чтобы инфицировать новые клетки;
- как формируется иммунитет против вируса и какой вклад иммунитет вносит в тяжесть заболевания (чрезмерная иммунная реакция может вызывать тяжелое поражение внутренних органов).
Всё перечисленное — это совокупность фундаментальных знаний, необходимых для перехода к следующему этапу разработки лекарства — синтезу или биосинтезу веществ, которые могут нарушать свойства вирусных частиц, убивая вирус и при этом не вредя человеку. Например, так работают лекарства от ВИЧ-инфекции или гепатита C. Но при этих заболеваниях важно применять сразу несколько веществ из разных классов, чтобы вирус не становился устойчивым к терапии. Об этом нужно будет помнить и при разработке лекарств против SARS-CoV-2.
Для лечения вирусных заболеваний также могут использоваться иммуносыворотки, содержащие антитела, способные инактивировать вирус. Такие сыворотки можно получать от животных, например, лошадей или кроликов, но также и от человека, уже переболевшего заболеванием.
Однако самый эффективный подход — профилактика заболевания. Для этого используют вакцины — естественные или генетически модифицированные белки вируса, а иногда и живой, но ослабленный вирус. Вакцина имитирует инфекционное заболевание и стимулирует организм к формированию иммунитета. В последнее время также разрабатываются РНК- и ДНК-вакцины, но пока одобренных препаратов нет.
В отличие от традиционных вакцин, РНК-/ДНК-вакцины содержат не вирусные белки, а гены, кодирующие основные вирусные белки. Введение такой вакцины приводит к синтезу клетками белков вируса, на которые должна реагировать иммунная система и вырабатывать иммунитет против этих белков вируса. Гипотетически это должно препятствовать началу инфекционного процесса при заражении настоящим патогенным вирусом. Важно отметить, такие РНК- и ДНК-вакцины не должны кодировать те белки вируса, которые способны были бы привести к настоящей вирусной инфекции.
Шаг 2: поиск хитов
На ранней стадии разработки синтезируют и тестируют множество веществ — библиотеку. Основная цель этого этапа — найти группу хитов (hit — попадание в цель), которые бы связывались с нужной вирусной мишенью. Обычно это один из белков вируса. Иногда отбор идет из библиотек, состоящих из миллиардов низкомолекулярных веществ. Сейчас активно используют компьютерные алгоритмы — машинное и глубокое обучение — чтобы искать новые потенциально активные молекулы. Одна из компаний, успешно работающая в этом направлении, — InSilico Medicine, создана российскими математиками.
Другой источник потенциальных лекарств — выздоровевшие люди: в их крови содержатся антитела, часть из которых способны связываться с вирусом и, возможно, нейтрализовать его.
Шаг 3: поиск и тестирование лидов
Когда находят группу хитов, способную связываться с вирусным белком, переходят к следующему этапу скрининга. На этом шаге исключаются вещества, которые:
- нестабильны и быстро разлагаются;
- тяжелы/затратны в синтезе;
- токсичны для различных клеток человека в условиях лабораторных экспериментов на культуре клеток. Вещества не должны быть токсичны сами, токсичностью также не должны обладать продукты их метаболизма в организме, продукты их разложения и примеси, возникающие в процессе производства; вместе с тем если процесс производства способен с помощью очистки удалять продукты разложения или примеси, то такой хит может и не будет выведен из разработки;
- плохо растворимы в воде — лекарство должно в достаточном количестве растворяться в биологических жидкостях, чтобы распределиться по организму;
- быстро разлагаются в живом организме;
- плохо проникают через слизистые оболочки, клеточные мембраны или внутрь клетки, в зависимости от пути введения лекарства и расположения вирусной мишени.
Хиты, которые выдерживают эти испытания и проходят все фильтры, переводят в категорию лидов (lead — ведущий).
Лиды тестируют в еще более широкой серии экспериментов для принятия так называемых решений Go/No-Go о продолжении или остановке разработки. На этой стадии инициируются испытания на животных. Такая схема отбора нужна чтобы как можно раньше вывести из разработки бесперспективные молекулы, потратив на них минимальные время и ресурсы, поскольку каждый последующий этап является еще более затратным.
Те несколько лидов, которые успешно проходят очередные испытания, становятся кандидатами. К этому моменту разработка может длиться уже от трех до семи лет.
Шаг 4: испытания кандидатов и клинические исследования
Прежде чем перейти к испытаниям на людях, нужно выполнить исследования на животных и подтвердить отсутствие неприемлемой для человека токсичности, подобрать первоначальную безопасную дозу. На этом этапе кандидаты тоже могут отсеиваться — например, из-за генотоксичности (токсичности для генетического аппарата клетки) или канцерогенности (способности вызывать рак). Еще они могут оказаться небезопасными для беременных женщин или женщин детородного возраста, вызывать поражение головного мозга, печени, почек, сердца или легких. В зависимости от природы молекулы исследования проводят на грызунах, собаках, обезьянах, минипигах, кроликах и т.д.
В зависимости от природы заболевания, особенностей его терапии и свойств лекарства, какие-то исследования могут не проводиться или быть не значимы. Например, оценка канцерогенности лекарства не потребуется, если оно будет применяться в лечении краткосрочных заболеваний, как в случае COVID-19. Генотоксичность не оценивают для биопрепаратов или если лекарство предназначено для лечения метастатического рака и т. д. Суммарно доклинические исследования могут занимать 3–5 лет. Часть из них проводится параллельно с клиническими исследованиями.
Если доклинические исследования успешны, начинается клиническая разработка, которая условно делится на фазы. Это нужно, чтобы постепенно и контролируемо тестировать лекарство на все большем количестве людей. И снова стадийность процесса позволяет прекратить разработку на любом этапе, не подвергая риску многих людей.
- Первая фаза: здесь подтверждают первичную безопасность для людей в принципе, изучают поведение лекарства в организме человека, его биодоступность (способность достигать места действия в достаточных концентрациях), его взаимодействие с другими лекарствами, влияние пищи, половых и возрастных различий на свойства лекарства, а также безопасность для людей с сопутствующими заболеваниями (особенно важны заболевания печени и почек — эти органы отвечают за метаболизм и выведение лекарств), проверяют, не вызывает ли лекарство нарушение ритма сердца. Кроме того, на I фазе оценивают безопасный диапазон доз: эффективные дозы не должны быть неприемлемо токсичными.
- Вторая фаза: здесь начинают проверять эффективность лекарства на пациентах с заболеванием. На ранней II фазе оценивают, работает ли кандидатная молекула на людях с изучаемым заболеванием в принципе, а на поздней II фазе подбирают режим дозирования, если кандидатное лекарство было эффективным. При этом вещество, эффективное в лабораторных экспериментах, на животных моделях заболевания и даже в ранних клинических исследованиях на людях, вполне может не быть таким же рабочим в реальной медицинской практике. Поэтому и нужен длительный процесс поэтапной исключающей разработки, чтобы на выходе получить эффективное и безопасное лекарство.
- Третья фаза: здесь подтверждают эффективность и безопасность лекарства, а также доказывают, что его польза компенсирует те нежелательные реакции, которые неминуемо будет вызывать лекарство. Иными словами, в исследованиях третьей фазы надо понять, что баланс пользы и рисков положителен. Это всегда индивидуально. Например, у людей с ВИЧ в целом допустимо, если противовирусные лекарства вызывают некоторые нежелательные реакции, а в случае онкологических заболеваний приемлемы и более выраженные токсические реакции.
В случае вакцин, которые рассчитаны на здоровых людей, и особенно детей, приемлемы лишь легкие нежелательные реакции. Поэтому найти баланс трудно: вакцина должна быть высоко эффективной, и при этом вызывать минимальное число тяжелых реакций, например реже, чем 1 случай на 1000, 10 000 или даже 100 000 вакцинированных людей. Клиническая разработка может длиться до 5–7 лет, однако низкомолекулярные противовирусные лекарства для краткосрочного применения, как в случае COVID-19, можно протестировать быстрее — за 1–2 года.
Разработка многих отечественных противовирусных и иммуномодулирующих препаратов не соответствует такому научно выверенному процессу разработки.
Шаг 5: производство
Важный этап — наладить производство лекарства. Разработка процессов синтеза начинается в самом начале отбора лидов и постепенно дорабатывается, оптимизируется и доводится до промышленного масштаба.
В настоящее время против SARS-CoV-2 разрабатывается много разных методов лечения:
- низкомолекулярные соединения, которые нарушают жизненный цикл вируса. Трудность в том, что может быть нужно применять сразу несколько противовирусных лекарств. Сейчас надежды возлагают на ремдесивир. Есть данные, что может быть эффективен давно известный гидроксихлорохин, действующий не на сам вирус, а влияющий на иммунитет. Информацию, что комбинация лопинавира и ритонавира оказалась неэффективной у тяжелобольных пациентов, стоит интерпретировать с осторожностью: она может быть эффективна при более легких формах, или для профилактики, или у каких-то определенных подгрупп;
- противовирусные, в том числе моноклональные, антитела, которые связываются с ним на поверхности и блокируют его проникновение в клетку, а также помечают вирус для клеток иммунной системы. Антитела можно получать как биотехнологически, так и выделять из крови переболевших людей. Сейчас тестируются препараты, получаемые с помощью обоих методов;
- вакцины. Они могут представлять собой естественные или модифицированные белки вируса (модификации вводят для усиления выработки иммунитета), живой ослабленный вирус, вирусоподобные наночастицы, синтетический генетический материал вируса (РНК-вакцины) для того, чтобы сам организм человека синтезировал некоторые белки вируса и смог выработать антитела к нему. Одна из проблем в случае вакцин — простое введение белков вируса, пусть и модифицированных, не всегда позволяет сформировать иммунитет, способный защитить от реального заболевания — так называемый стерильный иммунитет. Даже образование антител в ответ на введение вакцины не гарантирует защиты: хорошим примером являются те же ВИЧ и гепатит C, хотя вакцина против гепатита B достаточно проста и при этом высокоэффективна. Хочется надеяться, что отечественные разработчики следуют рекомендациям Всемирной организации здравоохранения по проведению доклинических и клинических исследований вакцин, включая исследования провокации и изучение адъювантов;
- препараты для РНК-интерференции. Так называемые малые интерферирующие рибонуклеиновые кислоты (РНК) — это небольшие отрезки синтетически получаемой РНК, которые способны связываться с генетическим аппаратом вируса и блокировать его считывание, мешая синтезу вирусных белков или воспроизведению генетического материала вируса.
Процесс разработки лекарства — это научный поиск с неизвестным исходом. Он занимает много времени и требует участия большой команды профессионалов разных специальностей. Однако только реальный клинический опыт позволит оценить, удалось ли получить не только эффективное, но и безопасное лекарство, поэтому любое точное определение сроков получения лекарства — спекуляция. Получить эффективную и безопасную вакцину к концу года, если следовать всем правилам научного поиска, вряд ли удастся.
Детальные обсуждения процессов разработки новых лекарств и возникающих в связи с этим проблем — на YouTube-канале PhED.
- Сейчас в перечне кандидатных вакцин против COVID-19, который формирует Всемирная организация здравоохранения, числится 83 разработки, - сообщила пресс-служба Роспотребнадзора . Как отмечают в ведомстве, в этот список включено 9 вакцин, разработанных в России . То есть на отечественные разработки приходится более 10% перечня ВОЗ.
- Пептидная вакцина на платформе, использовавшейся ранее для создания вакцины против вируса Эбола
- Живая векторная вакцина на основе вируса кори
- Рекомбинантная интраназальная вакцина на основе вируса гриппа А
- Векторная вакцина на основе вируса везикулярного стоматита
Еще две вакцины — разработки компании БИОКАД:
- Инкапсулированная в липосомы мРНК
И еще одна вакцина разработана Санкт-Петербургским научно- исследовательским институтом вакцин и сывороток. В ее основе рекомбинантный белок, наночастицы (на основе S-белка и других эпитопов).
КОММЕНТАРИЙ ЭКСПЕРТА
Безопасная и эффективная вакцина может появиться в марте — апреле следующего года
- Среди российских разработок вакцин представлены препараты многих типов. Это хорошо, потому что означает: потенциально мы как страна претендуем на то, что можем работать практически со всеми известными технологиями разработки вакцин, - отмечает иммунолог, эксперт по исследованиям, разработке и регистрации лекарственных средств, кандидат медицинских наук Николай Крючков.
Иммунолог, эксперт по исследованиям, разработке и регистрации лекарственных средств, кандидат медицинских наук Николай Крючков. Фото: Личный архив
- Также плюсом можно назвать то, что нет монополии разработок, - продолжает эксперт. - В борьбе с коронавирусом участвуют разработчики вакцин и из нескольких государственных институтов, и ученые крупной биотехнологической компании.
Теперь о том, чего нельзя допустить, на что нужно обращать пристальное внимание. Очень важно, чтобы были проведены качественные клинические исследования. Многие страны, включая нашу, пошли на ускоренную, упрощенную процедуру доклинических испытаний (на клеточных культурах и на животных). И если это еще допустимо, то неоправданное ускорение исследований на людях может сыграть злую шутку. Во время таких испытаний определяется безопасность и иммуногенность вакцин (то есть их способность формировать иммунитет). Если не соблюсти необходимые процедуры исследований, то можно получить в лучшем случае неработающие вакцины. А в худшем случае — опасные для здоровья побочные эффекты.
- Какой срок нужен, чтобы убедиться, что разработанные вакцины действительно качественные и эффективные? На совещании у Владимира Путина академик Александр Гинцбург сообщил, что испытания одной из вакцин на людях начнутся уже в июне этого года.
- Если отталкиваться от этой даты, то расклад такой. В клинических исследованиях на людях — здоровых добровольцах — определяется сначала безопасность вакцины. На следующем этапе — ее иммуногенность (по сути — эффективность). Для этого должно быть проведено либо два отдельных исследования, либо одно многоэтапное. Как минимум это может занять в лучшем случае 5 — 6 месяцев. Затем идут процедуры регистрации вакцины. С учетом всех упрощений и сокращений на этом этапе может пройти около двух месяцев. Если параллельно разработчики уже начнут производить вакцину, то первых вакцинаций можно будет ожидать в марте — апреле следующего года.
Спаситель человечества в толстовке.Знаете, как выглядит главный разработчик российской вакцины против коронавируса? Скорее всего, не так, как вы себе его представляете
ПО ТЕМЕ
Уже отобраны 60 человек, которых привьют первыми: среди них — разработчик вакцины. Как за ними будут наблюдать и какие есть риски — в нашем материале (подробности)
ЧИТАЙТЕ ТАКЖЕ
Можно ли переболеть коронавирусом дважды, передается ли он через воду и как понять, что переносишь инфекцию бессимптомно
Мы собрали самые распространенные вопросы россиян и задали их ведущим ученым (подробности)
Читайте также: