Вакцинный вирус дикий вирус
Предупрежден — вооружен
Каждую осень врачи предупреждают о новых вспышках гриппа, при этом нередко говорят о появлении новых штаммов вируса. Вирус гриппа славится скоростью, с которой он меняется: новые штаммы появляются довольно быстро из-за того, что генетическую информацию вируса гриппа кодирует РНК, которая легко мутирует, а многие из этих мутаций идут вирусу на пользу, например делая его менее узнаваемым для клеток нашего организма.
Чтобы бороться с постоянно меняющимся врагом, приходится работать на опережение: Всемирная организация здравоохранения через Глобальную систему эпиднадзора за гриппом и ответных мер (ГСЭГОМ) ведет мониторинг за вспышками гриппа в различных регионах планеты. И каждый год, примерно за шесть месяцев до начала сезона заболевания гриппом, ВОЗ дает рекомендации по составу вакцин против него для Северного и Южного полушарий.
Ослабленный вирус
Вакцины от многих болезней делятся на два типа: живые и инактивированные. Как следует из названия, живая вакцина — это, по сути, и есть вирус, только ослабленный. Он уже не может вызвать заболевание, но стимулирует естественный иммунный ответ без проявления симптомов, то есть без головной боли, температуры или ломоты, если речь о гриппе.
Живую вакцину от гриппа выращивают на куриных эмбрионах. Она вызывает три типа иммунитета. Местный иммунитет — это система защиты на границе проникновения инфекции в организм, при гриппе — в носоглотке. Клеточный иммунитет образуют лимфоциты и фагоциты, которые, помимо прочего, уничтожают антигены (то есть вирусы и инфекции) и вырабатывают защитные ферменты в ответ на проникновение патогенов. Третий тип иммунитета — гуморальный: для борьбы с инфекциями и вирусами в организме начинают вырабатываться специальные белки (иммуноглобулины), которые разносятся кровью.
Россия зарегистрировала живую гриппозную вакцину (ЖГВ) в 1987 году, обогнав все остальные страны. В США ЖГВ была зарегистрирована в 2003 году. По просьбе ВОЗ Институт экспериментальной медицины заключил договор на трансфер технологии производства живой гриппозной вакцины в новые индустриальные и развивающиеся страны и согласился готовить для них штаммы. С 2009 года Индия и Китай через ВОЗ получают от института вакцинные штаммы для производства сезонных вакцин. В 2010 году вакцина была зарегистрирована в Индии.
Инактивированную вакцину готовят из выращенного на курином эмбрионе вируса. Затем вирус убивают, и он становится антигеном и вызывает гуморальный иммунитет.
Кроме борьбы с гриппом, есть живые вакцины против оспы, полиомиелита, кори, желтой лихорадки и других инфекционных заболеваний. Так, в 1950-х американский ученый Альберт Сейбин создал вакцину от полиомиелита на основе ослабленного вируса. В СССР его идею развили вирусологи Михаил Чумаков и Анатолий Смородинцев, которые разработали собственную вакцину. Вакцинация их препаратом, который передавали в развивающиеся страны, привела к резкому снижению заболеваемости полиомиелитом как в СССР, так и во всем мире.
Рецепт вакцины
Раз вирус гриппа быстро меняется, то и вакцины не должны отставать от него.
Как правило, на создание живой вакцины против нового штамма гриппа уходит 8−10 недель, а все производство идет в России. Ответственным за изготовление штаммов живой вакцины в России Минздрав назначил отдел вирусологии Института экспериментальной медицины.
В то же время для изготовления инактивированной вакцины компании заказывают вакцинный штамм за рубежом, после чего начинают производство вакцин.
Коллективный иммунитет
Основным различием между вакцинами Руденко называет создание коллективного иммунитета благодаря использованию живой вакцины.
«Живая вакцина создает иммунитет в верхних воротах инфекции. Вирус попадает туда, не размножается и не передается в общество. А инактивированная создает иммунитет у привитого человека, но в верхних дыхательных путях нет иммунитета, только в крови. В результате вирус попадает туда, размножается. Он может не вызвать заболевание у этого человека, но может распространяться на других людей, особенно не привитых.
Из-за антигенного дрейфа или постепенных мутаций вируса появляются новые штаммы. И в отличие от инактивированной, живая вакцина способна защитить от них.
Сила в разнообразии
Самым надежным средством от гриппа Руденко называет правильную тактику вакцинации. Так, если учащимся, молодежи и военнослужащим, которые относятся к наиболее социально мобильным слоям населения, стоит использовать ЖГВ, то пенсионерам, беременным и людям с хроническими заболеваниями — инактивированные вакцины.
По словам главы Минздрава Вероники Скворцовой, в 2016 году в России от гриппа были привиты 56 млн человек, или 38% населения страны. Это значительно больше, чем 20 лет назад: в 1996 году, по данным Роспотребнадзора, прививки от гриппа сделали лишь 4,9 млн человек. Но большая часть россиян до сих пор отказывается от вакцинации.
Три мутации до пандемии
В 2009 году свиной грипп H1N1 вызвал первую за 41 год пандемию. Кроме того, с 2003 по 2013 год специалисты отмечали вспышки птичьего гриппа (H5N1 и H7N9), жертвами которого стали более 380 человек. По словам Руденко, самыми вероятными источниками новых пандемий могут стать птичьи вирусы гриппа.
Эксперт отмечает, что у обоих птичьих вирусов сейчас накопилось высокое количество мутаций, которое может привести к высокой патогенности.
В марте 2017 года ВОЗ обратилась в отдел вирусологии с просьбой подготовить вакцины против двух штаммов, появившихся в Китае. Ученые выполнили эту работу и в настоящее время проводят доклинические испытания вакцины.
История прививок от полиомиелита. Живая и инактивированная вакцины против полиомиелита
Прививку от полиомиелита дети получают в 3 и 4,5 месяца — инактивированной вакциной и в 6 месяцев — живой. Капли от полиомиелита начали производить в России более 60 лет назад, а инактивированную вакцину придумали, а потом усовершенствовали в США. Действительно ли удастся победить полиомиелит в мире, если в отдельных странах им уже давно не болеют?
Полиовирус — вирус кишечной группы, или энтеровирус, передающийся фекально-оральным путем. Источником и переносчиком его является инфицированный человек, выделяющий вирусные частицы со слизью носоглотки и верхних дыхательных путей, а также с фекалиями. Одним из основных путей распространения инфекции продолжают оставаться сточные воды. Заражение чаще всего происходит через грязные руки, предметы обихода, воду или пищу.
Полиомиелит — это заболевание нервной системы, вызываемое полиовирусом одного из трех типов — 1, 2 или 3. Проявляется лихорадкой, а затем периферическим параличом, который остается на всю жизнь. В самых тяжелых случаях в результате паралича дыхательной мускулатуры (бульбарная форма) болезнь влечет за собой смерть.
Клинические проявления полиомиелита относительно редки — 1 на 100–1000 случаев бессимптомного течения. Это затрудняет процесс своевременного обнаружения инфекции. Ограничение функциональности и чувствительности конечностей может быть вызвано и другими патологиями, поэтому для подтверждения диагноза "полиомиелит" нужны дополнительные анализы и тесты. Диагностировать непаралитические формы крайне сложно — для этого проводят специальные обследования окружения больного.
Вплоть до XIX века случаи заболевания полиомиелитом не привлекали особого внимания, так как на фоне тяжелейших эпидемий чумы, оспы и холеры были относительно малочисленны. При этом полиомиелит оставался одной из древнейших инфекций, известных человечеству. В египетском храме Изиды в Мемфисе (XIV–XVI век до н. э.) сохранилось изображение человека с укороченной ногой и свисающей стопой — типичное проявление паралитического полиомиелита. В странах Европы описание детских паралитических заболеваний известно со времен Гиппократа. Считается, что хромой римский император Клавдий был жертвой полиомиелита. Ретроспективно диагноз был поставлен писателю Вальтеру Скотту, который подробно описал симптомы перенесенной им болезни в 1773 году.
К началу XX века болезнь, раньше лишь изредка поражавшая преимущественно детей и молодых людей, приобрела характер эпидемии. В 39 лет полиомиелитом переболел и остался частично парализован президент США Франклин Рузвельт. Впоследствии он создал фонд для сбора средств в пользу жертв этого заболевания и спонсирования исследований в области профилактики — Национальный фонд борьбы с детским параличом (National Foundation for Infantile Paralysis).
После Второй мировой войны заболеваемость полиомиелитом резко возросла. Эпидемические вспышки проявлялись в скандинавских странах, США и Канаде. Полиомиелит был признан национальной опасностью во многих странах. Началась активная работа по созданию вакцин.
Первая вакцина против полиомиелита — инактивированная
Возможность иммунизации от полиомиелита была выявлена еще в начале XX века. Вирус — это паразит. Несмотря на наличие собственных генов (для человека они являются антигенами), он не способен самостоятельно передавать генетическую информацию. Для выживания вирусу необходимо внедриться в живую клетку и использовать ее гены и белки для размножения. В человеческом теле это вызывает иммунный ответ — образование антител, которые препятствуют размножению недружественных микроорганизмов и сохраняются в течение долгого времени. От соотношения этих сил и зависит тяжесть протекания инфекции.
Долгое время считалось, что полиовирус может расти только в нервных клетках, однако было не ясно, как он попадает в центральную нервную систему. В 1948 году трое ученых открыли способность полиовируса размножаться в клетках различных тканей, которые можно было культивировать. Джон Эндерс и его ассистенты Томас Уэллер и Фредерик Роббинс научились выращивать "полио" в пробирке, тем самым сильно расширив возможности его изучения в лабораторных условиях. За эту работу все трое впоследствии получили Нобелевскую премию по физиологии и медицине.
В 1950 году Джонас Солк убил формалином выращенный на клеточных культурах полиовирус, а скопления фрагментов клеток, в которых мог сохраняться живой вирус, удалил фильтрацией. Так он создал инактивированную полиовакцину (ИПВ), которая должна была вводиться внутримышечно. В 1954 году Солк испытал ее на 2 млн детей, и в 1955 году ИПВ была лицензирована в США, где началась массовая иммунизация с ее применением.
Однако через две недели произошла трагедия. Оказалось, что один из производителей ИПВ — Cutter Laboratories — не дезактивировал вирус полностью. В результате 120 тыс. детей были привиты некачественной вакциной, содержащей дикий, потенциально смертельный вирус. Семьдесят тысяч переболели полиомиелитом в легкой форме, 200 оказались необратимо и тяжело парализованы, а 10 умерли. Это была одна из самых страшных биологических катастроф в истории Америки.
В то же время другая группа американских ученых пыталась разработать вакцину на основе ослабленных штаммов живого вируса, полагая, что она будет эффективнее. Альберт Сейбин выделил штаммы полиовируса, которые могли расти в инфицированном организме, не поражая ЦНС, и создал прототип живой полиовакцины, которая вводилась через рот — вакцинному вирусу кишечной группы, считал Сейбин, целесообразно проникать в тело человека путем дикого вируса. Но распространению пероральной вакцины (ОПВ) мешали уже внедренная в массовом порядке ИПВ, а главное — сомнения научного сообщества в отношении безопасности применения живого вируса. Сейбину не давали разрешения даже на ограниченные клинические испытания. К счастью, судьба свела его советскими учеными.
Живая вакцина против полиомиелита
В СССР первые эпидемии полиомиелита официально зарегистрированы в 1949 году — в Прибалтике, Казахстане и Сибири. Однако еще в 1945 году советский эпидемиолог Михаил Чумаков вел активные исследования в области разработки вакцины от полиомиелита. В молодости он стал жертвой клещевого энцефалита, после чего почти полностью оглох и потерял подвижность правой руки.
Уже став академиком, Чумаков засыпал руководство Академии наук и советское правительство письмами о создании центра по борьбе с полиомиелитом. Институт по изучению полиомиелита он получил в 1955 году — и сразу же начал действовать.
В 1956 году академик Чумаков с несколькими коллегами отправились в длительную командировку в США. Там началось их сотрудничество с Альбертом Сейбиным, изменившее ход истории болезни.
К тому времени эпидемия в СССР приняла страшный размах. По некоторым данным, в 1957 году было зарегистрировано 24 тыс. случаев полиомиелита, 13 тыс. из них паралитических, — тысячи смертей. Система здравоохранения оказалась не готова к появлению огромного числа детей-инвалидов.
Усилиями команды Чумакова в 1957 году в стране начала производиться инактивированная вакцина, которую срочно отправляли в эндемичные районы. Однако требовалось более универсальное решение и явно больший охват иммунизации.
Альберт Сейбин бесплатно передал свои штаммы Михаилу Чумакову и Анатолию Смородинцеву, которые подвергли их тщательным лабораторным исследованиям. После получения положительных результатов они провели первые ограниченные исследования. В круг испытуемых, рассказывают современники, входили сотрудники институтов и их дети (в том числе дети Михаила Петровича Чумакова).
Переход на ОПВ был актуален для СССР. В отличие от убитой вакцины, она обладала низкой себестоимостью и могла производиться практически в любых количествах. Для введения ОПВ не требовался квалифицированный медицинский персонал, поскольку капля этой жидкости помещалась непосредственно в рот ребенка или на кубик рафинированного сахара, что позволяло охватить иммунизацией максимальное количество населения.
Не менее весомые преимущества нашлись и с биологической точки зрения. Живая вакцина препятствует репликации вируса и выделению его с калом — простыми словами, она рвет цепочку распространения дикого вируса. Зато введенный привитому ребенку вакцинный вирус контактным способом передается его братьям, сестрам и друзьям, создавая таким образом коллективный иммунитет.
В 1958 году Минздрав СССР разрешил проведение расширенных испытаний ОПВ. В январе — апреле 1959 года в Эстонии и Литве под руководством Михаила Чумакова были привиты и тщательно обследованы 27 тыс. детей, а под руководством Анатолия Смородинцева — 12 тыс. детей в Латвии. Полученные результаты подтвердили безопасность и высокую эффективность вакцины. К концу 1959 года в СССР были привиты более 15 млн человек. В 1960 году Минздрав издал указ о проведении обязательной иммунизации населения от 2 месяцев до 20 лет, вакциной было привито 77,5 млн человек (более 35% населения).
В 1961 году эпидемии полиомиелита в нашей стране прекратились. Динамика была поразительная: в 1958 году в СССР заболеваемость составляла 10,6 случая на 100 тыс. населения, а уже в 1963-м — 0,43 случая, в 1964–1979 годах — 0,1–0,01 случая на 100 тыс. человек.
Можно ли ликвидировать полиомиелит в мире
Документация по производству и контролю качества ОПВ из штаммов Сейбина была передана во Всемирную организацию здравоохранения (ВОЗ) и составила основу международных требований для иммунизации населения. В результате все страны быстро заменили ИПВ на ОПВ в календарях вакцинопрофилактики (за исключением трех скандинавских стран, добившихся полной ликвидации вируса и не видевших смысла в проведении дальнейшей иммунизации).
Живая вакцина, произведенная Институтом по изучению полиомиелита, экспортировалась более чем в 60 стран мира и помогла ликвидировать большие вспышки полиомиелита в Восточной Европе и Японии. Успех клинических испытаний ОПВ в Советском Союзе был критическим фактором для начала применения вакцины на ее родине — в Соединенных Штатах. Моновалентная ОПВ была зарегистрирована в США в 1961 году, а трехвалентная — в 1963-м.
Если вакцинацией охвачено большое количество людей в популяции, вирус лишается хозяев и не может распространяться и вызывать вспышки заболеваемости. В расчете на это и получив достаточное количество данных, в 1988 году ВОЗ приняла Программу глобальной ликвидации полиомиелита (Global Polio Eradication Initiative, GPEI) с использованием ОПВ. Она предусматривала систематическую вакцинацию новорожденных, национальные дни иммунизации для детей постарше и целевую иммунизацию в районах, где существовали факторы риска.
На момент принятия программы дикий полиовирус циркулировал в 125 странах мира, где полиомиелитом ежегодно заболевали свыше 350 тыс. человек. К 2015 году число зарегистрированных случаев сократилось до 74, а эндемичных стран — до двух (Пакистан и Афганистан, 5 и 7 случаев полиомиелита соответственно в 2017 году).
Как сейчас делают прививку от полиомиелита
Однако эти проблемы оказались не единственными. Несмотря все плюсы ОПВ, у нее достаточно быстро обнаружился серьезный недостаток. В крайних случаях — от 2 до 4 на 1 млн — у детей с изначально пониженным иммунитетом ОПВ может вызывать вакциноассоциированный паралитический полиомиелит (ВАПП). Организм этих детей не способен бороться даже с ослабленным вирусом в составе вакцины. Этот факт был достоверно установлен в США уже в 1962 году, где применялись моновалентные ОПВ. А позже ВАПП регистрировали и у людей, контактировавших с привитыми.
Сначала эти случаи не привлекали особого внимания, так как заболеваемость от дикого полиовируса была намного выше. Но к 1990-м годам ВАПП стал ведущей причиной полиомиелита в США, что поставило перед работниками здравоохранения вопрос об этических аспектах использования живой вакцины.
Бороться с проблемой научились, изменив схему вакцинации: стало доступным новое поколение ИПВ — и прививки младенцам делают убитой вакциной, а ревакцинацию проводят живой. Дело в том, что живая вакцина необходима, чтобы прервать цепь распространения диких штаммов полиовируса, и отказ от нее невозможен для территорий, где они циркулируют или куда могут попасть из других стран.
В России, куда последний раз дикий полиовирус был завезен из Таджикистана в 2010 году, первые две прививки от полиомиелита делают убитой вакциной, а для по следующих ревакцинаций применяют ОПВ. Исключительно ИПВ вакцинируются дети из групп риска.
Однако ученых ждало еще более неприятное открытие: вакцинные штаммы Сейбина, эволюционируя в восприимчивой части человеческой популяции, способны восстанавливать свои исходные дикие качества, в первую очередь патогенность и вирулентность. Возникающие таким образом полиовирусы называют вакцинородственными (ВРПВ) и приравнивают к диким штаммам, которые могут вызвать паралитический полиомиелит и передаваться. Впервые ВРПВ зарегистрированы во время вспышки полиомиелита на Гаити и в Доминиканской Республике в 2000 году, когда заболеваемость в отдельных странах уже была сведена до единичных случаев.
В связи с этим Всемирная организация здравоохранения приняла решение о поэтапном отказе от живой вакцины (ОПВ) — по мере остановки циркуляции дикого полиовируса типа 1, оставшегося на сегодня, — и повсеместном переходе на убитую вакцину (ИПВ). Это означает, что для завершения начатой в мире 1988 году тотальной борьбы с полиомиелитом потребуется выполнение парадоксального условия: ликвидация будет возможна лишь тогда, когда прекратится использование вакцины, с помощью которой полиомиелит был поставлен под контроль во всем мире.
По медицинским вопросам обязательно предварительно проконсультируйтесь с врачом
Живые вакцины представляют собой взвесь вакцинных штаммов микроорганизмов (бактерий, вирусов, риккетсий), выращенных на различных питательных субстратах. Живые вакцины содержат ослабленные бактерии (бруцеллезная, туляремийная, чумная, антиязвенная, туберкулезная) или вирусы (против натуральной оспы, желтой лихорадки, бешенства, полиомиелита, гриппа, кори, эпидемического паротита).
Вакцины готовятся на основе апатогенных возбудителей, аттенуированных в искусственных или естественных условиях. Вакцинные штаммы, применяемые в производстве живых вакцин, получают разными путями: путем выделения аттенуированных мутантов от больных, селекцией из внешней среды вакцинных клонов, длительного пассирования в организме экспериментальных животных.
Наряду с генетически закрепленной утратой патогенных свойств и потерей способности вызывать у человека инфекционное заболевание, вакцинные штаммы сохраняют способность размножаться в месте введения, а в дальнейшем в регионарных лимфатических узлах и внутренних органах. Вакцинная инфекция продолжается несколько недель, не сопровождается клинической картиной заболевания и приводит к формированию иммунитета к патогенным штаммам микроорганизмов. Лишь в единичных случаях могут возникать вакцинно-ассоциированные заболевания.
Живые вакцины создают прочный и длительный иммунитет, по напряженности приближающийся к постинфекционному иммунитету. Так, противооспенная и туляремийная вакцины обеспечивают 5-7-летний иммунитет, противогриппозная – 6-8-месячный. Для создания прочного иммунитета во многих случаях достаточно одной инъекции вакцины. Такие вакцины могут вводиться в организм достаточно простым методом, например, скарификационным или пероральным методом.
Недостатки живых вакцин
К сожалению, живые вакцины имеют ряд недостатков:
- сложно комбинируются и плохо дозируются;
- обладают высокой реактогенностью и аллергогенностью;
- категорически противопоказаны людям, страдающим иммунодефицитом;
- вызывают вакциноассоциированные заболевания, в т.ч. генерализацию вакцинного процесса;
- относительно нестабильны;
- в процессе производства, транспортировки, хранения и применения необходимо строго соблюдать меры, предохраняющие микроорганизмы от отмирания и гарантирующие сохранение активности препаратов (холодовая цепь);
- естественно циркулирующий дикий вирус может тормозить репликацию вакцинного вируса и снизить эффективность вакцины. Так, например, это отмечалось в отношении вакцинных штаммов полиовируса, размножение которого может подавляться при инфицировании другими энтеровирусами.
Форма выпуска живых вакцин
Живые вакцины, за исключением полиомиелитной, выпускают в лиофилизированном виде, что обеспечивает их стабильность в течение срока годности.
В живых вакцинах нет консервантов и других ингибиторов роста и развития вакцинных штаммов, при работе с такими вакцинами следует строго соблюдать правила асептики. Нарушение целостности ампул и потеря вакуума приводит к инактивации препарата в связи с проникновением воздуха и влаги. При наличии в ампулах трещин и изменении внешнего вида содержимого следует изъять такие ампулы и уничтожить их.
Правила перевозки живых вакцин
В связи с тем, что действующим началом вакцин являются живые микроорганизмы, следует строго соблюдать требования, обеспечивающие сохранение жизнеспособности микроорганизмов и специфической активности препарата. Живые вакцины следует хранить и транспортировать при температуре в интервале 0…+ 8С. Замораживание таких вакцин не оказывает существенного влияния на их активность. Оптимальная температура при замораживании – 20С.
Об этом "РГ" беседует с молекулярным вирусологом, и.о. директора Института биомедицинских систем и биотехнологий Санкт-Петербургского политехнического университета Петра Великого, доктором биологических наук Андреем Васиным.
Андрей Владимирович, пандемия COVID-19 открыла нам глаза на то, что мир вирусов способен преподнести людям немало сюрпризов, хотя мы сталкиваемся с ними постоянно. Почему, на ваш взгляд, новый вирус оказался таким шоком для человечества?
Андрей Васин: Подавляющее большинство людей просто недооценивало опасность, которую представляют вирусы. Почти все слышали такие слова, как "Эбола", "птичий грипп", "вирус Зика", "атипичная пневмония". Но все это было в заголовках новостей и где-то далеко - в Африке, Юго-Восточной Азии, Южной Америке - и не касалось непосредственно нас. Не случайно, наверное, что страны Юго-Восточной Азии, которые сталкивались с некоторыми из перечисленных вирусов, оказались более подготовленными к реагированию на COVID-19, чем, например, страны Европы.
Охвативший весь мир "свиной грипп" (т.е. вирус гриппа A/H1N1), объявленный пандемией, воспринимался просто как осложненный грипп. Плюс к этому было много разговоров про то, что это все обман с целью отвлечения внимания людей от каких-то более важных проблем, "заговор фармкомпаний, чтобы продавать больше препаратов", и т.п. А сейчас оказалось, что угроза пандемии реальна и может затронуть всех. К такому повороту событий общество многих стран, мне кажется, не было готово.
Известно, что вирусы крайне изменчивы. Чем объясняется эта их способность?
Андрей Васин: В основе всей жизни на земле лежит процесс репликации, то есть копирования генома, который у всех клеточных форм жизни представлен молекулой ДНК. За этот процесс в клетках отвечают специальные ферменты, которые называются полимеразы. В процессе репликации ДНК (у человека размер генома, например, составляет 10 в девятой степени!) неизбежно возникают ошибки. Поэтому в процессе эволюции появились специальные ферменты, которые отвечают за репарацию, то есть за устранение этих ошибок. У вирусов геном может быть представлен молекулой как ДНК, так и РНК. При этом РНК-содержащие вирусы являются более изменчивыми и патогенными, чем ДНК-содержащие. В частности, к РНК-содержащим вирусам человека относятся ВИЧ, вирус Эбола, вирус Зика, вирусы гриппа и коронавирусы, в том числе COVID-19. Изменчивость РНК-содержащих вирусов связана с тем, что у них, как правило, нет систем репарации. В результате вирусная полимераза совершает ошибки довольно часто. Размер генома вируса гораздо меньше, поэтому у них на каждый цикл репликации приходится в среднем одна мутация. С учетом скорости размножения вируса и скорости его распространения в популяции число мутаций будет довольно велико, что и объясняет такую изменчивость.
А помимо постепенного накопления мутаций в геноме РНК-содержащих вирусов возможны и более резкие изменения, например, в процессе реассортации и рекомбинации. Реассортация - это перемешивание сегментов генома разных вирусов. Если эти сегменты были от вирусов разных хозяев (например, человека и птицы), такой новый вирус чаще всего бывает нежизнеспособным. Однако в редких случаях он все же получает возможность эффективно размножаться и передаваться от человека к человеку. Именно таким образом возникали все известные пандемии гриппа. Для некоторых вирусов с монолитным геномом возможна рекомбинация, то есть обмен фрагментами генома между разными штаммами.
В частности, такие механизмы встречаются у коронавирусов. Реассортация и рекомбинация приводят не к плавным, а к резким изменениям биологических свойств вируса. Такая изменчивость и является одним из ключевых факторов их способности ускользнуть от иммунитета человека.
В состоянии ли наука предсказать появление более опасных штаммов тех вирусов, которые давно циркулируют среди людей?
Андрей Васин: Наука в состоянии предположить, что может сделать уже известные вирусы более опасными, изучая их молекулярно-генетические механизмы. Мы можем предполагать, на какие вирусы стоит обратить особое внимание с точки зрения их пандемического потенциала. Но сказать, какое именно событие усилит патогенность вируса в реальности и тем более когда оно произойдет, к сожалению, пока невозможно.
Известно, что существует около 250 вирусов, вызывающих ОРВИ. Однако для них не создано ни тест-систем, ни вакцин. С чем это связано? И оправдано ли такое спокойствие человечества?
Андрей Васин: Сложно дать однозначный ответ. С одной стороны, обычные люди и даже многие медики считают, что вызванные вирусами респираторные заболевания в целом схожи друг с другом, и подход к их лечению примерно одинаковый. Единственное исключение составляет грипп, при этом многие люди гриппом называют все ОРВИ. Зачем тогда тратить время и деньги на их дифференциальную диагностику? Считается, что важно определить, вирус или бактерия вызвали заболевание, а если вирус, то грипп это или нет, а остальное неважно. Ведь специфических противовирусных препаратов для других респираторных вирусов нет - в отличие от множества антибиотиков против бактериальных инфекций. Но каждый вирус имеет свою собственную программу репликации в организме, поэтому и течение инфекции тоже будет отличаться, а значит, и схема лечения тоже должна иметь отличия. Как молекулярный вирусолог, я считаю, что ставить диагноз ОРВИ и не обращать внимания на то, какой вирус ее вызвал, неправильно. Возможно, медицинские вирусологи и инфекционисты не будут столь категоричны. Но я уверен, что по мере изучения респираторных вирусов нас ждет еще много сюрпризов, в том числе в механизмах их патогенеза и развития осложнений.
Но тест-системы на определение ОРВИ есть, они широко используются в системе надзора за гриппом и другими ОРВИ, осуществляемой, в частности, Национальным центром ВОЗ на базе НИИ гриппа им. Смородинцева Минздрава России. Что касается вакцин, то ОРВИ преимущественно вызваны РНК-содержащими, то есть сильно изменчивыми вирусами, и создать эффективную вакцину от них не так просто. Мы это видим на примере вакцины от гриппа, состав которой меняется ежегодно, и прививаемся мы ею не единожды в жизни, а практически каждый год. Попытки создать вакцины и против других ОРВИ предпринимались в 1960-е годы, но они оказались безуспешными. Ярким примером является респираторно-синцитиальная инфекция, вызывающая тяжелые заболевания нижних дыхательных путей, особенно у младенцев и детей младшего возраста. Была получена инактивированная вакцина, но на стадии клинических испытаний она не только не позволила защитить от инфекции, но и существенно утяжелила заболевание. После этого работы по вакцине против РС-инфекции были надолго закрыты. Только в наше время вновь вернулись к активной разработке этих вакцин, когда открыли молекулярные механизмы усиления инфекции, возникавшего при использовании вакцины в те годы, но уже с использованием новых технологий. Сейчас на стадии доклинических и клинических исследований находится несколько десятков вакцинных препаратов. Мы также проводим доклинические исследования нашего варианта вакцины против РС-инфекции в НИИ гриппа, работа финансируется Центром стратегического планирования и управления медико-биологическими рисками здоровью Минздрава России.
А были ли попытки создать вакцины от коронавирусов?
Андрей Васин: Среди сезонных респираторных вирусов встречается 4 типа коронавирусов: OC43, HKU1, NL63 и 229E. И если про коронавирусы SARS (атипичной пневмонии) и MERS (ближневосточного респираторного синдрома) люди еще слышали, то про эти четыре коронавируса ничего не знают. Против них не было разработано ни лекарств, ни вакцин. Если бы они были, мы чувствовали бы себя сейчас намного уверенней и смогли бы гораздо быстрее создать вакцину или лекарственный препарат от COVID-19.
На нашей памяти - эпидемия Эбола в Африке, вспышки других опасных вирусных лихорадок. Какие уроки были извлечены из них?
Андрей Васин: Вирус Эбола был хорошо известен специалистам и до эпидемии. Локальные вспышки заболевания фиксировались, но при чрезвычайно высокой летальности число заболевших было невелико. Эпидемия столь опасного вируса особенно в условиях бедных стран Африки - это событие чрезвычайное, требующее неотложных мер, что в конечном итоге и было сделано. На момент начала эпидемии различными лабораториями разрабатывался целый ряд препаратов против вируса Эбола, в том числе с использованием новых технологий. Был определенный задел и по вакцинам, который позволил оперативно инициировать их разработку. Эпидемия Эбола позволила апробировать целый ряд новых биотехнологических решений, которые можно применять в дальнейшем для борьбы и с другими вирусными инфекциями.
Как вы полагаете, какие изменения в нашей жизни, в организации санэпиднадзора и системы здравоохранения должны будут произойти после нынешней пандемии?
Андрей Васин: Основные изменения будут связаны скорее всего с экономическими последствиями пандемии. ВОЗ постоянно говорит о необходимости подготовки к пандемиям, разработаны соответствующие "дорожные карты". После пандемии COVID-19 эта работа будет усилена как на глобальном уровне, так и на уровне отдельных стран. А в обычной жизни, надеюсь, люди будут уделять гораздо больше внимания правилам личной гигиены, более ответственно относиться к респираторным заболеваниям и не приходить, например, на работу или в места скопления людей с ОРВИ, заражая окружающих. По крайней мере, хотя бы в первое время.
Многие годы нам рекомендовали в качестве профилактики вирусных инфекций то витамины, то модуляторы интерферонов. Теперь об этом что-то молчат. Установки изменились?
Андрей Васин: Возможно, появилась ответственность за то, что предлагаешь, так как спрос на эти предложения будет действительно серьезный. Надеюсь, что одним из положительных последствий ситуации будет и более серьезное отношение к тому, чем предлагается лечить ОРВИ. А также то, что число сторонников антипрививочного движения сократится. Ведь вакцины - это одно из величайших достижений человечества, позволившее спасти миллиарды человеческих жизней.
Как вы считаете, нужно ли все же выделить средства на изучение вроде бы не очень опасных респираторных вирусов, разработку тест-систем, доступную диагностику, вакцинопрофилактику и терапию?
Андрей Васин: Несомненно! В "мирное" время кажется, что есть более важные задачи, но вирусы - это реальная угроза человечеству. Мы живем в условиях постоянной биологической войны, только не рукотворной, а природной, которая длится миллиарды лет. Мы никогда не сможем полностью исключить вирусную угрозу, но должны быть максимально готовы ее предотвратить. Биологическая наука развивается семимильными шагами. Например, всего за несколько дней после идентификации вируса COVID-19 его геном был секвенирован и депонирован в общедоступные базы данных, что позволило оперативно начать разработку тест-систем и вакцин. В 2009 году, во время пандемии гриппа, вызванного вирусом А/H1N1, этот процесс занял гораздо больше времени. Нам нужно более подробно изучать вирусы человека и животных. Не надо забывать, что основной путь появления новых инфекций - зоонозный, поэтому крайне важно знать, что происходит с вирусами в естественных животных резервуарах. Нужно развивать новые технологии создания вакцин и препаратов. В этом смысле многообещающе выглядят РНК-вакцины, неслучайно им сейчас уделяют столько внимания. Именно это направление мы выбрали в СПбГПУ как основное.
Не знаю, насколько уместно будет такое сравнение, но инвестиции в вирусологию - это как страховой полис на автомобиль. Пока с автомобилем все в порядке, кажется: зачем я заплатил за полис, лучше бы потратил на что-то более насущное. Но если с автомобилем что-то случилось, начинаешь понимать, что без страхового полиса ты остался бы ни с чем. Думаю, что даже небольшой части суммы экономических потерь от нынешней пандемии хватило бы на поддержание и оснащение вирусологических лабораторий по всему миру на многие годы.
Читайте также: