Вирус встраивается в молекулу днк
- 6604
- 5,5
- 0
- 5
Вопрос о происхождении вирусов
Существует три основные теории возникновения вирусов [1]:
Зарождение жизни. Идея последнего универсального общего предка: каким он мог бы быть и что ему предшествовало?
Рисунок 1. Схема трехдоменной классификации, предложенная Вёзе. В основании этой схемы должен находиться последний универсальный общий предок (англ. last universal common ancestor, LUCA). Рисунок из Википедии.
Самый сильный аргумент в пользу существования LUCA — сохранившаяся общая система экспрессии генов (передачи наследственной информации от гена с образованием РНК или белков), одинаковая для всех живущих организмов. Все известные клеточные формы жизни используют один и тот же генетический код из 20 универсальных аминокислот и стоп-сигналов, закодированных в 64 кодонах (единицах генетического кода). Трансляция генетической информации в процессе синтеза белков по заданной матрице выполняется рибосомами, состоящими из трех универсальных молекул РНК и примерно 50 белков, из которых 20 так же одинаковы для всех организмов.
В 2010 году американский биохимик Даглас Теобальд математически проверил вероятность существования LUCA [6]. Он выбрал 23 белка, встречающихся у организмов из всех трех доменов, но имеющих разную структуру у различных видов. И исследовал эти белки у 12 различных видов (по четыре из каждого домена), после чего использовал компьютерное моделирование различных эволюционных сценариев, чтобы понять, при каком из них наблюдаемая картина будет наиболее вероятной. Оказалось, что концепция, включающая существование универсального предка, значительно вероятнее концепций, где его нет. Еще более вероятна модель, основанная на существовании общего предка, но допускающая обмен генами между видами [7].
Предположение о том, что LUCA был прокариотической клеткой, похожей на современные, часто принимается по умолчанию. Однако мембраны архей и бактерий имеют разное строение (рис. 2). Получается, что общий предок должен был обладать комбинаторной мембраной. Новая информация о мембранах LUCA появилась в 2012 году, когда несколько групп ученых подробно проанализировали историю генов всех ферментов биосинтеза компонентов липидов у бактерий, архей и эукариот [8].
Родственными у архей и бактерий оказались ферменты для синтеза терпеновых спиртов и пришивания полярных голов к спиртам. Значит, эти реакции мог проводить и LUCA. Проще всего было предположить, что липиды LUCA состояли из одного остатка терпенового спирта, остатка фосфата и полярной группы (серина или инозитола). Подобные липиды были синтезированы искусственно. Образующиеся из них мембраны обладают высокой подвижностью по сравнению с современными мембранами, хорошо пропускают ионы металлов и малые органические молекулы. Это могло позволять древним протоклеткам поглощать готовую органику из внешней среды даже без транспортных белков.
Реконструкции LUCA методами сравнительной геномики указывают на то, что это должен быть сложный организм без обширного ДНК-генома (геном, состоящий из нескольких сотен РНК-сегментов или ДНК провирусного типа). Но даже если считать возможность существования общего предка доказанной, остается загадкой, в какой среде он мог бы появиться.
Предполагается, что идеальные условия для формирования жизни существовали вблизи термальных геоисточников (морских или наземных) в виде сети неорганических ячеек, обеспечивающих градиенты температуры и рН, способствующих первичным реакциям, и предоставляющих универсальные каталитические поверхности для примитивной биохимии [10].
Эти отсеки могли быть населены разнородной популяцией генетических элементов. Вначале сегментами РНК. Затем более крупными и сложными молекулами РНК (один или несколько белок-кодирующих генов). А позднее и сегментами ДНК, которые постепенно увеличивались (рис. 3).
Такие простейшие генетические системы использовали неорганические соединения из раствора и продукты деятельности других генетических систем. Сначала они должны были подчиняться индивидуальному отбору ввиду большого разнообразия. Но ясно, что важным фактором такого отбора была способность передавать генетическую информацию, то есть, копировать себя. Присутствие одновременно в одной ячейке молекул, способных копировать РНК, кодировать полезные белки и управлять синтезом новых молекул, давало больше шансов выживать в каждой отдельной ячейке. И в такой системе рано или поздно должны были появиться паразитирующие элементы. А если это так, то вирусные элементы стоят у самых истоков эволюции [11].
Возникновение паразитов — неизбежное последствие эволюционного процесса
Рисунок 4. Схематическое представление структуры модели эволюции РНК-подобной системы. На втором этапе цепочки последовательностей начинают соединяться комплементарными связями сами с собой. В результате у двух видов (cat-C и cat-A) возникает вторичная структура молекулы, которая обладает каталитическим свойством. Она ускоряет собственную репликацию (или репликацию несвернувшихся соседей). Два вида при этом приобретают паразитические свойства (par-G и par-U). Пояснения в тексте. Рисунок из [12].
Таким образом, паразитарные репликаторы способствуют эволюции разнообразия, вместо того, чтобы мешать этому разнообразию. Это также делает существующую систему репликатора чрезвычайно стабильной при эволюции паразитов.
Согласно гипотезе Черной Королевы, чтобы поддержать свое существование в постоянно эволюционирующем мире, вид должен реагировать на эти эволюционные изменения и должным образом приспосабливаться к среде. Поэтому, если мы говорим о вирусах как о паразитах, мы обязаны представлять себе взаимоотношения вируса с хозяином. В борьбе с вирусом хозяева развивают новые защитные механизмы, а паразиты отвечают, развивая механизмы для атаки и взлома защиты. Этот процесс может длиться бесконечно либо до вымирания одной из противоборствующих сторон. Так множественные системы защиты составляют существенную часть геномов всех клеточных организмов, а взлом защиты — одна из основных функций генов у вирусов с большими геномами*.
Механизмы клеточной защиты против вирусов
Механизмы защиты от вирусов стандартны, поскольку все вирусы уникальны, и приспособиться к каждому не представляется возможным. Это такие механизмы как:
- Деградация РНК (вирусных и клеточных) — РНК-интерференция;
- Угнетение синтеза белков (вирусных и клеточных);
- Ликвидация зараженных клеток — апоптоз (программируемая клеточная смерть);
- Воспаление.
Получается, что клетка борется с вирусом, нарушая собственные обмен веществ и/или структуру. Защитные реакции клетки — это в основном самоповреждающие механизмы.
Вирус заражает конкретную клетку потому, что его механизмы нападения направлены именно против данного типа клеток. Это такие механизмы как:
- Угнетение синтеза клеточной РНК;
- Угнетение синтеза клеточных белков;
- Нарушение клеточной инфраструктуры и транспорта;
- Подавление/включение апоптоза и других видов клеточной смерти.
Схемы защитных приемов клетки и противозащиты вирусов во многом идентичны. Вирусы и клетки применяют одни и те же приемы. Для подавления синтеза вирусных белков клетка использует интерферон, а чтобы подавить образование интерферона, вирус угнетает синтез белков.
Поскольку узнавание вируса неспецифическое, клетка не может знать намерения конкретного вируса. Она может бороться с вирусом лишь стандартными приемами, поэтому ее оборонные действия часто могут быть чрезмерными.
Понятие о вирусном геноме, типы вирусных генов, концепция генов-сигнатур
В исследовании, проведенном вирусологом Евгением Куниным и его коллегами [16], анализ последовательностей вирусных геномов выявил несколько категорий вирусных генов, принципиально отличающихся по происхождению. Можно обсуждать, какая степень дробности классификации оптимальна, но четко различаются пять классов, укладывающихся в две более крупные категории.
Гены с четко опознаваемыми гомологами у клеточных форм жизни:
- Гены, присутствующие у узких групп вирусов (обычно это гены, гомологичные генам хозяев этих вирусов).
- Гены, консервативные среди большой группы вирусов или даже нескольких групп и имеющие относительно отдаленные клеточные гомологи.
Таким образом, отличительные особенности генов-сигнатур:
- Происхождение из первичного пула генов;
- Наличие лишь очень отдаленных гомологов среди генов клеточных форм жизни, из чего можно сделать вывод, что они никогда не входили в геномы клеточных форм;
- Необходимость для репродукции вирусов.
Из всего вышесказанного следует, что эти гены переходили от вируса к вирусу (или к элементу, подобному вирусу) на протяжении четырех миллиардов лет эволюции жизни, а вирусные геномы появились благодаря перемешиванию и подгонке друг к другу генов в гигантской генетической сети, которую представляет собой мир вирусов. Многочисленные гены клеточных форм жизни также пронизывают эту сеть, прежде всего благодаря геномам крупных вирусов, таких как NCDLV и крупным бактериофагам, которые позаимствовали множество генов от своих хозяев на разных этапах эволюции. Однако большинство заимствованных генов сами по себе не критичны для репликации и экспрессии вирусного генома (исключая некоторые случаи возможного неортологичного замещения генов-сигнатур); обычно эти гены участвуют во взаимодействии между вирусом и хозяином. Таким образом, несмотря на интенсивный взаимообмен генами с хозяевами, вирусы всегда происходят от других вирусов.
Вирусы, встроенные в геном, и горизонтальный перенос генов
В процессе эволюции многие вирусы встроились в геномы клеточных форм жизни путем горизонтального переноса генов (ГПГ). Впервые горизонтальный перенос был описан в 1959 году, когда ученые продемонстрировали передачу резистентности к антибиотикам между разными видами бактерий. В 1999 году Рави Джайн, Мария Ривера и Джеймс Лейк в своей статье писали о произошедшей значительной передаче генов между прокариотами [17]. Этот процесс, по-видимому, оказал некоторое влияние также и на одноклеточные эукариоты. В 2004 году Карл Вёзе опубликовал статью, в которой утверждал, что между древними группами живых организмов происходил массивный перенос генетической информации. В древнейшие времена преобладал процесс, который он называет горизонтальным переносом генов. Причем, чем дальше в прошлое, тем это преобладание сильнее [18].
Горизонтальный перенос генов — процесс, в котором организм передаёт генетический материал другому организму, не являющемуся его потомком. Горизонтальная передача генов реализуется через различные каналы генетической коммуникации — процессы конъюгации, трансдукции, трансформации, переноса генов в составе плазмидных векторов, вирусов, мобильных генетических элементов (МГЭ).
Трансдукция — перенос бактериофагом (агентами переноса генов, АПГ) в заражаемую клетку фрагментов генетического материала клетки, исходно содержавшей бактериофаг [19]. Такой бактериофаг обычно переносит лишь небольшой фрагмент ДНК хозяина от одной клетки (донор) к другой (реципиент). В зависимости от типа трансдукции — неспецифической (общей), специфической или абортивной, геном фага или хозяина-бактерии может быть изменен тем или иным образом:
- При неспецифической трансдукции (рис. 5) ДНК клетки-хозяина включаются в частицу фага (дополнительно к его собственному геному или вместо него);
- При специфической трансдукции гены фага замещаются генами хозяина;
- При абортивной трансдукции внесённый фрагмент ДНК донора не встраивается в ДНК хозяина-реципиента, а остаётся в цитоплазме и не реплицируется. Это приводит к тому, что при клеточном делении он передаётся только одной из дочерних клеток и затем теряется в потомстве.
Рисунок 5. Схема общей трансдукции. Фото с сайта vkjournal.ru.
Наиболее известным примером специфической трансдукции служит трансдукция, осуществляемая фагом λ. Поскольку этот фаг при переходе в состояние профага включается в хромосому бактерий между генами, кодирующими синтез галактозы и биотина, именно эти гены он может переносить при трансдукции.
Вот несколько примеров важных эволюционных событий, связанных с молекулярным одомашниванием:
- Ферменты теломеразы, служащие для восстановления концевых участков хромосом, возможно, ведут свое происхождение от обратных транскриптаз, кодируемых ретровирусами и ретротранспозонами [22];
- Белки RAG, играющие ключевую роль в системе адаптивного иммунитета, по-видимому, происходят от прирученных транспозаз — ферментов, кодируемых транспозонами;
- Ген Peg10, необходимый для развития плаценты, был позаимствован древними млекопитающими у ретротранспозона (рис. 6) [23].
Рисунок 6. Роль гена Peg10 в эмбриональном развитии. Ученые под руководством Рюичи Оно из Токийского медицинского университета Японии показали, что у мышей с выключенным геном Peg10 нарушается развитие плаценты, от чего эмбрион погибает через 10 дней после зачатия [24]. Фото с сайта flickr.com.
В 2008 году в ходе целенаправленного поиска неиспорченных вирусных генов в геноме человека исследователи нашли два очень похожих друг на друга ретровирусных гена (их назвали ENVV1 и ENVV2), которые, по всей видимости, находятся в рабочем состоянии [25]. Это гены белков оболочки ретровируса. Каждый из них входит в состав своего эндогенного ретровируса (ЭРВ), причем все остальные части этих ЭРВ давно не функционируют.
Вирусные гены ENVV1 и ENVV2 у человека и обезьян работают в плаценте и, скорее всего, выполняют следующие функции:
Таким образом, как минимум три полезных применения нашли себе вирусные гены в плаценте приматов. Это показывает, что генетические модификации, которым ретровирусы подвергают организмы, в долгосрочной перспективе могут оказаться полезными или даже определить развитие вида. И с учетом всего вышесказанного древо доменов должно выглядеть как на схеме ниже (рис. 7).
Рисунок 7. Горизонтальный перенос генов в рамках трехдоменного дерева. Рисунок из [26].
Заключение
Возникновение паразитов — обязательная черта эволюционирующих систем репликаторов, а соревнование хозяев и паразитов движет эволюцию тех и других. Любой организм является результатом миллионов лет борьбы клеток с невероятно разнообразным миром вирусов. Их действия и их эволюция пронизывают всю историю клеточной эволюции, и сейчас меняется само наше представление о них. Когда-то вирусы считали деградировавшими клетками, но чем больше мы узнаем о вирусах, тем очевиднее, что их роль в общей эволюции значительна. И невероятно много нам еще предстоит узнать.
Статья написана в соавторстве с Евгенией Щепенок.
Открытие вирусов
В 1892 году Д.И. Ивановский (см. Рис. 1), изучая мозаичную болезнь табака (см. Рис. 2), установил, что причиной заболевания является некое инфекционное начало, содержащееся в листьях больных растений, которое проходит через фильтр, задерживающий обыкновенные бактерии. Если профильтрованный сок внести в листья здоровых растений, то они также заболевают мозаичной болезнью.
Рис. 1. Д.И. Ивановский
Рис. 2. Мозаичная болезнь табака
В 1898 году независимо от Ивановского аналогичные результаты получил голландский микробиолог М. Бейеринк. Однако он предположил, что мозаичную болезнь табака вызывают не мельчайшие бактерии, а некое жидкое заразное начало, которое он назвал фильтрующим вирусом.
Размеры вирусов определяются нанометрами (20-200 нм), поэтому их изучение началось после открытия электронного микроскопа. В настоящее время описаны вирусы практически всех групп живых организмов.
Строение вирусов
Вирусы – неклеточные формы жизни. Они состоят (см. Рис. 3) из фрагмента генетического материала (РНК или ДНК), составляющего сердцевину вируса, и защитной оболочки, которая называется капсид. У некоторых вирусов (герпес, грипп) есть дополнительная липопротеидная оболочка – суперкапсид, которая возникает из плазматической мембраны клетки-хозяина.
Рис. 3. Строение вируса
Вирусы не способны к самостоятельной жизнедеятельности. Они могут проявлять свойства живого, только попав в клетку-хозяина. Они используют потенциал и энергию этой клетки для создания своих новых вирусных частиц, следовательно, вирусы являются внутриклеточными паразитами.
Размножение вирусов
Обычно вирус связывается с поверхностью клетки-хозяина и проникает внутрь. Каждый вирус ищет своего хозяина, то есть клетки строго определенного вида. Например, вирус – возбудитель гепатита (желтуха) проникает и размножается только в клетках печени, а вирус эпидемического паротита (свинка) – только в клетках околоушных слюнных желез человека.
Проникнув внутрь клетки-хозяина, вирусная ДНК или РНК начинает взаимодействовать с ее генетическим аппаратом таким образом, что клетка начинает синтезировать белки, свойственные вирусу (см. Рис. 4).
Рис. 4. Схема репродукции вируса
При заражении ретровирусом (например, вирус иммунодефицита человека (ВИЧ)), у которого в качестве генетического материала используется молекула РНК, наблюдается другая картина. При попадании ретровируса в клетку-хозяина происходит обратная транскрипция. То есть на основе вирусной РНК синтезируется вирусная ДНК, которая встраивается в ДНК человека. Такой тип взаимодействия вируса с клеткой называется интегративным, а встроенная в состав хромосомы клетки ДНК вируса называется провирусом. Далее провирус реплицируется (удваивается) в составе хромосомы и переходит в геном дочерних клеток. Однако под влиянием некоторых физических и химических факторов провирус может выщепляться из хромосомы клетки и переходить к продуктивному типу взаимодействия, то есть синтезировать новые вирусные частицы.
При заражении ВИЧ человек чувствует себя здоровым, пока вирусный генетический материал встроен в хромосому человека. Однако при выщеплении этого вирусного генетического материала из клетки она начинает образовывать новые вирусные частицы, вследствие чего развивается смертельное заболевание – синдром приобретенного иммунодефицита (СПИД).
Вирусы являются возбудителями большого количества заболеваний человека: корь, грипп, оспа, краснуха, энцефалит, свинка, гепатиты, СПИД. Известен также целый ряд заболеваний растений, вызываемых вирусами, например мозаичная болезнь табака, томатов, огурцов или скручивание листьев картофеля. Всего описано около 500 видов вирусов, поражающих клетки позвоночных животных, и около 300 вирусов растений. Некоторые вирусы участвуют в злокачественном перерождении клеток и тем самым провоцируют онкологические заболевания.
ДНК- и РНК-содержащие вирусы
В зависимости от содержащегося генетического материала вирусы подразделяются на ДНК-содержащие и РНК-содержащие.
Одноцепочные РНК-содержащие вирусы подразделяются на:
1. Плюс-нитевые (положительные). Плюс-нить РНК этих вирусов выполняет наследственную (геномную) функцию и функцию информационной РНК (иРНК).
2. Минус-нитевые (отрицательные). Минус-нить РНК этих вирусов выполняет только наследственную функцию.
К РНК-содержащим вирусам относятся более
вирусов, вызывающих респираторные заболевания, а также вирус гриппа, кори, краснухи, свинки, ВИЧ. Также существует специфическая группа вирусов – арбовирусы, которые переносятся членистоногими.
Двухцепочные ДНК-содержащие вирусы вызывают такие заболевания, как папиллома человека или герпес, гепатит В (гепатит А и гепатит С вызывается РНК-содержащими вирусами).
ДНК-содержащие вирусы поражают также растения. Они вызывают, например, золотую мозаику бобов или полосатость у кукурузы.
Вирус гепатита С
По своему строению вирус гепатита С – это РНК-содержащий вирус, имеющий сферическую форму, сложно устроенный (см. Рис. 5).
В качестве генетического материала такой вирус содержит линейную однонитчатую молекулу РНК.
Рис. 5. Гепатит С
Вопреки бытующим предрассудкам, подцепить вирус гепатита C невозможно через социальные контакты (поцелуи, объятия), через продукты или воду, через грудное молоко. Вы ничем не рискнете, если разделите с носителем вируса трапезу или напитки. Заразиться гепатитом C можно при контакте с кровью инфицированного человека либо половым путем.
В настоящее время для лечения гепатита С используют два препарата: Интерферон альфа и Рибавирин.
Бактериофаги
Рис. 6. Бактериофаг (Источник)
Особую группу вирусов составляют бактериофаги (или просто фаги), которые заражают бактериальные клетки (см. Рис. 6). Фаг укрепляется на поверхности бактерии при помощи специальных ножек и вводит в ее цитоплазму полый стержень, через который проталкивает внутрь клетки свою ДНК или РНК. Таким образом, генетический материал фага попадает внутрь бактериальной клетки, а капсид остается снаружи. В цитоплазме начинается репликация генетического материала фага, синтез его белков, построение капсида и сборка новых фагов. Уже через 10 мин после заражения в бактерии формируются новые фаги, а через полчаса бактериальная клетка разрушается, и из нее выходят около 200 заново сформированных вирусов – фагов, способных заражать другие бактериальные клетки (см. Рис. 7). Некоторые фаги используются человеком для борьбы с болезнетворными бактериями, вызывающими холеру, дизентерию, брюшной тиф.
Рис. 7. Схема размножения бактериофага (Источник)
Список литературы
- Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
- Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.
- Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.
- Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Домашнее задание
Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.
Как бы ни относиться к текущему сокращению всех и всяческих сношений, видеть в них адекватную меру против заразы, полагать, что власти находятся в состоянии перебдения или, напротив, недобдения и надо еще строже, — в любом случае тенденция к изоляции есть медицинский факт во всех значениях этого слова.
Не избежали этого и внешнеполитические сношения. Известия об отмене встреч и визитов идут одно за другим. Политики никуда не ездят, а сидят запершись дома, порой вещая через традиционные СМИ и соцсети.
Это, конечно, представляет сильный контраст с тем, что наблюдалось еще месяц-другой назад. В эпоху, предшествующую COVID-19, интенсивность международных сношений на высшем уровне и тем более на уровне министров иностранных дел била все рекорды.
Министры так вообще жили в самолетах: приземлился, встретился с коллегой и дальше полетел на новое свидание. Главы государств если и отставали, то не слишком, как будто стремясь к идеалу Благословенного царя "Всю жизнь прожил в дороге".
Теперь об этом странно и вспоминать — настала эпоха домоседов.
Однако в домоседстве высших лиц нет ничего нового. Много столетий, вплоть до середины XX века, это было нормой, а разъезды представляли собой исключение — поездки на войну или на послевоенную мирную конференцию, что случалось совсем не каждый день.
Дипломатия же препоручалась послам, которые от имени своего государя вели переговоры, парафировали соглашения, а также, понятное дело, интриговали. Подпись суверена на соглашении была последним, завершающим этапом, а главная дипломатическая кухня варилась на посольском уровне.
Соответственно, послы добрынинского типа (А. Ф. Добрынин был послом СССР в США с 1962 по 1986 год и пользовался чрезвычайным доверием при американском дворе) в прежние времена были не уникальным случаем. Классик французской дипломатии Поль Камбон был послом в Лондоне с 1898 по 1920 год и, заняв свой пост, когда отношения между Францией и Великобританией были на грани войны, добился заключения сердечного согласия между двумя державами. Список выдающихся послов былого времени можно долго перечислять.
Прежнему очень высокому значению посольской должности способствовала традиция еще XVII-XVIII веков, когда и явились постоянные дипломатические миссии. Средства телекоммуникации были тогда таковы, что посол был подобен кораблю в автономном плавании. Конечно, он имел инструкции от своего государя, но оперативное управление политикой было физически невозможно. Курьер, загоняя лошадей, мог передать донесение в столицу и привезти ответ дней где-то за десять. В острой ситуации это слишком много, послу приходилось решать самому.
С появлением железных дорог (тем более авиации), телеграфа и радио возможности связи улучшились, но традиция автономии сохранялась. Да и не все можно решить депешами из центра. Политика являет собой столь хитросплетенный клубок, что дипломатический агент на месте всегда будет лучше знать и понимать те мелочи, которые могут иметь решающее значение. Так что по-хорошему, пока есть дипломатия, послы останутся необходимы и стремительные авиационные сношения державцев кропотливую работу посольств не заменят.
Тем более что в последнее время наблюдалась очевидная пропорция: чем чаще и больше происходят встречи и съезды на высшем уровне, тем больше заходит в тупик мировая политика. Беспрестанные личные сношения — хоть с галстуками, хоть без галстуков — не помогают, если не мешают.
Замена личных встреч телеконференциями вряд ли будет полноценной. Удаленная связь не способна передать важные нюансы. Иначе купцы во всем мире только посредством нее бы и общались — какова экономия! — чего, однако, не наблюдается. Так что в наступающие новые времена можно ждать возрождения посольской дипломатии, послы обретут прежнее значение и почет.
И все бы хорошо, когда бы не одно но. Никакой посол и тем более никакая телеконференция не заменят символических свиданий, которые в дипломатии тоже бывают весьма важны. В последнее время, бесспорно, этим символическим значением безбожно злоупотребляли, раз встретились-де, значит, и все в порядке. Тем не менее abusus non tollit usum. В некоторых случаях самый факт свидания имеет важное протокольное значение, а его отсутствие — не менее важное негативное значение.
В этом смысле нынешняя крайняя затрудненность сношений ставит под вопрос как символизм визита державцев в Москву на 9 Мая, так и замысел Ялты № 2, т. е. съезд глав пяти держав, членов Совета Безопасности ООН. Остается лишь рассчитывать на то, что за оставшиеся полтора месяца успехи гигиены и санитарии нам помогут. Источник
Почти восемь процентов ДНК человека приходится на фрагменты древних вирусов. Одни привели к полезным мутациям, повлиявшим на эволюцию, другие — к болезням. Изучая эти вирусные элементы, генетики доказали, что люди в прошлом не раз благополучно переживали опасные пандемии. Чем грозит нашему геному новый коронавирус — в материале РИА Новости.
В человеческом геноме содержится около 98 тысяч эндогенных ретровирусных элементов (ЭРВ) — последовательностей ДНК древних вирусов, которыми когда-то заражались наши предки. По разным данным, ЭРВ объединяются в 30-50 семейств, которые, в свою очередь, подразделяются почти на двести групп и подгрупп.
И лишь менее одного процента ЭРВ встречается только у человека. То есть они встроились в геном уже после того, как ветви людей и шимпанзе разделились. По подсчетам, последний ретровирус, сумевший стать частью нашей ДНК, инфицировал человеческую популяцию около 150 тысяч лет назад.
Судя по его первоначальному геному, который удалось восстановить сразу двум группам ученых, это был крайне заразный экзогенный ретровирус. Иными словами, сотни тысяч лет назад наши предки пережили настоящую пандемию.
"В геном интегрировались только те вирусы, которые обладали механизмом обратной транскрипции, то есть умели из РНК делать ДНК. Поэтому их еще называют ретровирусами. Когда такая частица проникала в клетку, превращала РНК в ДНК, а затем встраивала его в геном и оставалась там, как сейчас выясняется, на века. Но тут есть нюанс. Эти древние вирусы могли инфицировать либо половые клетки, либо герминальные — из них на ранних стадиях эмбриогенеза образуются сперматозоиды и яйцеклетки. И это на самом деле нетривиальная задача, потому что большинству вирусных частиц половые клетки неинтересны. Их слишком мало. Зато, попав в них, вирус размножается как горизонтально, так и вертикально — передаваясь потомкам хозяина. Но это бывает крайне редко", — объясняет РИА Новости заведующий лабораторией геномной инженерии МФТИ, вирусолог Павел Волчков.
Ретровирус прикрепляется к строго определенным клеткам хозяина, так как белки его оболочки (капсида) соответствуют рецепторам на поверхности этих клеток. После попадания внутрь капсид распадается под действием либо клеточных ферментов, либо собственных. Вирусная РНК высвобождается и подвергается обратной транскрипции: обратная транскриптаза собирает цепочки ДНК по матрице РНК. Затем эта провирусная ДНК проникает в ядро клетки и встраивается в геном хозяина. В ядре вирусная РНК собирается вновь, а в цитоплазме она обзаводится капсидом. Новый вирус выходит из клетки
В 2014 году британские исследователи подсчитали, что за последние десять миллионов лет в геномах 38 видов животных осело больше 27 тысяч эндогенных ретровирусных элементов. Причем чем крупнее был организм, тем меньше ЭРВ встречалось в его ДНК. Так, если у мыши обнаружили почти три с половиной тысячи вирусных вставок, то у человека — чуть больше тысячи, а у синего кита — и вовсе только 55.
Авторы работы предположили, что обилие этих вирусных участков в геноме потенциально опасно: они могут быть связаны с мутациями, в результате которых развиваются злокачественные опухоли. А чем крупнее животное, тем реже болеет раком.
Однако уже через год международная группа ученых доказала, ЭРВ — не вредный генетический мусор. Они играют важную роль в процессе развития эмбриона у приматов, а значит, и человека. Выяснилось, что у молекул РНК, транскрибируемых из межгенных участков ДНК, вирусная природа. И их блокировка полностью останавливает рост зародыша.
В начале нулевых расшифровали нуклеотидные последовательности ДНК многих видов животных. Оказалось, что все эндогенные вирусы расположены в строго определенных местах. Некоторые ЭРВ встречались лишь у человека или кошки, другие же были общими сразу для нескольких видов — скажем, человека, шимпанзе, гориллы и орангутана.
"Прослеживая интеграцию этих ретровирусов в нашу ДНК, можно понять, когда именно разошлись те или иные ветви эволюционно. Потому что встраивание вируса — это событие с конкретной датой, когда какой-то наш общий предок был инфицирован. Вирус встроился в его геном, и теперь этот кусок ДНК есть у всех на планете. Понятно, что таких случаев в процессе эволюции у нас было много. И одинаковое расположение одних и тех же вирусных вставок в геномах двух или более животных говорит о том, что они произошли от одного предка", — говорит Павел Волчков.
По его словам, хотя в геноме эти вирусы, как правило, неактивны, они могут провоцировать новые мутации, в том числе и полезные.
"При делении клеток ДНК постоянно повреждается. Для починки используются точно такие же области другой, сестринской хромосомы. Но из-за огромного количества повторяющихся эндогенных ретровирусов, интегрированных в наш геном, репарационный механизм может "перепутать" место. В результате происходит либо транслокация (перестройка), либо инверсия, которые способны привести к мутации. Для отдельного индивидуума это играет нейтральную либо негативную роль. Но для видообразования это крайне важный процесс, поскольку так возникают новые гены", — отмечает ученый.
Согласно работе датских исследователей, подобным образом появились гены ENVV1 и ENVV2, управляющие слиянием клеток в процессе формирования наружного слоя плаценты. Также они защищают эмбрион от иммунной системы матери. По подсчетам биологов, эти гены остались от древних вирусов, инфицировавших нашего далекого предка 50-70 миллионов лет назад.
Российские ученые предполагают, что ЭРВ сыграли решающую роль в развитии умственных способностей Homo sapiens. Так, один из вирусных элементов, встречающийся только в человеческой ДНК, расположен около гена PRODH и, судя по всему, усиливает его активность. Этот ген кодирует фермент, связанный с синтезом одного из нейромедиаторов, который стимулирует передачу сигналов возбуждения в нервной системе. У наших ближайших родственников, шимпанзе, тоже есть PRODH, но нет ЭРВ, и этот ген у них менее активен.
Когда вирус внедряется в ДНК
Несмотря на значительное количество ЭРВ в геномах животных, вирусы довольно редко могут встроиться в ДНК половых клеток и закрепиться в ней навсегда, считают специалисты. Поэтому вероятность того, что патогены, циркулирующие сегодня в человеческой популяции, — вирус Эбола, Зика или новый коронавирус — встроятся в геном, крайне мала. Даже наиболее подходящий на эту роль ВИЧ, относящийся к семейству ретровирусов, не способен поражать половые клетки.
"Встроиться в геном может только ретровирус, имеющий ДНК-стадию. Правда, есть маленькое исключение: когда клетка одновременно заражается двумя инфекционными частицами, одна из которых относится к семейству ретровирусов. Но это достаточно случайное событие. Его нельзя отрицать, потому что следы таких событий у нас в геноме есть. Однако его вероятность близка к нулю", — пояснил Павел Волчков.
Читайте также: