Какое положение занимают спирохеты в систематике микроорганизмов
Признак | Спирохеты | Актиномицеты | Микоплазмы | Риккетсии | Хламндии |
Грампринад-лежность | Грам - | Грам+ | Не имеют клеточной стенки. Грам- | Грам - | Грам - |
Мегоды диагностики | окраска по Романовскому-Гимте, метод серебрения по Морозову, темнопольная или фазово-контрастная микроскопия | Простые методы, окраска по Граму, Цилю-Нильсону | Фазово-контрастная микроскопия Куртуральный и серотологические методы | По методу Здродовского, по Граму, эл.микроскопия | По Романовскому-Гимзе. |
Морфология | Тонкие спирально извитые нити, изогнутые вокруг центральной оси, до 50 мкм | Нитевидные витвистые клетки, имеющие вид палочки | Мелкие или крупные сферические, овоидные или нитевидные клетки | Мелкие полиморфные бактерии кокковидной, палочковидной или нитевидной формы | Элементарные тельца сферической формы (вне человека) и ретикулярные тельца (внутриклеточные) |
Особенности структурной организации | Her типичной КС , нет спор | Не имеют жгутиков, капсул эндоспор | Нет типичной КС, не образует спор и не имеет жгутиков | КС построена по типу Грамм бактерии | Безкапсульная |
Представители | Патогенные и сапрофит; трепонемы(8-12 завитков), боррелии (3-8завитков), лептоспиры(20-30 завитков) | Большинство сапрофитов, патогенными являются роды Актиномицеты и Нокардии | Патогенные и не патогенные формы, широко распространены в природе | Облигатные внутриклеточные паразиты | Облигатные паразиты |
Вызываемые заболевания | Сифилис, возвратный тиф, лептоспироз | Нокардиоз, кожные мицетомы | ОРЗ, атипичная пневмония и тд | Риккетсиозы, сыпной тиф | Трахома, орнитоз. паховый лимфогранулематоз |
17. Питание микробов. Источники углерода, азота, ростовых факторов и зольных элементов. Способы питания. Способы проникновения питательных веществ в клетку через мембрану.
Метаболизм микроорганизмов характеризуется ярко выраженным разнообразием. В качестве питательных веществ микробные клетки используют различные органические и минеральные соединения.
Источники углерода и типы питания. Все микроорганизмы по своей способности усваивать разнообразные источники углерода делятся на две группы — автотрофы и гетеротрофы. Автотрофы синтезируют все углеродсодержашие компоненты клетки из СО2 как единственного источника углерода. Гетеротрофы не могут существовать только за счет ассимиляции СО2. Они используют разнообразные органические углеродсодержащие соединения — гексозы (глюкоза), многоатомные спирты, реже углеводороды. Многие микроорганизмы в качестве источника углерода используют аминокислоты, органические кислоты и другие соединения.
Источники энергии и доноры электронов. В зависимости от источников энергии и природы доноров электронов микроорганизмы подразделяют на фототрофы (фотосинтезируюшие), способные использовать солнечную энергию, и хемотрофы (хемосинтезрующие), получающие энергию за счет окислительно-восстановительных реакций. К фототрофам относятся исключительно сапрофитные микроорганизмы. В патологии человека ведущую роль играют хемосинтезирующие микроорганизмы.
В зависимости от природы доноров электронов хемотрофы подразделяются на хемолитотрофы (хемоавтотрофы) и хемоорганотрофы (хемогетеротрофы).
Источник азота.Для синтеза азотсодержащих соединений (аминокислот, пуринов, пиримидинов, некоторых витаминов) микроорганизмы нуждаются в доступном источнике азота. Одни из них способны усваивать молекулярный азот из атмосферы (азотфиксирующие бактерии) или неорганический азот из солей аммония, нитратов или нитритов. Другие ассимилируют только азотсодержащие органические соединения.
Микроорганизмы, способные синтезировать все необходимые им органические соединения (углеводы, аминокислоты и др.) из глюкозы и солей аммония, называются прототрофами. В отличие от них микроорганизмы, не способные синтезировать какое-либо из указанных соединений, называют ауксотрофами. Они ассимилируют эти соединения и другие факторы роста в готовом виде из окружающей среды или организма хозяина (человека, животного). Ауксотрофами чаще всего являются патогенные или условно-патогенные для человека микроорганизмы.
Кроме азота и углерода всем микроорганизмам для биосинтетических реакций необходимы соединения, содержащие фосфор, серу, а также ионы Mg, К, Са, Fe и другие микроэлементы.
Факторы роста. К факторам роста относят аминокислоты, пуриновые и пи-римидиновые основания, липиды, витамины, железопорфирины (гем) и другие соединения. Некоторые микроорганизмы самостоятельно синтезируют необходимые им ростовые факторы, другие получают их в готовом виде из окружающей среды.
Потребность того или другого микроорганизма в определенных ростовых факторах является стабильным признаком, который используется для дифференциации и идентификации бактерий, а также при изготовлении питательных сред для лабораторных и биотехнологических целей.
Аминокислоты.Многие микроорганизмы, особенно бактерии, нуждаются в тех или других аминокислотах (одной или нескольких), поскольку они не могут их самостоятельно синтезировать, например клостридии — в лейцине, тирозине, стрептококки — в лейцине, аргинине и др. Такого рода микроорганизмы называются ауксотрофны-ми по тем аминокислотам или другим соединениям, которые они не способны синтезировать.
Пуриновые и пиримидиновые основания и их производные(аденин, гуанин, цитозин, урацил, тимин и др.) являются факторами роста для разных видов стрептококков, некоторые азотистые основания нужны для роста стафилококков и других бактерий. В нуклеоти-дах нуждаются некоторые виды микоплазм.
Липиды,в частности компоненты фосфолипидов — жирные кислоты, нужны для роста некоторых стрептококков, микоплазм. Все виды микоплазм ауксотрофны по холестерину и другим стеринам, что отличает их от других прокариот. Эти соединения входят в состав их цитоплазматической мембраны.
Витамины,главным образом группы В, входят в состав кофер-ментов или их простетических групп. Многие бактерии ауксотрофны по определенным витаминам. Например, коринебактерии дифтерии, шигеллы нуждаются в никотиновой кислоте или ее амиде, который входит в состав НАД и НАДФ, золотистый стафилококк, пневмококк, бруцеллы — тиамине (В,), входящем в состав пирофосфата, некоторые виды стрептококков, бациллы столбняка — в пантотеновой кислоте, являющейся составной частью кофермента КоА и т.д. Кроме того, факторами роста для многих бактерий являются фолиевая кислота, биотин, а также темы — компоненты цитохромов. Последние необходимы гемофильным бактериям, микобактериям туберкулеза и др.
[youtube.player]Систематическое положение спирохет
СПИРОХЕТЫ (трепонемы, боррелии, лептоспиры)
СИСТЕМАТИЧЕСКОЕ ПОЛОЖЕНИЕ, МОРФОЛОГИЯ, РОЛЬ В ПАТОЛОГИИ И МЕТОДЫ ИЗУЧЕНИЯ СПИРОХЕТ, АКТИНОМИЦЕТОВ, РИККЕТСИЙ, ХЛАМИДИЙ, МИКОПЛАЗМ
Экзоспоры, в отличие от эндоспор, образуются вне бактериальной клетки и являются способом размножения у актиномицетов. На одну бактериальную клетку приходится не одна, а много спор. Экзоспоры менее устойчивы во внешней среде.
Систематическое положение спирохет представлено в табл. 7.
Таблица 7
ТАКСОН | НОМЕНКЛАТУРА |
Домен | Bacteria |
Тип | Spirochaetes |
Класс | Spirochaetes |
Порядок | Spirochaetales |
Семейства | Spirochaetaceae, Leptospiraceae |
Род; виды семейства Spirochaetaceae | Treponema; T. pallidum (подвиды pallidum, endemicum (bejel), pertenue), T. carateum, T. denticola, T. minutum, T. vincentii, T. scoliodontum, T. refringens и др. |
Род; виды семейства Spirochaetaceae | Borrelia; B. recurrentis, B. burgdorferi, B. persica, B. hispanica, B. duttoni и др. |
Род; виды семейства Leptospiraceae | Leptospira; L. interrogans, L. biflexa |
Спирохеты(spira — виток, chaite — волосы) — Грам-, спирально извитые, обладающие активной подвижностью бактерии. Размеры спирохет вариабельны: толщина — 0,1–0,6 мкм, длина 7–500 мкм. Спор не образуют, капсул не имеют. Спирохеты отличаются друг от друга размерами клеток, количеством и характером завитков, числом фибрилл.
В структурном отношении клетка спирохеты представляет собой протоплазматический цилиндр, отграниченный ЦПМ (рис. 42). Снаружи от ЦПМ находится тонкая и эластичная КС, состоящая из слабо выраженного пептидогликанового слоя и наружной мембраны. Между пептидогликановым слоем и наружной мембраной КС расположены осевые фибриллы, в совокупности называемые аксистилем. Осевые фибриллы, как и жгутики бактерий, состоят из белка флагеллина.
Рис. 42 .Строение клетки спирохеты:
А — в продольном разрезе;
Б — в поперечном разрезе:
1 —протоплазматический цилиндр,
2 —наружная мембрана КС,
3 — осевые фибриллы (аксистиль),
4 —блефаропласт (место прикрепления осевых фибрилл),
5 —пептидогликановый слой КС,
Клетка спирохет содержит два набора осевых фибрилл, прикрепленных субполярно у каждого клеточного конца. Каждая осевая фибрилла тянется вдоль всей клетки спирохеты. Пучки фибрилл, прикрепленных у разных полюсов, в центральной части перекрываются.
На обоих концах протоплазматического цилиндра расположены субтерминальные прикрепительные диски — блефаропласты. Каждая из осевых фибрилл прикрепляется на одном конце протоплазматического цилиндра к блефаропласту и тянется к противоположному концу цилиндра, обвивая его. Другой неприкрепленный конец осевой фибриллы свободен и выходит за конец протоплазматического цилиндра, создавая впечатление истинного наружного полярного жгутика. Однако истинные жгутики крепятся в ЦПМ и отходят от нее радиально, в то время как осевые фибриллы располагаются вдоль протоплазматического цилиндра и заключены во внешнюю оболочку (наружную мембрану), поэтому иногда именуются периплазматическими жгутиками или эндожгутиками.
Протоплазматический цилиндр в 2 раза длиннее осевых фибрилл. Различают первичные завитки, когда протоплазматический цилиндр накручивается на осевые фибриллы, и вторичные завитки — изгибы всего тела спирохеты.
Спирохеты в жидких средах совершают движения трех типов: быстрое вращательное вокруг длинной продольной оси, сгибательное и поступательное (штопорообразное, винтообразное). Они также способны скользить по твердому субстрату.
Морфологические различия патогенных спирохет приведены в табл. 8.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
[youtube.player]Спирохеты (speira - изгиб, chaite - волосы) - спирально извитые, обладающие активной подвижностью бактерии. Размеры спирохет колеблются в толщину от 0,1-0,3 мкм, в длину от 7-500 мкм. Движения разнообразные – от винтообразных до сгибательных.
Электронно-микроскопическое исследование позволило различить у спирохет протоплазматический цилиндр (тело клетки), аксиальную (опорную) нить и трехслойную наружную оболочку. Аксиальная нить находится в периплазматическом пространстве между наружной оболочкой и протоплазматическим цилиндром и состоит из отдельных фибрилл (эндофлагелл), число которых у разных видов различно: у трепонем и лептоспир – 3-4; у борелий – до 30. Каждая из фибрилл (эндожгутиков) закрепляется в области прикрепительных дисков на концах протоплазматического цилиндра и тянется к противоположному его концу, обвивая его и заканчиваясь свободно. Химический состав фибрилл аналогичен составу жгутиков.
В протоплазматическом цилиндре содержатся: нуклеоид, рибосомы, мезосомы, включения. Наружная оболочка (клеточная стенка) содержит тонкий слой пептидогликана, эластична и не обладает ригидностью. Эндоспор, капсул и экзожгутиков эти бактерии не образуют, грамотрицательны, в мазке располагаются беспорядочно.
Спирохеты относятся к порядку Spirochaetales, семейство Spirochaetaceae, которое включает три рода:
- Borrelia - имеет 3-10 неравномерных отлогих завитков, концы заострены, длиной 10-30 мкм. Движение толчкообразное, по Романовскому-Гимзе окрашиваются в сине-фиолетовый цвет (представитель Borrelia recurrentis – вызывает эпидемический возвратный тиф; Borrelia burgdorferi - вызывает лаймоборрелиоз).
- Treponema - имеет 8-14 туго закрученных, одинаковых по амплитуде завитков, длина 5-15 мкм. Движение плавное, медленное с вращением вокруг продольной оси, по Романовскому-Гимзе окрашиваются в бледно розовый цвет (представитель Treponema pallidum – возбудитель сифилиса).
- Leptospira - имеет до двух десятков мелких частых завитков, заканчивающихся крючком с пуговчатым утолщением, длиной 5-15 мкм. Движение очень активное, поступательное перемещение вперед, сгибание и вращение вокруг оси. По Романовскому-Гимзе окрашиваются слабо в розовато-сиреневый цвет (представитель Leptospira interrogans – возбудитель лептоспироза).
Методы исследования. В живом состоянии спирохеты изучают в фазово-контрастном микроскопе и темнопольном микроскопе, наблюдая за активным характерным движением спирохет, особенностями их формы.
Готовят препараты по Бурри (на темном фоне препарата становятся видимыми светлые извитые нити спирохет), окрашивают по Романовскому-Гимзе, по методу Морозова.
Спириллы
Спириллы (от греч speira - спираль) - имеют вид штопорообразно извитых клеток. К данной группе относится Spirillum minus - возбудитель содоку.
Спирилла. Окраска карболовым фуксином
Вибрионы
Вибрионы (от лат. vibrio - изгибаюсь) - короткие бактерии, изогнутость тела которых не превышает четверти оборота спирали (форма запятой). Представители: Vibrio cholerae, являющийся возбудителем холеры, а также V. fluvialis, V. vulnifucus - возбудители гастроэнтеритов и раневых инфекций.
Хеликобактерии, кампилобактерии
Кампилобактерии и хеликобактерии - извитые бактерии, изогнутость которых не превышает четверти оборота спирали. В мазках часто имеют форму "летящей чайки". Кампилобактерии (типовой представитель Campylobacter fetus) вызывают кампилобактериоз. Хеликобактерии (типовой представитель Helicobacter pylori) - хеликобактериоз.
Извитые формы микроорганизмов
Извитую форму имеют следующие микроорганизмы:
Вибрионы Хеликобактерии, кампилобактерии
Спириллы Спирохеты
[youtube.player]Теория по микробиологии. Тема: Морфология и состав бактерий, вирусов. Актиномицеты, спирохеты, риккетсии, хламидии, микоплазмы. Патогенные представители.
При создании данной страницы использовались труды: Бухарин О.В. — Медицинская микробиология; Д.В. Тапальский, Т.Н. Ильинская, Л.В. Шевцова, Л.В. Лагун — Курс лекций по микробиологии, иммунологии, вирусологии.
Редактор: Irina
Классификация микроорганизмов. Основные структуры бактериальной клетки
Клеточная стенка имеет два слоя:
- наружный – пластичный;
- внутренний – ригидный.
Пептидогликан представлен параллельно расположенными молекулами гликана, состоящего из повторяющихся остатков N-ацетилглюкозомина и N- ацетилмурамовой кислоты, соединённой гликозидной связью.
Функции:
- защитная, осуществление фагоцитоза;
- регуляция осмотического давления;
- рецепторная;
- принимает участие в процессах питания деления клетки;
- антигенная (определяется продукцией эндотоксина– основного соматического антигена бактерий);
- стабилизирует форму и размер бактерий;
- обеспечивает систему коммуникаций с внешней средой;
- косвенно участвует в регуляции роста и деления клетки.
Цитоплазматческая мембрана:
По структуре она похожа на плазмолемму клеток животных и состоит из двойного слоя липидов, главным образом фосфолипидов, с интегральными, полуинтегральными и поверхностными белками — жидкостно-мозаичная модель .
Она обладает избирательной проницаемостью , принимает участие в транспорте питательных веществ, выведении экзотоксинов, энергетическом обмене клетки , является осмотическим барьером, участвует в регуляции роста и деления, репликации ДНК, является стабилизатором рибосом.
Цитоплазма:
Имеет жидкую структуру, в которой находится её компоненты, представленные различными включениями в виде гранул гликогена , полисахаридов и полифосфатов .
Функции:
- объединение всех компонентов клетки в единую среду,
- среда для прохождения химических реакций,
- среда для существования и функционирования органоидов.
Нуклеоид:
Нуклеоид — эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной в клубок. Участвует в делении клетки , а также хранит и передаёт наследственную информацию.
Плазмиды:
Внехромосомные факторы наследственности, представляющие собой ковалентно замкнутые кольца ДНК., расположенные в цитоплазме или интегрированные с хромосомой.
Рибосомы:
Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S. Могут диссоциировать на 2 субъединицы 50S и 30S. На рибосомах происходит синтез белка и полипептидных молекул.
Споры и капсулы бактерий
Капсула
Слизистая структура толщиной более 0,2 мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула гидрофильна , включает большое количество воды. Состоит из полисахаридов, полипептидов.
Капсула и слизь предохраняет бактерии от повреждений, высыхания, так как, являясь гидрофильными, хорошо связывают воду, препятствуют действию защитных факторов макроорганизмов гликокаликсом.
Споры
Форма спор может быть овальной, шаровидной , расположение – терминальное, субтерминальное и центральное .
Снаружи спора имеет тонкий экзоспориум, под которым расположена оболочка споры, а под ней кортекс, состоящий из пептидогликана. Внутри кортекса находится клеточная стенка спор.
Споры образуются при неблагоприятных условиях, УФ-облучении, дефиците питательных веществ.
Некоторые роды бактерий при неблагоприятных условиях образуют защитные формы — эндоспоры .
Споры представляют собой покоящиеся клетки с крайне низкой метаболической активностью . Они обладают высокой устойчивостью к высушиванию, действию повышенной температуры и различных химических веществ.
Включения и жгутики у бактерий
Включения
В цитоплазме имеются различные включения в виде г ранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин). Они являются запасными веществами для питания и энергетических потребностей бактерий.
Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки.
Включения имеют актиномицеты, риккетсии.
Жгутики
Жгутики — это особые выросты на поверхности бактериальной клетки, содержащие белок – флагелин.
Количество и расположение жгутиков может быть различным. Толщина 12-20 нм, длина 3-15 мкм.
Состоят из трёх частей:
- спиралевидной нити,
- крюка,
- базального тельца, содержащего стержень со специальными дисками.
Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. Жгутики обеспечивают подвижность бактериальной клетки. Механизм вращения обеспечивает протонная АТФ-синтетаза.
По характеру расположения жгутиков и их количеству бактерии делят на следующие группы:
- атрихи – не имеют жгутиков;
- монотрихи — один полярно расположенный жгутик;
- лофотрихи — пучок жгутиков на одном конце;
- амфитрихи — пучки жгутиков на обоих концах клетки;
- перитрихи — множество жгутиков, расположенных вокруг клетки.
Морфология актиномицетов, патогенные представители
Актиномицеты :
- Грамм+ бактерии.
- Нет капсулы, жгутиков, ворсинок.
- Есть включения.
- Имеют вид длинных и ветвящихся несептированных нитей (длина 500-600 мкм, толщина 0,2-1,2 мкм).
- Встречаются палочковидные и кокковидные формы, они образуются при фрагментации мицелия.
- Как и грибы, образуют мицелий – нитевидные переплетающиеся клетки (гифы).
- Размножаются спорами, поперечным делением, почкованием.
- 2 рода:
- Actinomyces,
- Nocardia.
- Являются представителями нормальной микрофлоры организма человека.
- Продуцируют антибиотики.
- Для человека патогенны очень немногие виды актиномицетов ― возбудители актиномикоза и нокардиоза .
Морфология спирохет, патогенные представители
Спирохеты :
- Грам- бактерии.
- Это извитые, тонкие, обладающие активной подвижностью микроорганизмы.
- Не образуют спор, нет капсулы.
- Есть жгутики.
- Наделенные чертами сходства с простейшими: образуют цисты, способны к движению.
- Длина 3-20 мкм, толщина 0,1-0,5 мкм.
- Состоят из наружной мембраны (клеточной стенки), окружающей протоплазматический цилиндр с цитоплазматической мембраной и аксиальной нитью (аксостиль). Аксиальная нить находится под наружной мембраной и как бы закручивается вокруг протоплазматического цилиндра спирохеты, придавая ей винтообразную форму.
- Аксиальная нить состоит из фибрилл – аналогов жгутиков бактерий, а внутри сократительный белок флагеллин. Фибриллы участвуют в передвижении спирохет, придавая клеткам вращательное, сгибательное и поступательное движение.
- 3 Рода:
- Treponema,
- Borrelia,
- Leptospira.
- Патогенные представители:
- Treponema pallidum – возбудитель сифилиса,
- Borrelia recurrentis – возбудитель возвратного тифа,
- Leptospira interrogans – возбудитель лептоспироза.
Морфология риккетсий, патогенные представители
Риккетсии :
- Грам- бактерии.
- Прокариоты, наделенные чертами сходства с вирусами: абсолютный внутриклеточный паразитизм и невозможность культивирования на искусственных питательных средах. Риккетсии обладают независимым от клетки-хозяина метаболизмом, но они получают от него макроэргические соединения для размножения.
- Мелкие, размеры от 0,5 до 3-4 мкм.
- Нет капсулы, жгутиков, не образуют спор, могут иметь включения.
- Обладают полиморфизмом : имеют кокковидную, палочковидную или нитевидную форму.
- Размножаются простым делением, дроблением.
- 3 Рода:
- Rickettsia,
- Orientia,
- Bartonella.
- У человека риккетсии вызывают:
- эпидемический сыпной тиф (Rickettsia prowazekii),
- клещевой риккетсиоз (R. sibirica),
- лихорадку цуцугамуши (R. tsutsugamushi),
- пятнистую лихорадку Скалистых гор (R. rickettsii),
- Bartonella quintana ― возбудитель волынской лихорадки ,
- Сoxiella burnetii ― возбудитель Q-лихорадки .
Морфология хламидий, патогенные представители
Хламидии :
- Грам- бактерии.
- Облигатные внутриклеточные паразиты.
- 2 фазы в цикле развития:
- элементарные тельца — внеклеточная, инфекционная форма
- и ретикулярные тельца — внутриклеточные.
- Полиморфные : имеют шаровидную, овоидную или палочковидную формы.
- Размеры 0,2-1,5 мкм.
- Капсул, спор, жгутиков не образуют.
- Морфология зависит от стадии их внутриклеточного цикла развития, который характеризуется превращением небольшого шаровидного элементарного образования в крупное инициальное тельце с бинарным делением.
- Рода:
- Chlamydia,
- Chlamydophila
- Виды:
- Chlamydia trachomatis ― возбудитель трахомы, паратрахомы, лимфогранулематоза,
- Chlamydophila psittaci ― возбудитель орнитоза, пситтакоз,
- Chlamydophila pneumoniae ― возбудитель пневмонии.
Морфология микоплазм, патогенные представители
Микоплазмы :
- Грам- бактерии.
- Отличаются от бактерий полным отсутствием клеточной стенки. Вместо нее содержат трехслойную липопротеидную цитоплазматическую мембрану.
- Нет клеточной стенки, нет капсулы, не образуют спор. Образуют колонии в виде яичницы-глазуньи.
- Делятся почкованием, нитевидная форма может образовывать псевдомицелий (грибы).
- Амебоидное движение, могут быть псевдоподии или жгутики(простейшие).
- Размеры 0,15-0,3 мкм, мелкие, проходят через бактериальный фильтр.
- Полиморфны : имеют форму круглых, овальных или нитевидных образований.
- Род:
- Mycoplasma,
- Ureaplasma,
- Acholeoplasma.
- Виды:
- Mycoplasma pneumoniae ― возбудитель пневмонии,
- Ureaplasma urealyticum, hominis – возбудитель урогенитальных воспалительных процессов, бесплодия,
- Mycoplasma hominis ― условно-патогенный организм, могут вызывать артриты.
Морфология вирусов
Вирусы – это мельчайшие микроорганизмы, относящиеся к царству Vira, не имеющие клеточного строения, белоксинтезирующей системы, содержащие только один тип нуклеиновой кислоты (ДНК или РНК).
Они отличаются особым разобщенным способом размножения (репродукции) : в клетке отдельно синтезируются нуклеиновые кислоты вирусов и их белки и затем происходит их сборка в вирусные частицы. Вирусы, являясь облигатными внутриклеточными паразитами, размножаются в цитоплазме или ядре клетки. Сформированная вирусная частица называется вирионом.
Вирусы имеют различную форму вирионов:
- палочковидная (вирус табачной мозаики),
- пулевидная (вирус бешенства),
- сферическая (вирусы полиомиелита, ВИЧ),
- в виде сперматозоида (многие бактериофаги).
Вирусы имеют разные размеры , которые определяют с помощью электронной микроскопии, методом ультрафильтрации через фильтры с известным диаметром пор, методом ультрацентрифугирования.
Одним из самых мелких вирусов является вирус полиомиелита (около 20 нм), наиболее крупным – натуральной оспы (около 350 нм).
Вирусы имеют уникальный геном , так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНК-содержащие вирусы. Они обычно гаплоидны , т.е. имеют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот : двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными.
Среди РНК-содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом . Плюс-нить РНК этих вирусов выполняет наследственную функцию и функцию информационной РНК (иРНК). Имеются также РНК-содержащие вирусы с отрицательным (минус-нить РНК) геномом.
Минус-нить РНК этих вирусов выполняет только наследственную функцию. Геном вирусов способен включаться в состав генетического аппарата клетки в виде провируса, проявляя себя генетическим паразитом клетки. Нуклеиновые кислоты некоторых вирусов (вирусы герпеса и др.) могут находиться в цитоплазме инфицированных клеток, напоминая плазмиды.
Вирусы различают по строению:
- просто устроенные (например, вирус полиомиелита),
- сложно устроенные (например, вирусы гриппа, кори) вирусы.
У просто устроенных вирусов нуклеиновая кислота связана с белковой оболочкой, называемой капсидом (от лат. capsa – футляр). Капсид состоит из повторяющихся морфологических субъединиц – капсомеров. Нуклеиновая кислота и капсид, взаимодействуя друг с другом, образуют нуклеокапсид.
Вирусы различают по типу симметрии капсида:
- спиральный – обусловлен винтообразной структурой нуклеокапсида,
- кубический– обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту,
- сложный.
Капсид и суперкапсид защищают вирионы от влияния окружающей среды, обусловливают избирательное взаимодействие (адсорбцию) с клетками, определяют антигенные и иммуногенные свойства вирионов. Внутренние структуры вирусов называются сердцевиной.
Принципы классификации вирусов
Классификация вирусов основывается на данных признаках:
- тип нуклеиновой кислоты,
- сложность строения,
- размер вириона,
- тип симметрии,
- чувствительные организмы,
- антигенная структура.
Читайте также: