Воздействие лазерного излучения на вирусы
Лазеры генерируют электромагнитное излучение в одночастотных и многочастотных режимах во всех участках спектрального диапазона от ультрафиолетового до инфракрасного. Мощность лазерных установок колеблется от долей милливатт до сотен мегаватт. При этом можно получить как луч направленного действия, так и расфокусированное излучение 2. В медицине используется низкоинтенсивное лазерное излучение (НИЛИ), которое относится к красному и инфракрасному диапазонам. Воздействие НИЛИ на биологические ткани зависит от активизации биохимических реакций и физических параметров излучения [3]. Под влиянием НИЛИ атомы и молекулы биологических тканей переходят в возбужденное состояние, активнее участвуют в физических и физико-химических взаимодействиях [7]. Известно, что биологические объекты, в том числе бактериальные клетки, способны поглощать кванты лазерного излучения. Согласно закону Эйнштейна-Старка о фотохимическом эквиваленте, на каждый поглощенный фотон при фотохимической реакции образуется активированная частица (атом, молекула, свободный радикал). Эффект лазерного излучения определяют физические свойства излучения и свойства биологического объекта воздействия.
Одной из главных характеристик лазерного излучения является его интенсивность. Лазерное излучение высокой интенсивности вызывает обезвоживание, испарение жидкой части клеток, облучение средней интенсивности – коагуляцию белковой фракции клетки. Низкоинтенсивное лазерное излучение (не более 100 мВт/см2) влияет на энергетический потенциал молекул, что отражается на кинетике биохимических процессов. Степень соответствия длины волны излучения максимуму поглощения определяет проницаемость тканей для лазерного излучения. Биологические объекты весьма чувствительны к излучению лазеров низкой интенсивности. Существует несколько гипотез, отражающих предполагаемый первичный эффект взаимодействия НИЛИ с биологическими системами. Лазерное излучение активизирует некоторые ферменты-акцепторы, спектр поглощения которых совпадает с его энергетическим спектром. Считают, что такими акцепторами для гелий-неоновых лазеров являются каталаза, церрулоплазмин, супероксиддисмутаза [7], НАДФН-дисмутаза, протопорфирин и его производные. Ведущая роль в абсорбции излучения гелий-кадмиевого лазера принадлежит рибофлавину и цитохромоксидазе [4]. Поглощая энергию лазерного излучения, акцепторы (ферменты, биологически активные вещества) запускают регулируемые ими биохимические процессы. Вторая концепция предполагает неспецифическое действие излучения на биополимеры (белки, липиды, мембраны, ферменты). При этом меняется их конформационное строение и функциональное состояние. Энергия, необходимая для конформационных переходов биополимеров, невелика, поэтому слабые энергетические факторы (низкоинтенсивное лазерное излучение) могут влиять на электронно-конформационные взаимодействия. Согласно третьей концепции, в результате действия НИЛИ образуются активные формы кислорода (синглетный кислород), которые индуцируют окислительные процессы. Одним из механизмов действия НИЛИ является изменение физико-химических характеристик воды [10]. Четвертая гипотетическая модель основана на влиянии энергии лазерного излучения на скорость переходов реакции ассоциации-диссоциации структурных элементов воды с сохранением или с изменением количества ассоциаций и диссоциаций молекул. Преобладание диссоциации в системе ассоциированных компонентов ускоряет деструкцию элементов и наоборот. Лазерная энергия может накапливаться, создавая эффект пружины [6]. В.Е. Кузьмичев предлагают концепцию, базирующуюся на нелинейности поглощения энергии [13]. Квант света увеличивает колебательную энергию многоатомных биомолекул или становится источником энергии, используемой в биохимических процессах. Отклик системы на физический фактор определяются выраженностью изменений колебательной энергии молекул. Максимальный положительный биологический эффект достигается определенной оптимальной дозой лазерного излучения, создающей максимальную вероятность возбуждения большого количества молекул и дальнейшего их перехода на другой энергетический уровень.
Согласно биофотонной концепции F. Popp при возбуждении биополимеров (например, ДНК), возбужденный электрон делокализуется в электронном облаке молекулы, образуя нелинейные устойчивые вихревые сгустки энергии (поляритоны) [19] . Поляритоны способны накапливать энергию, а затем терять ее в виде излучения с большей длиной волны. Этот процесс описывается явлением возврата Ферми-Паста-Улама. НИЛИ стимулирует изменения, которые реализуются на всех уровнях организации живой материи: субклеточном, клеточном, тканевом, органном, организменном [11]. Экспериментальные и клинические исследования свидетельствуют об изменении энергетической активности и конформационного состояния мембран, основных ферментных систем, биосинтетических и окислительно-восстановительных процессов, структурно-функциональных преобразованиях межклеточного пространства, увеличении продукции макроэргических соединений, повышении митотической активности клеток.
Следует подчеркнуть, что НИЛИ способствует улучшению жизнедеятельности только при адекватной дозировке, в других случаях его действие является или неэффективным, или угнетает функции биологического объекта [15]. Возможность передозировки лазерного излучения установлена И.М. Байбековым с соавт. [3] на основании изучения морфологических эффектов различных видов НИЛИ, вызывающих обратимые и необратимые альтерации клеточных структур. Одним из эффектов лазерного поражения клетки является вакуолизация цитоплазмы, связанная с нарушением проницаемости клеточной оболочки за счет инактивации преимущественно а-каналов, внутриклеточных мембран [8]. Степень выраженности повреждающего действия зависит от типа клетки, длины волны, мощности излучения.
Одним из важнейших вопросов в проблеме взаимодействия НИЛИ с биологическим объектом является вопрос об акцепторе фотонов лазерного луча. Поиски фотоакцепторов (фоторецепторов) лазера были начаты на культурах прокариотических клеток, в том числе на клетках E.coli и кокков [5], паразитических простейших Leishmania spp. [2]. Результаты этих исследований неоднозначны. Одними авторами показано, что лазерное излучение с длиной волны 0,63 мкм и мощностью от 30 до 80 мВт не оказывает влияния на бактериальные клетки. В частности – на биологические и культуральные свойства E. Coli [5]. Другие авторы показали, что в результате воздействия лазерного излучения в ранах отмечается снижение микробных ассоциаций: в 3 раза реже обнаруживается грамотрицательная флора, в 2 раза реже – гемолитический стрептококк и грамположительные палочки [9]. Большое число работ по изучению влияния лазерного излучения выполнено не только на клеточном и молекулярном уровнях, но и на организме экспериментальных животных и человека.
Летальные эффекты лазерного излучения на некоторые виды кокков и кишечной палочки наблюдали С. Файн и Э. Клейн [16]. Были получены обнадеживающие экспериментальные данные по стерилизации молока путем облучения лазером. Гибнут бактерии при воздействии лазера длинной волны около 700 нм с энергией 200 Дж. При этом происходит денатурация белка и повреждение нуклеиновых кислот.
При исследовании влияния когерентных лучей ультрафиолетового лазера на содержание Streptococcus lactis в молоке, в зависимости от частоты дозы и времени облучения, было обнаружено, что лазерное облучение Streptococcus lactis с частотой 50 имп/с и суммарными дозами 31, 62 и 750 мВт • с/см 2 практически не влияет на количественный состав микроорганизмов. Облучение Streptococcus lactis импульсным лазером, действующим в ультрафиолетовой области спектра с длиной волны (337 ± 1,5) нм и частотой 50 имп/с в течение 20 мин вызывает летальный исход бактерий на 41,3%. Облучение с частотой 100 имп/с в течение 10 и 20 мин вызывает гибель их соответственно на 30,8 и 63,7% [17]. Установлено, что лазерное излучение с длиной волны 805 нм и интенсивностью 46 мВт/см2 подавляет рост клеток S. Aureus на 5%– 21% по сравнению с контрольными данными [12].
Использование красного излучения (625 нм) при фотовоздействии на P. acnes было достаточно эффективным. Снижение числа КОЕ происходило после 5 мин облучения на 33%, после 10 мин – на 20%, после 15 мин – на 34%, после 30 мин – на 51% [14]. Лазерная и световая терапия с длинами волн 400–700 нм находит терапевтическое обоснование ввиду фотохимических особенностей молекул порфиринов – эндогенных красителей в клетках P. acnes. Наиболее эффективно порфирины поглощают свет с длинами волн 400−420 нм, что соответствует так называемой полосе Соре. Но существуют и Q-полосы менее эффективно поглощающие излучение с длинами волн 500−700 нм. Подобное воздействие приводит к образованию порфиринами активных радикалов, которые незамедлительно вызывают разрушение бактериальной клетки [18].
Таким образом, действие лазера, в зависимости от мощности, интенсивности, частоты излучения, времени экспозиции, позволяя избирательно воздействовать на субклеточные структуры, вызывает у прокариотических клеток изменения морфологических и биохимических свойств на различных уровнях, от адаптации и активации физиологических процессов до утраты жизнеспособности.
Лазеры становятся все более важными инструментами исследования в области медицины, физики, химии, геологии, биологии и техники. При неправильном использовании они могут ослеплять и наносить травмы (в т. ч. ожоги и электротравмы) операторам и другому персоналу, включая случайных посетителей лаборатории, а также нанести значительный ущерб имуществу. Пользователи этих устройств должны в полной мере понимать и применять необходимые меры безопасности при обращении с ними.
Что такое лазер?
Существует множество различных типов лазеров, работающих в разных средах. В качестве рабочей среды используются газы (например, аргон или смесь гелия с неоном), твердые кристаллы (например, рубин) или жидкие красители. Когда энергия подается в рабочую среду, она переходит в возбуждённое состояние и высвобождает энергию в виде частиц света (фотонов).
Пара зеркал на обоих концах герметизированной трубки либо отражает, либо передает свет в виде концентрированного потока, называемого лазерным лучом. Каждая рабочая среда производит луч уникальной длины волны и цвета.
Цвет света лазера, как правило, выражается длиной волны. Он является неионизирующим и включает ультрафиолетовую (100-400 нм), видимую (400-700 нм) и инфракрасную (700 нм - 1 мм) часть спектра.
Электромагнитный спектр
Каждая электромагнитная волна обладает уникальной частотой и длиной, связанной с этим параметром. Подобно тому, как красный свет имеет свою собственную частоту и длину волны, так и все остальные цвета - оранжевый, желтый, зеленый и синий - обладают уникальными частотами и длинами волн. Люди способны воспринимать эти электромагнитные волны, но не в состоянии видеть остальную часть спектра.
Наибольшую частоту имеют гамма-лучи, рентгеновские лучи и ультрафиолет. Инфракрасное, микроволновая радиация и радиоволны занимают нижние частоты спектра. Видимый свет находится в очень узком диапазоне между ними.
Лазерное излучение: воздействие на человека
Лазер производит интенсивный направленный пучок света. Если его направить, отразить или сфокусировать на объект, луч частично поглотится, повышая температуру поверхности и внутренней части объекта, что может вызвать изменение или деформацию материала. Эти качества, которые нашли применение в лазерной хирургии и обработке материалов, могут быть опасны для тканей человека.
Кроме радиации, оказывающей тепловое воздействие на ткани, опасно лазерное излучение, производящее фотохимический эффект. Его условием является достаточно короткая длина волны, т. е. ультрафиолетовая или синяя части спектра. Современные устройства производят лазерное излучение, воздействие на человека которого сведено к минимуму. Энергии маломощных лазеров недостаточно для нанесения вреда, и опасности они не представляют.
Ткани человека чувствительны к воздействию энергии, и при определенных обстоятельствах электромагнитное излучение, лазерное в том числе, может привести к повреждению глаз и кожи. Были проведены исследования пороговых уровней травмирующей радиации.
Опасность для глаз
Человеческий глаз более подвержен травмам, чем кожа. Роговица (прозрачная внешняя передняя поверхность глаза), в отличие от дермы, не имеет внешнего слоя омертвевших клеток, защищающих от воздействия окружающей среды. Лазерное и ультрафиолетовое излучение поглощается роговицей глаза, что может нанести ей вред. Травма сопровождается отёком эпителия и эрозией, а при тяжёлых повреждениях – помутнением передней камеры.
Хрусталик глаза также может быть подвержен травмам, когда на него воздействует различное лазерное излучение – инфракрасное и ультрафиолетовое.
Наибольшую опасность, однако, представляет воздействие лазера на сетчатку глаза в видимой части оптического спектра - от 400 нм (фиолетовый) до 1400 нм (ближний инфракрасный). В пределах этой области спектра коллимированные лучи фокусируются на очень маленьких участках сетчатки. Наиболее неблагоприятный вариант воздействия происходит, когда глаз смотрит вдаль и в него попадает прямой или отражённый луч. В этом случае его концентрация на сетчатке достигает 100 000 крат.
Таким образом, видимый пучок мощностью 10 мВт/см 2 воздействует на сетчатку глаза с мощностью 1000 Вт/см 2 . Этого более чем достаточно, чтобы вызвать повреждение. Если глаз не смотрит вдаль, или если луч отражается от диффузной, не зеркальной поверхности, к травмам ведёт значительно более мощное излучение. Лазерное воздействие на кожу лишено эффекта фокусировки, поэтому она гораздо меньше подвержена травмам при этих длинах волн.
Рентгеновские лучи
Некоторые высоковольтные системы с напряжением более 15 кВ могут генерировать рентгеновские лучи значительной мощности: лазерное излучение, источники которого – мощные эксимерные лазеры с электронной накачкой, а также плазменные системы и источники ионов. Эти устройства должны быть проверены на радиационную безопасность, в том числе для обеспечения надлежащего экранирования.
Классификация
В зависимости от мощности или энергии пучка и длины волны излучения, лазеры делятся на несколько классов. Классификация основана на потенциальной способности устройства вызывать немедленную травму глаз, кожи, воспламенение при прямом воздействии луча или при отражении от диффузных отражающих поверхностей. Все коммерческие лазеры подлежат идентификации с помощью нанесённых на них меток. Если устройство было изготовлено дома или иным образом не помечено, следует получить консультацию по соответствующей его классификации и маркировке. Лазеры различают по мощности, длине волны и длительности экспозиции.
Безопасные устройства
Устройства первого класса генерируют низкоинтенсивное лазерное излучение. Оно не может достичь опасного уровня, поэтому источники освобождаются от большинства мер контроля или других форм наблюдения. Пример: лазерные принтеры и проигрыватели компакт-дисков.
Условно безопасные устройства
Лазеры второго класса излучают в видимой части спектра. Это лазерное излучение, источники которого вызывают у человека нормальную реакцию неприятия слишком яркого света (мигательный рефлекс). При воздействии луча человеческий глаз моргает через 0,25 с, что обеспечивает достаточную защиту. Однако излучение лазерное в видимом диапазоне способно повредить глаз при постоянном воздействии. Примеры: лазерные указатели, геодезические лазеры.
Лазеры 2а-класса являются устройствами специального назначения с выходной мощностью менее 1 мВт. Эти приборы вызывают повреждение только при непосредственном воздействии в течение более 1000 с за 8-часовой рабочий день. Пример: устройства считывания штрих-кода.
Опасные лазеры
К классу 3а относят устройства, которые не травмируют при кратковременном воздействии на незащищённый глаз. Могут представлять опасность при использовании фокусирующей оптики, например, телескопов, микроскопов или биноклей. Примеры: гелий-неоновый лазер мощностью 1–5 мВт, некоторые лазерные указатели и строительные уровни.
Луч лазера класса 3b может привести к травме при непосредственном воздействии или при его зеркальном отражении. Пример: гелий-неоновый лазер мощностью 5-500 мВт, многие исследовательские и терапевтические лазеры.
Класс 4 включает устройства с уровнями мощности более 500 мВт. Они опасны для глаз, кожи, а также пожароопасны. Воздействие пучка, его зеркального или диффузного отражений может стать причиной глазных и кожных травм. Должны быть предприняты все меры безопасности. Пример: Nd:YAG-лазеры, дисплеи, хирургия, металлорезание.
Лазерное излучение: защита
Каждая лаборатория должна обеспечить соответствующую защиту лиц, работающих с лазерами. Окна помещений, через которые может проходить излучение устройств 2, 3 или 4 класса с нанесением вреда на неконтролируемых участках, должны быть покрыты или иным образом защищены во время работы такого прибора. Для обеспечения максимальной защиты глаз рекомендуется следующее.
- Пучок необходимо заключить в неотражающую негорючую защитную оболочку, чтобы свести к минимуму риск случайного воздействия или пожара. Для выравнивания луча использовать люминесцентные экраны или вторичные визиры; избегать прямого воздействия на глаза.
- Для процедуры выравнивания луча использовать наименьшую мощность. По возможности для предварительных процедур выравнивания использовать устройства низкого класса. Избегать присутствия лишних отражающих объектов в зоне работы лазера.
- Ограничить прохождение луча в опасной зоне в нерабочее время, используя заслонки и другие преграды. Не использовать стены комнаты для выравнивания луча лазеров класса 3b и 4.
- Использовать неотражающие инструменты. Некоторый инвентарь, не отражающий видимый свет, становится зеркальным в невидимой области спектра.
- Не носить отражающие ювелирные изделия. Металлические украшения также повышают опасность поражения электрическим током.
Защитные очки
При работе с лазерами 4 класса с открытой опасной зоной или при риске отражения следует пользоваться защитными очками. Тип их зависит от вида излучения. Очки необходимо выбирать для защиты от отражений, особенно диффузных, а также для обеспечения защиты до уровня, когда естественный защитный рефлекс может предотвратить травмы глаз. Такие оптические приборы сохранят некоторую видимость луча, предотвратят ожоги кожи, снизят возможность других несчастных случаев.
Факторы, которые следует учитывать при выборе защитных очков:
- длина волны или область спектра излучения;
- оптическая плотность при определенной длине волны;
- максимальная освещённость (Вт/см 2 ) или мощность пучка (Вт);
- тип лазерной системы;
- режим мощности - импульсное лазерное излучение или непрерывный режим;
- возможности отражения - зеркального и диффузного;
- поле зрения;
- наличие корректирующих линз или достаточного размера, позволяющего ношение очков для коррекции зрения;
- комфорт;
- наличие вентиляционных отверстий, предотвращающих запотевание;
- влияние на цветовое зрение;
- ударопрочность;
- возможность выполнения необходимых задач.
Так как защитные очки подвержены повреждениям и износу, программа безопасности лаборатории должна включать периодические проверки этих защитных элементов.
Гениальное предвидение А. Эйнштейна, сделанное им ещё в 1917 году, о возможности индуцированного излучения света атомами, блестяще подтвердилось почти через половину столетия при создании квантовых генераторов советскими физиками Н. Г. Басовым и А. М. Прохоровым. Согласно английской аббревиатуре, это устройство ещё называют лазером, а создаваемое ими излучение — лазерным.
Где мы встречаемся в повседневной жизни с лазерным излучением? В наши дни лазеры получили широкое распространение, — это различные области техники и медицины, а также световые эффекты в эстрадных представлениях и шоу. Красота переливающихся и танцующих лазерных лучей сделала их весьма притягательными для домашних экспериментаторов и производителей лазерных гаджетов. Но как лазерное излучение влияет на здоровье человека?
Что такое лазерное излучение
Обычный свет рождается в атомах. Лазерное излучение — так же. Однако при иных физических процессах и в результате воздействия внешнего электромагнитного поля. Поэтому излучение лазера является вынужденным (стимулированным).
Лазерное излучение — это электромагнитные волны, распространяющиеся почти параллельно друг другу. Поэтому луч лазера имеет острую направленность, чрезвычайно малый угол рассеяния и очень значительную интенсивность воздействия на облучаемую поверхность.
В чём же состоит отличие излучения лазера от, например, излучения лампы накаливания? Лампа накаливания — это рукотворный источник света, излучающий электромагнитные волны, в отличие от лазерного излучения, в широком спектральном диапазоне с углом распространения около 360 градусов.
Влияние лазерного излучения на организм человека
Возможность чрезвычайно разнообразного применения квантовых генераторов, побудило специалистов разных областей медицины вплотную заняться воздействием лазерного излучения на организм человека. Было установлено, что этот вид излучения обладает следующими свойствами:
при работе с источниками лазерного излучения повреждающими факторами могут явиться как прямое (из самой установки), так и рассеянное, а также отражённое излучения;
Последовательность поражения при биологическом действии лазерного излучения такова:
- резкое повышение температуры, сопровождаемое ожогом;
- за этим следует вскипание межтканевой, а также клеточной жидкости;
- образующийся пар создаёт огромное давление, завершающийся взрывом и ударной волной, которая разрушает окружающие ткани.
При малых и средних интенсивностях облучения особенно страдают кожные покровы. При более сильном воздействии, повреждения на коже имеют вид отёков, кровоизлияний и омертвевших участков. Зато внутренние ткани претерпевают значительные изменения. Причём наибольшая опасность исходит от прямого и зеркально отражённого излучения. Оно же вызывает патологические изменения в работе важнейших систем организма.
Особо остановимся на воздействии лазерного излучения на органы зрения.
Короткие импульсы излучения, генерируемые лазером, вызывают сильное поражение сетчатки, роговицы, радужной оболочки и хрусталика глаза.
Здесь можно выделить 3 причины.
-
За столь короткие промежутки времени длительности импульса (0,1 с) не успевает сработать защитный мигательный рефлекс.
Кроме того, роговая оболочка и хрусталик глаза — чрезвычайно легко уязвимые органы.
Характерными симптомами при поражении глаз являются спазмы и отёк век, боль в глазах, помутнение и кровоизлияние сетчатки. После повреждения клетки сетчатки не восстанавливаются.
Интенсивность излучения, приводящая к повреждению органов зрения, имеет более низкий уровень, чем излучение, вызывающее повреждение кожи. Опасность могут представлять любые инфракрасные лазеры, а также устройства, дающие излучения видимого спектра с мощностью более 5 мвт.
Замечательные учёные разных стран, трудившиеся над созданием квантового генератора, не могли и предугадать, какое широкое применения найдёт их детище в различных сферах жизни. Но каждая из этих областей потребует определённых, специфических длин волн.
Отчего же зависит длина волны лазерного излучения? Она определяется природой, точнее, электронным строением рабочего тела (среды, где генерируется это излучение). Существуют различные твердотельные и газовые лазеры. Эти чудо лучи могут принадлежать к ультрафиолетовому, видимому (чаще красному) и инфракрасному участку спектра. Их диапазон заключён в пределах от 180 нм. и до 30 мкм.
Характер воздействия лазерного излучения на организм человека во многом зависит от длины волны. Наше зрение примерно в 30 раз более чувствительно к зелёному, чем к красному цвету. Следовательно, мы отреагируем на зелёный лазер быстрее. В этом смысле он безопаснее, чем красный.
Защита от лазерного излучения на производстве
Существует огромная категория людей, чья профессиональная деятельность прямо или косвенно связана с квантовыми генераторами. Для них существуют строгие предписания и нормы для защиты от лазерного излучения. Они включают в себя меры общей и индивидуальной защиты, зависящие от степени опасности, которые представляет эта лазерная установка для всех структур человеческого организма.
Всего существует 4 класса опасности, которые обязан указать изготовитель. Опасность для организма человека представляют лазеры 2,3 и 4 класса.
Коллективные средства защиты от лазерного излучения, это защитные экраны и кожухи, световоды, телевизионные и телеметрические методы слежения, системы сигнализации и блокировки, а также ограждение зоны с облучением, превышающей предельно допустимый уровень.
Индивидуальная защита сотрудников обеспечивается специальным комплектом одежды. Для защиты глаз обязательным правилом является ношение очков со специальным покрытием.
Лучшей профилактикой лазерного излучения является соблюдение правил эксплуатации и защиты, а также своевременное медицинское обследование.
Защита от лазерного излучения для пользователей лазерных гаджетов
Бесконтрольное использование быту самодельных лазеров, светильников, световых указок, лазерных фонариков несёт серьёзную опасность для окружающих. Чтобы избежать трагических последствий, следует помнить:
Квантовые генераторы и любые лазерные гаджеты представляют потенциальную угрозу для их обладателей и окружающих. И только тщательное соблюдение мер безопасности позволит вам наслаждаться этими достижениями без вреда для себя и ваших друзей.
Лазеры становятся все более важными инструментами исследования в области медицины, физики, химии, геологии, биологии и техники. При неправильном использовании они могут ослеплять и наносить травмы (в т. ч. ожоги и электротравмы) операторам и другому персоналу, включая случайных посетителей лаборатории, а также нанести значительный ущерб имуществу. Пользователи этих устройств должны в полной мере понимать и применять необходимые меры безопасности при обращении с ними.
Что такое лазер?
Существует множество различных типов лазеров, работающих в разных средах. В качестве рабочей среды используются газы (например, аргон или смесь гелия с неоном), твердые кристаллы (например, рубин) или жидкие красители. Когда энергия подается в рабочую среду, она переходит в возбуждённое состояние и высвобождает энергию в виде частиц света (фотонов).
Пара зеркал на обоих концах герметизированной трубки либо отражает, либо передает свет в виде концентрированного потока, называемого лазерным лучом. Каждая рабочая среда производит луч уникальной длины волны и цвета.
Цвет света лазера, как правило, выражается длиной волны. Он является неионизирующим и включает ультрафиолетовую (100-400 нм), видимую (400-700 нм) и инфракрасную (700 нм - 1 мм) часть спектра.
Электромагнитный спектр
Каждая электромагнитная волна обладает уникальной частотой и длиной, связанной с этим параметром. Подобно тому, как красный свет имеет свою собственную частоту и длину волны, так и все остальные цвета - оранжевый, желтый, зеленый и синий - обладают уникальными частотами и длинами волн. Люди способны воспринимать эти электромагнитные волны, но не в состоянии видеть остальную часть спектра.
Наибольшую частоту имеют гамма-лучи, рентгеновские лучи и ультрафиолет. Инфракрасное, микроволновая радиация и радиоволны занимают нижние частоты спектра. Видимый свет находится в очень узком диапазоне между ними.
Лазерное излучение: воздействие на человека
Лазер производит интенсивный направленный пучок света. Если его направить, отразить или сфокусировать на объект, луч частично поглотится, повышая температуру поверхности и внутренней части объекта, что может вызвать изменение или деформацию материала. Эти качества, которые нашли применение в лазерной хирургии и обработке материалов, могут быть опасны для тканей человека.
Кроме радиации, оказывающей тепловое воздействие на ткани, опасно лазерное излучение, производящее фотохимический эффект. Его условием является достаточно короткая длина волны, т. е. ультрафиолетовая или синяя части спектра. Современные устройства производят лазерное излучение, воздействие на человека которого сведено к минимуму. Энергии маломощных лазеров недостаточно для нанесения вреда, и опасности они не представляют.
Ткани человека чувствительны к воздействию энергии, и при определенных обстоятельствах электромагнитное излучение, лазерное в том числе, может привести к повреждению глаз и кожи. Были проведены исследования пороговых уровней травмирующей радиации.
Опасность для глаз
Человеческий глаз более подвержен травмам, чем кожа. Роговица (прозрачная внешняя передняя поверхность глаза), в отличие от дермы, не имеет внешнего слоя омертвевших клеток, защищающих от воздействия окружающей среды. Лазерное и ультрафиолетовое излучение поглощается роговицей глаза, что может нанести ей вред. Травма сопровождается отёком эпителия и эрозией, а при тяжёлых повреждениях – помутнением передней камеры.
Хрусталик глаза также может быть подвержен травмам, когда на него воздействует различное лазерное излучение – инфракрасное и ультрафиолетовое.
Наибольшую опасность, однако, представляет воздействие лазера на сетчатку глаза в видимой части оптического спектра - от 400 нм (фиолетовый) до 1400 нм (ближний инфракрасный). В пределах этой области спектра коллимированные лучи фокусируются на очень маленьких участках сетчатки. Наиболее неблагоприятный вариант воздействия происходит, когда глаз смотрит вдаль и в него попадает прямой или отражённый луч. В этом случае его концентрация на сетчатке достигает 100 000 крат.
Таким образом, видимый пучок мощностью 10 мВт/см 2 воздействует на сетчатку глаза с мощностью 1000 Вт/см 2 . Этого более чем достаточно, чтобы вызвать повреждение. Если глаз не смотрит вдаль, или если луч отражается от диффузной, не зеркальной поверхности, к травмам ведёт значительно более мощное излучение. Лазерное воздействие на кожу лишено эффекта фокусировки, поэтому она гораздо меньше подвержена травмам при этих длинах волн.
Рентгеновские лучи
Некоторые высоковольтные системы с напряжением более 15 кВ могут генерировать рентгеновские лучи значительной мощности: лазерное излучение, источники которого – мощные эксимерные лазеры с электронной накачкой, а также плазменные системы и источники ионов. Эти устройства должны быть проверены на радиационную безопасность, в том числе для обеспечения надлежащего экранирования.
Классификация
В зависимости от мощности или энергии пучка и длины волны излучения, лазеры делятся на несколько классов. Классификация основана на потенциальной способности устройства вызывать немедленную травму глаз, кожи, воспламенение при прямом воздействии луча или при отражении от диффузных отражающих поверхностей. Все коммерческие лазеры подлежат идентификации с помощью нанесённых на них меток. Если устройство было изготовлено дома или иным образом не помечено, следует получить консультацию по соответствующей его классификации и маркировке. Лазеры различают по мощности, длине волны и длительности экспозиции.
Безопасные устройства
Устройства первого класса генерируют низкоинтенсивное лазерное излучение. Оно не может достичь опасного уровня, поэтому источники освобождаются от большинства мер контроля или других форм наблюдения. Пример: лазерные принтеры и проигрыватели компакт-дисков.
Условно безопасные устройства
Лазеры второго класса излучают в видимой части спектра. Это лазерное излучение, источники которого вызывают у человека нормальную реакцию неприятия слишком яркого света (мигательный рефлекс). При воздействии луча человеческий глаз моргает через 0,25 с, что обеспечивает достаточную защиту. Однако излучение лазерное в видимом диапазоне способно повредить глаз при постоянном воздействии. Примеры: лазерные указатели, геодезические лазеры.
Лазеры 2а-класса являются устройствами специального назначения с выходной мощностью менее 1 мВт. Эти приборы вызывают повреждение только при непосредственном воздействии в течение более 1000 с за 8-часовой рабочий день. Пример: устройства считывания штрих-кода.
Опасные лазеры
К классу 3а относят устройства, которые не травмируют при кратковременном воздействии на незащищённый глаз. Могут представлять опасность при использовании фокусирующей оптики, например, телескопов, микроскопов или биноклей. Примеры: гелий-неоновый лазер мощностью 1–5 мВт, некоторые лазерные указатели и строительные уровни.
Луч лазера класса 3b может привести к травме при непосредственном воздействии или при его зеркальном отражении. Пример: гелий-неоновый лазер мощностью 5-500 мВт, многие исследовательские и терапевтические лазеры.
Класс 4 включает устройства с уровнями мощности более 500 мВт. Они опасны для глаз, кожи, а также пожароопасны. Воздействие пучка, его зеркального или диффузного отражений может стать причиной глазных и кожных травм. Должны быть предприняты все меры безопасности. Пример: Nd:YAG-лазеры, дисплеи, хирургия, металлорезание.
Лазерное излучение: защита
Каждая лаборатория должна обеспечить соответствующую защиту лиц, работающих с лазерами. Окна помещений, через которые может проходить излучение устройств 2, 3 или 4 класса с нанесением вреда на неконтролируемых участках, должны быть покрыты или иным образом защищены во время работы такого прибора. Для обеспечения максимальной защиты глаз рекомендуется следующее.
- Пучок необходимо заключить в неотражающую негорючую защитную оболочку, чтобы свести к минимуму риск случайного воздействия или пожара. Для выравнивания луча использовать люминесцентные экраны или вторичные визиры; избегать прямого воздействия на глаза.
- Для процедуры выравнивания луча использовать наименьшую мощность. По возможности для предварительных процедур выравнивания использовать устройства низкого класса. Избегать присутствия лишних отражающих объектов в зоне работы лазера.
- Ограничить прохождение луча в опасной зоне в нерабочее время, используя заслонки и другие преграды. Не использовать стены комнаты для выравнивания луча лазеров класса 3b и 4.
- Использовать неотражающие инструменты. Некоторый инвентарь, не отражающий видимый свет, становится зеркальным в невидимой области спектра.
- Не носить отражающие ювелирные изделия. Металлические украшения также повышают опасность поражения электрическим током.
Защитные очки
При работе с лазерами 4 класса с открытой опасной зоной или при риске отражения следует пользоваться защитными очками. Тип их зависит от вида излучения. Очки необходимо выбирать для защиты от отражений, особенно диффузных, а также для обеспечения защиты до уровня, когда естественный защитный рефлекс может предотвратить травмы глаз. Такие оптические приборы сохранят некоторую видимость луча, предотвратят ожоги кожи, снизят возможность других несчастных случаев.
Факторы, которые следует учитывать при выборе защитных очков:
- длина волны или область спектра излучения;
- оптическая плотность при определенной длине волны;
- максимальная освещённость (Вт/см 2 ) или мощность пучка (Вт);
- тип лазерной системы;
- режим мощности - импульсное лазерное излучение или непрерывный режим;
- возможности отражения - зеркального и диффузного;
- поле зрения;
- наличие корректирующих линз или достаточного размера, позволяющего ношение очков для коррекции зрения;
- комфорт;
- наличие вентиляционных отверстий, предотвращающих запотевание;
- влияние на цветовое зрение;
- ударопрочность;
- возможность выполнения необходимых задач.
Так как защитные очки подвержены повреждениям и износу, программа безопасности лаборатории должна включать периодические проверки этих защитных элементов.
Читайте также: